purpose of research

Community Blog

Keep up-to-date on postgraduate related issues with our quick reads written by students, postdocs, professors and industry leaders.

What is Research? – Purpose of Research

DiscoverPhDs

  • By DiscoverPhDs
  • September 10, 2020

Purpose of Research - What is Research

The purpose of research is to enhance society by advancing knowledge through the development of scientific theories, concepts and ideas. A research purpose is met through forming hypotheses, collecting data, analysing results, forming conclusions, implementing findings into real-life applications and forming new research questions.

What is Research

Simply put, research is the process of discovering new knowledge. This knowledge can be either the development of new concepts or the advancement of existing knowledge and theories, leading to a new understanding that was not previously known.

As a more formal definition of research, the following has been extracted from the Code of Federal Regulations :

purpose of research

While research can be carried out by anyone and in any field, most research is usually done to broaden knowledge in the physical, biological, and social worlds. This can range from learning why certain materials behave the way they do, to asking why certain people are more resilient than others when faced with the same challenges.

The use of ‘systematic investigation’ in the formal definition represents how research is normally conducted – a hypothesis is formed, appropriate research methods are designed, data is collected and analysed, and research results are summarised into one or more ‘research conclusions’. These research conclusions are then shared with the rest of the scientific community to add to the existing knowledge and serve as evidence to form additional questions that can be investigated. It is this cyclical process that enables scientific research to make continuous progress over the years; the true purpose of research.

What is the Purpose of Research

From weather forecasts to the discovery of antibiotics, researchers are constantly trying to find new ways to understand the world and how things work – with the ultimate goal of improving our lives.

The purpose of research is therefore to find out what is known, what is not and what we can develop further. In this way, scientists can develop new theories, ideas and products that shape our society and our everyday lives.

Although research can take many forms, there are three main purposes of research:

  • Exploratory: Exploratory research is the first research to be conducted around a problem that has not yet been clearly defined. Exploration research therefore aims to gain a better understanding of the exact nature of the problem and not to provide a conclusive answer to the problem itself. This enables us to conduct more in-depth research later on.
  • Descriptive: Descriptive research expands knowledge of a research problem or phenomenon by describing it according to its characteristics and population. Descriptive research focuses on the ‘how’ and ‘what’, but not on the ‘why’.
  • Explanatory: Explanatory research, also referred to as casual research, is conducted to determine how variables interact, i.e. to identify cause-and-effect relationships. Explanatory research deals with the ‘why’ of research questions and is therefore often based on experiments.

Characteristics of Research

There are 8 core characteristics that all research projects should have. These are:

  • Empirical  – based on proven scientific methods derived from real-life observations and experiments.
  • Logical  – follows sequential procedures based on valid principles.
  • Cyclic  – research begins with a question and ends with a question, i.e. research should lead to a new line of questioning.
  • Controlled  – vigorous measures put into place to keep all variables constant, except those under investigation.
  • Hypothesis-based  – the research design generates data that sufficiently meets the research objectives and can prove or disprove the hypothesis. It makes the research study repeatable and gives credibility to the results.
  • Analytical  – data is generated, recorded and analysed using proven techniques to ensure high accuracy and repeatability while minimising potential errors and anomalies.
  • Objective  – sound judgement is used by the researcher to ensure that the research findings are valid.
  • Statistical treatment  – statistical treatment is used to transform the available data into something more meaningful from which knowledge can be gained.

Finding a PhD has never been this easy – search for a PhD by keyword, location or academic area of interest.

Types of Research

Research can be divided into two main types: basic research (also known as pure research) and applied research.

Basic Research

Basic research, also known as pure research, is an original investigation into the reasons behind a process, phenomenon or particular event. It focuses on generating knowledge around existing basic principles.

Basic research is generally considered ‘non-commercial research’ because it does not focus on solving practical problems, and has no immediate benefit or ways it can be applied.

While basic research may not have direct applications, it usually provides new insights that can later be used in applied research.

Applied Research

Applied research investigates well-known theories and principles in order to enhance knowledge around a practical aim. Because of this, applied research focuses on solving real-life problems by deriving knowledge which has an immediate application.

Methods of Research

Research methods for data collection fall into one of two categories: inductive methods or deductive methods.

Inductive research methods focus on the analysis of an observation and are usually associated with qualitative research. Deductive research methods focus on the verification of an observation and are typically associated with quantitative research.

Research definition

Qualitative Research

Qualitative research is a method that enables non-numerical data collection through open-ended methods such as interviews, case studies and focus groups .

It enables researchers to collect data on personal experiences, feelings or behaviours, as well as the reasons behind them. Because of this, qualitative research is often used in fields such as social science, psychology and philosophy and other areas where it is useful to know the connection between what has occurred and why it has occurred.

Quantitative Research

Quantitative research is a method that collects and analyses numerical data through statistical analysis.

It allows us to quantify variables, uncover relationships, and make generalisations across a larger population. As a result, quantitative research is often used in the natural and physical sciences such as engineering, biology, chemistry, physics, computer science, finance, and medical research, etc.

What does Research Involve?

Research often follows a systematic approach known as a Scientific Method, which is carried out using an hourglass model.

A research project first starts with a problem statement, or rather, the research purpose for engaging in the study. This can take the form of the ‘ scope of the study ’ or ‘ aims and objectives ’ of your research topic.

Subsequently, a literature review is carried out and a hypothesis is formed. The researcher then creates a research methodology and collects the data.

The data is then analysed using various statistical methods and the null hypothesis is either accepted or rejected.

In both cases, the study and its conclusion are officially written up as a report or research paper, and the researcher may also recommend lines of further questioning. The report or research paper is then shared with the wider research community, and the cycle begins all over again.

Although these steps outline the overall research process, keep in mind that research projects are highly dynamic and are therefore considered an iterative process with continued refinements and not a series of fixed stages.

Scope of Research

The scope of the study is defined at the start of the study. It is used by researchers to set the boundaries and limitations within which the research study will be performed.

Scope and Delimitation

The scope and delimitations of a thesis, dissertation or paper define the topic and boundaries of a research problem – learn how to form them.

What is the age limit for doing a PhD?

The answer is simple: there is no age limit for doing a PhD; in fact, the oldest known person to have gained a PhD in the UK was 95 years old.

Join thousands of other students and stay up to date with the latest PhD programmes, funding opportunities and advice.

purpose of research

Browse PhDs Now

What are the consequences of Self-Plagiarism?

Self-plagiarism is when you try and pass off work that you’ve previously done as something that is completely new.

What do you call a professor?

You’ll come across many academics with PhD, some using the title of Doctor and others using Professor. This blog post helps you understand the differences.

purpose of research

Gabrielle’s a 2nd year Immunology PhD student at the University of Michigan. Her research focus on the complications of obesity and type 2 diabetes in the clearance of respiratory bacterial infections.

purpose of research

Sara is currently in the 4th year of the Physics Doctoral Program at The Graduate Center of the City University of New York. Her research investigates quantum transport properties of 2D electron systems.

Join Thousands of Students

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

purpose of research

Home Market Research

What is Research: Definition, Methods, Types & Examples

What is Research

The search for knowledge is closely linked to the object of study; that is, to the reconstruction of the facts that will provide an explanation to an observed event and that at first sight can be considered as a problem. It is very human to seek answers and satisfy our curiosity. Let’s talk about research.

Content Index

What is Research?

What are the characteristics of research.

  • Comparative analysis chart

Qualitative methods

Quantitative methods, 8 tips for conducting accurate research.

Research is the careful consideration of study regarding a particular concern or research problem using scientific methods. According to the American sociologist Earl Robert Babbie, “research is a systematic inquiry to describe, explain, predict, and control the observed phenomenon. It involves inductive and deductive methods.”

Inductive methods analyze an observed event, while deductive methods verify the observed event. Inductive approaches are associated with qualitative research , and deductive methods are more commonly associated with quantitative analysis .

Research is conducted with a purpose to:

  • Identify potential and new customers
  • Understand existing customers
  • Set pragmatic goals
  • Develop productive market strategies
  • Address business challenges
  • Put together a business expansion plan
  • Identify new business opportunities
  • Good research follows a systematic approach to capture accurate data. Researchers need to practice ethics and a code of conduct while making observations or drawing conclusions.
  • The analysis is based on logical reasoning and involves both inductive and deductive methods.
  • Real-time data and knowledge is derived from actual observations in natural settings.
  • There is an in-depth analysis of all data collected so that there are no anomalies associated with it.
  • It creates a path for generating new questions. Existing data helps create more research opportunities.
  • It is analytical and uses all the available data so that there is no ambiguity in inference.
  • Accuracy is one of the most critical aspects of research. The information must be accurate and correct. For example, laboratories provide a controlled environment to collect data. Accuracy is measured in the instruments used, the calibrations of instruments or tools, and the experiment’s final result.

What is the purpose of research?

There are three main purposes:

  • Exploratory: As the name suggests, researchers conduct exploratory studies to explore a group of questions. The answers and analytics may not offer a conclusion to the perceived problem. It is undertaken to handle new problem areas that haven’t been explored before. This exploratory data analysis process lays the foundation for more conclusive data collection and analysis.

LEARN ABOUT: Descriptive Analysis

  • Descriptive: It focuses on expanding knowledge on current issues through a process of data collection. Descriptive research describe the behavior of a sample population. Only one variable is required to conduct the study. The three primary purposes of descriptive studies are describing, explaining, and validating the findings. For example, a study conducted to know if top-level management leaders in the 21st century possess the moral right to receive a considerable sum of money from the company profit.

LEARN ABOUT: Best Data Collection Tools

  • Explanatory: Causal research or explanatory research is conducted to understand the impact of specific changes in existing standard procedures. Running experiments is the most popular form. For example, a study that is conducted to understand the effect of rebranding on customer loyalty.

Here is a comparative analysis chart for a better understanding:

It begins by asking the right questions and choosing an appropriate method to investigate the problem. After collecting answers to your questions, you can analyze the findings or observations to draw reasonable conclusions.

When it comes to customers and market studies, the more thorough your questions, the better the analysis. You get essential insights into brand perception and product needs by thoroughly collecting customer data through surveys and questionnaires . You can use this data to make smart decisions about your marketing strategies to position your business effectively.

To make sense of your study and get insights faster, it helps to use a research repository as a single source of truth in your organization and manage your research data in one centralized data repository .

Types of research methods and Examples

what is research

Research methods are broadly classified as Qualitative and Quantitative .

Both methods have distinctive properties and data collection methods.

Qualitative research is a method that collects data using conversational methods, usually open-ended questions . The responses collected are essentially non-numerical. This method helps a researcher understand what participants think and why they think in a particular way.

Types of qualitative methods include:

  • One-to-one Interview
  • Focus Groups
  • Ethnographic studies
  • Text Analysis

Quantitative methods deal with numbers and measurable forms . It uses a systematic way of investigating events or data. It answers questions to justify relationships with measurable variables to either explain, predict, or control a phenomenon.

Types of quantitative methods include:

  • Survey research
  • Descriptive research
  • Correlational research

LEARN MORE: Descriptive Research vs Correlational Research

Remember, it is only valuable and useful when it is valid, accurate, and reliable. Incorrect results can lead to customer churn and a decrease in sales.

It is essential to ensure that your data is:

  • Valid – founded, logical, rigorous, and impartial.
  • Accurate – free of errors and including required details.
  • Reliable – other people who investigate in the same way can produce similar results.
  • Timely – current and collected within an appropriate time frame.
  • Complete – includes all the data you need to support your business decisions.

Gather insights

What is a research - tips

  • Identify the main trends and issues, opportunities, and problems you observe. Write a sentence describing each one.
  • Keep track of the frequency with which each of the main findings appears.
  • Make a list of your findings from the most common to the least common.
  • Evaluate a list of the strengths, weaknesses, opportunities, and threats identified in a SWOT analysis .
  • Prepare conclusions and recommendations about your study.
  • Act on your strategies
  • Look for gaps in the information, and consider doing additional inquiry if necessary
  • Plan to review the results and consider efficient methods to analyze and interpret results.

Review your goals before making any conclusions about your study. Remember how the process you have completed and the data you have gathered help answer your questions. Ask yourself if what your analysis revealed facilitates the identification of your conclusions and recommendations.

LEARN MORE ABOUT OUR SOFTWARE         FREE TRIAL

MORE LIKE THIS

AI Question Generator

AI Question Generator: Create Easy + Accurate Tests and Surveys

Apr 6, 2024

ux research software

Top 17 UX Research Software for UX Design in 2024

Apr 5, 2024

Healthcare Staff Burnout

Healthcare Staff Burnout: What it Is + How To Manage It

Apr 4, 2024

employee retention software

Top 15 Employee Retention Software in 2024

Other categories.

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

2.1 Why is Research Important

Learning objectives.

By the end of this section, you will be able to:

  • Explain how scientific research addresses questions about behavior
  • Discuss how scientific research guides public policy
  • Appreciate how scientific research can be important in making personal decisions

   Scientific research is a critical tool for successfully navigating our complex world. Without it, we would be forced to rely solely on intuition, other people’s authority, and blind luck. While many of us feel confident in our abilities to decipher and interact with the world around us, history is filled with examples of how very wrong we can be when we fail to recognize the need for evidence in supporting claims. At various times in history, we would have been certain that the sun revolved around a flat earth, that the earth’s continents did not move, and that mental illness was caused by possession (figure below). It is through systematic scientific research that we divest ourselves of our preconceived notions and superstitions and gain an objective understanding of ourselves and our world.

A skull has a large hole bored through the forehead.

Some of our ancestors, across the work and over the centuries, believed that trephination – the practice of making a hole in the skull, as shown here – allowed evil spirits to leave the body, thus curing mental illness and other diseases (credit” “taiproject/Flickr)

   The goal of all scientists is to better understand the world around them. Psychologists focus their attention on understanding behavior, as well as the cognitive (mental) and physiological (body) processes that underlie behavior. In contrast to other methods that people use to understand the behavior of others, such as intuition and personal experience, the hallmark of scientific research is that there is evidence to support a claim. Scientific knowledge is empirical : It is grounded in objective, tangible evidence that can be observed time and time again, regardless of who is observing.

We can easily observe the behavior of others around us. For example, if someone is crying, we can observe that behavior. However, the reason for the behavior is more difficult to determine. Is the person crying due to being sad, in pain, or happy? Sometimes, asking about the underlying cognitions is as easy as asking the subject directly: “Why are you crying?” However, there are situations in which an individual is either uncomfortable or unwilling to answer the question honestly, or is incapable of answering. For example, infants would not be able to explain why they are crying. In other situations, it may be hard to identify exactly why you feel the way you do. Think about times when you suddenly feel annoyed after a long day. There may be a specific trigger for your annoyance (a loud noise), or you may be tired, hungry, stressed, or all of the above. Human behavior is often a complicated mix of a variety of factors. In such circumstances, the psychologist must be creative in finding ways to better understand behavior. This chapter explores how scientific knowledge is generated, and how important that knowledge is in forming decisions in our personal lives and in the public domain.

USE OF RESEARCH INFORMATION

   Trying to determine which theories are and are not accepted by the scientific community can be difficult, especially in an area of research as broad as psychology. More than ever before, we have an incredible amount of information at our fingertips, and a simple internet search on any given research topic might result in a number of contradictory studies. In these cases, we are witnessing the scientific community going through the process of coming to an agreement, and it could be quite some time before a consensus emerges. In other cases, rapidly developing technology is improving our ability to measure things, and changing our earlier understanding of how the mind works.

In the meantime, we should strive to think critically about the information we encounter by exercising a degree of healthy skepticism. When someone makes a claim, we should examine the claim from a number of different perspectives: what is the expertise of the person making the claim, what might they gain if the claim is valid, does the claim seem justified given the evidence, and what do other researchers think of the claim? Science is always changing and new evidence is alwaus coming to light, thus this dash of skepticism should be applied to all research you interact with from now on. Yes, that includes the research presented in this textbook.

Evaluation of research findings can have widespread impact. Imagine that you have been elected as the governor of your state. One of your responsibilities is to manage the state budget and determine how to best spend your constituents’ tax dollars. As the new governor, you need to decide whether to continue funding the D.A.R.E. (Drug Abuse Resistance Education) program in public schools (figure below). This program typically involves police officers coming into the classroom to educate students about the dangers of becoming involved with alcohol and other drugs. According to the D.A.R.E. website (www.dare.org), this program has been very popular since its inception in 1983, and it is currently operating in 75% of school districts in the United States and in more than 40 countries worldwide. Sounds like an easy decision, right? However, on closer review, you discover that the vast majority of research into this program consistently suggests that participation has little, if any, effect on whether or not someone uses alcohol or other drugs (Clayton, Cattarello, & Johnstone, 1996; Ennett, Tobler, Ringwalt, & Flewelling, 1994; Lynam et al., 1999; Ringwalt, Ennett, & Holt, 1991). If you are committed to being a good steward of taxpayer money, will you fund this particular program, or will you try to find other programs that research has consistently demonstrated to be effective?

A D.A.R.E. poster reads “D.A.R.E. to resist drugs and violence.”

The D.A.R.E. program continues to be popular in schools around the world despite research suggesting that it is ineffective.

It is not just politicians who can benefit from using research in guiding their decisions. We all might look to research from time to time when making decisions in our lives. Imagine you just found out that a close friend has breast cancer or that one of your young relatives has recently been diagnosed with autism. In either case, you want to know which treatment options are most successful with the fewest side effects. How would you find that out? You would probably talk with a doctor or psychologist and personally review the research that has been done on various treatment options—always with a critical eye to ensure that you are as informed as possible.

In the end, research is what makes the difference between facts and opinions. Facts are observable realities, and opinions are personal judgments, conclusions, or attitudes that may or may not be accurate. In the scientific community, facts can be established only using evidence collected through empirical research.

THE PROCESS OF SCIENTIFIC RESEARCH

   Scientific knowledge is advanced through a process known as the scientific method . Basically, ideas (in the form of theories and hypotheses) are tested against the real world (in the form of empirical observations), and those observations lead to more ideas that are tested against the real world, and so on. In this sense, the scientific process is circular. We continually test and revise theories based on new evidence.

Two types of reasoning are used to make decisions within this model: Deductive and inductive. In deductive reasoning, ideas are tested against the empirical world. Think about a detective looking for clues and evidence to test their “hunch” about whodunit. In contrast, in inductive reasoning, empirical observations lead to new ideas. In other words, inductive reasoning involves gathering facts to create or refine a theory, rather than testing the theory by gathering facts (figure below). These processes are inseparable, like inhaling and exhaling, but different research approaches place different emphasis on the deductive and inductive aspects.

A diagram has a box at the top labeled “hypothesis or general premise” and a box at the bottom labeled “empirical observations.” On the left, an arrow labeled “inductive reasoning” goes from the bottom to top box. On the right, an arrow labeled “deductive reasoning” goes from the top to the bottom box.

Psychological research relies on both inductive and deductive reasoning.

   In the scientific context, deductive reasoning begins with a generalization—one hypothesis—that is then used to reach logical conclusions about the real world. If the hypothesis is correct, then the logical conclusions reached through deductive reasoning should also be correct. A deductive reasoning argument might go something like this: All living things require energy to survive (this would be your hypothesis). Ducks are living things. Therefore, ducks require energy to survive (logical conclusion). In this example, the hypothesis is correct; therefore, the conclusion is correct as well. Sometimes, however, an incorrect hypothesis may lead to a logical but incorrect conclusion. Consider the famous example from Greek philosophy. A philosopher decided that human beings were “featherless bipeds”. Using deductive reasoning, all two-legged creatures without feathers must be human, right? Diogenes the Cynic (named because he was, well, a cynic) burst into the room with a freshly plucked chicken from the market and held it up exclaiming “Behold! I have brought you a man!”

Deductive reasoning starts with a generalization that is tested against real-world observations; however, inductive reasoning moves in the opposite direction. Inductive reasoning uses empirical observations to construct broad generalizations. Unlike deductive reasoning, conclusions drawn from inductive reasoning may or may not be correct, regardless of the observations on which they are based. For example, you might be a biologist attempting to classify animals into groups. You notice that quite a large portion of animals are furry and produce milk for their young (cats, dogs, squirrels, horses, hippos, etc). Therefore, you might conclude that all mammals (the name you have chosen for this grouping) have hair and produce milk. This seems like a pretty great hypothesis that you could test with deductive reasoning. You go out an look at a whole bunch of things and stumble on an exception: The coconut. Coconuts have hair and produce milk, but they don’t “fit” your idea of what a mammal is. So, using inductive reasoning given the new evidence, you adjust your theory again for an other round of data collection. Inductive and deductive reasoning work in tandem to help build and improve scientific theories over time.

We’ve stated that theories and hypotheses are ideas, but what sort of ideas are they, exactly? A theory is a well-developed set of ideas that propose an explanation for observed phenomena. Theories are repeatedly checked against the world, but they tend to be too complex to be tested all at once. Instead, researchers create hypotheses to test specific aspects of a theory.

A hypothesis is a testable prediction about how the world will behave if our theory is correct, and it is often worded as an if-then statement (e.g., if I study all night, I will get a passing grade on the test). The hypothesis is extremely important because it bridges the gap between the realm of ideas and the real world. As specific hypotheses are tested, theories are modified and refined to reflect and incorporate the result of these tests (figure below).

A diagram has four boxes: the top is labeled “theory,” the right is labeled “hypothesis,” the bottom is labeled “research,” and the left is labeled “observation.” Arrows flow in the direction from top to right to bottom to left and back to the top, clockwise. The top right arrow is labeled “use the hypothesis to form a theory,” the bottom right arrow is labeled “design a study to test the hypothesis,” the bottom left arrow is labeled “perform the research,” and the top left arrow is labeled “create or modify the theory.”

The scientific method of research includes proposing hypotheses, conducting research, and creating or modifying theories based on results.

   To see how this process works, let’s consider a specific theory and a hypothesis that might be generated from that theory. As you’ll learn in a later chapter, the James-Lange theory of emotion asserts that emotional experience relies on the physiological arousal associated with the emotional state. If you walked out of your home and discovered a very aggressive snake waiting on your doorstep, your heart would begin to race and your stomach churn. According to the James-Lange theory, these physiological changes would result in your feeling of fear. A hypothesis that could be derived from this theory might be that a person who is unaware of the physiological arousal that the sight of the snake elicits will not feel fear.

A scientific hypothesis is also falsifiable, or capable of being shown to be incorrect. Recall from the introductory chapter that Sigmund Freud had lots of interesting ideas to explain various human behaviors (figure below). However, a major criticism of Freud’s theories is that many of his ideas are not falsifiable. The essential characteristic of Freud’s building blocks of personality, the id, ego, and superego, is that they are unconscious, and therefore people can’t observe them. Because they cannot be observed or tested in any way, it is impossible to say that they don’t exist, so they cannot be considered scientific theories. Despite this, Freud’s theories are widely taught in introductory psychology texts because of their historical significance for personality psychology and psychotherapy, and these remain the root of all modern forms of therapy.

(a)A photograph shows Freud holding a cigar. (b) The mind’s conscious and unconscious states are illustrated as an iceberg floating in water. Beneath the water’s surface in the “unconscious” area are the id, ego, and superego. The area just below the water’s surface is labeled “preconscious.” The area above the water’s surface is labeled “conscious.”

Many of the specifics of (a) Freud’s theories, such ad (b) his division on the mind into the id, ego, and superego, have fallen out of favor in recent decades because they are not falsifiable (i.e., cannot be verified through scientific investigation).  In broader strokes, his views set the stage for much psychological thinking today, such as the idea that some psychological process occur at the level of the unconscious.

In contrast, the James-Lange theory does generate falsifiable hypotheses, such as the one described above. Some individuals who suffer significant injuries to their spinal columns are unable to feel the bodily changes that often accompany emotional experiences. Therefore, we could test the hypothesis by determining how emotional experiences differ between individuals who have the ability to detect these changes in their physiological arousal and those who do not. In fact, this research has been conducted and while the emotional experiences of people deprived of an awareness of their physiological arousal may be less intense, they still experience emotion (Chwalisz, Diener, & Gallagher, 1988).

Scientific research’s dependence on falsifiability allows for great confidence in the information that it produces. Typically, by the time information is accepted by the scientific community, it has been tested repeatedly.

Scientists are engaged in explaining and understanding how the world around them works, and they are able to do so by coming up with theories that generate hypotheses that are testable and falsifiable. Theories that stand up to their tests are retained and refined, while those that do not are discarded or modified. IHaving good information generated from research aids in making wise decisions both in public policy and in our personal lives.

Review Questions:

1. Scientific hypotheses are ________ and falsifiable.

a. observable

b. original

c. provable

d. testable

2. ________ are defined as observable realities.

a. behaviors

c. opinions

d. theories

3. Scientific knowledge is ________.

a. intuitive

b. empirical

c. permanent

d. subjective

4. A major criticism of Freud’s early theories involves the fact that his theories ________.

a. were too limited in scope

b. were too outrageous

c. were too broad

d. were not testable

Critical Thinking Questions:

1. In this section, the D.A.R.E. program was described as an incredibly popular program in schools across the United States despite the fact that research consistently suggests that this program is largely ineffective. How might one explain this discrepancy?

2. The scientific method is often described as self-correcting and cyclical. Briefly describe your understanding of the scientific method with regard to these concepts.

Personal Application Questions:

1. Healthcare professionals cite an enormous number of health problems related to obesity, and many people have an understandable desire to attain a healthy weight. There are many diet programs, services, and products on the market to aid those who wish to lose weight. If a close friend was considering purchasing or participating in one of these products, programs, or services, how would you make sure your friend was fully aware of the potential consequences of this decision? What sort of information would you want to review before making such an investment or lifestyle change yourself?

deductive reasoning

falsifiable

hypothesis:  (plural

inductive reasoning

Answers to Exercises

Review Questions: 

1. There is probably tremendous political pressure to appear to be hard on drugs. Therefore, even though D.A.R.E. might be ineffective, it is a well-known program with which voters are familiar.

2. This cyclical, self-correcting process is primarily a function of the empirical nature of science. Theories are generated as explanations of real-world phenomena. From theories, specific hypotheses are developed and tested. As a function of this testing, theories will be revisited and modified or refined to generate new hypotheses that are again tested. This cyclical process ultimately allows for more and more precise (and presumably accurate) information to be collected.

deductive reasoning:  results are predicted based on a general premise

empirical:  grounded in objective, tangible evidence that can be observed time and time again, regardless of who is observing

fact:  objective and verifiable observation, established using evidence collected through empirical research

falsifiable:  able to be disproven by experimental results

hypothesis:  (plural: hypotheses) tentative and testable statement about the relationship between two or more variables

inductive reasoning:  conclusions are drawn from observations

opinion:  personal judgments, conclusions, or attitudes that may or may not be accurate

theory:  well-developed set of ideas that propose an explanation for observed phenomena

Creative Commons License

Share This Book

  • Increase Font Size

Book cover

Principles of Social Research Methodology pp 15–28 Cite as

Research: Meaning and Purpose

  • Kazi Abusaleh 4 &
  • Akib Bin Anwar 5  
  • First Online: 27 October 2022

2062 Accesses

The objective of the chapter is to provide the conceptual framework of the research and research process and draw the importance of research in social sciences. Various books and research papers were reviewed to write the chapter. The chapter defines ‘research’ as a deliberate and systematic scientific investigation into a phenomenon to explore, analyse, and predict about the issues or circumstances, and characterizes ‘research’ as a systematic and scientific mode of inquiry, a way to testify the existing knowledge and theories, and a well-designed process to answer questions in a reliable and unbiased way. This chapter, however, categorizes research into eight types under four headings, explains six steps to carry out a research work scientifically, and finally sketches the importance of research in social sciences.

  • Research process
  • Social science
  • Systematic scientific investigation

This is a preview of subscription content, log in via an institution .

Buying options

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Adams, G. R., & Schvaneveldt, J. D. (1991). Understanding research methods . Addison-Wesley Longman Ltd.

Google Scholar  

Adams, G., & Schvaneveldt, J. (1985). Obtaining Data: Questionnaire and Interview. Understanding research methods (pp. 199–229). Longman.

Adams, S. (1975). Evaluative research in corrections: A practical guide. US Department of Justice, Law Enforcement Assistance Administration, National Institute of Law Enforcement and Criminal Justice.

Aminuzzaman, S. M. (1991). Introduction to social research . Bangladesh publishers.

Ary, D., Jacobs, L. C., & Sorensen, C. K. (2010). Introduction to research in education (8th ed.). Wardsworth.

Best, J. W., & Kahn, J. V. (1986). Research in education (5th ed.). Prentice Hall.

Bhattacherjee, A. (2012). Social science research: Principles, methods, and practices . University of South Florida.

Black, T. R. (1993). Evaluating social science research: An introduction . Sage.

Borg, W. R., & Gall, M. D. (1963). Educational research: An introduction . David McKay Company.

Burns, A. C. (2006). Marketing research. Pearson Education.

Connaway, L. S., & Powell, R. R. (2010). Basic research methods for librarians . ABC-CLIO.

Cresswell, J. W. (2008). Educational research: Planning, conducting and evaluating qualitative and quantitative research (4th ed.). Merrill & Prentice Hall.

Gebremedhin, T. G., & Tweeten, L. G. (1994). Research methods and communication in the social sciences . ABC-CLIO.

Ghosh, B. N. (1985). Scientific method and social research . Stwiling Publishers/Advent Books Division.

Given, L. M. (Ed.). (2008). The Sage encyclopaedia of qualitative research methods . Sage publications.

Greenwood, D. J., & Levin, M. (2007). Introduction to action research: Social research for social change (2 nd ed.). SAGE publications.

Herr, K., & Anderson, G. L. (2014). The action research dissertation: A guide for students and faculty . Sage publications.

Kerlinger, F. N. (1964). Foundation behavioural approach . Rinehart & Winston.

Kothari, C. R. (2004). Research methodology: Methods and techniques . New Age International (P) Limited Publishers.

Kumar, R. (2011). Selecting a method of data collection’. Research methodology: a step by step guide for beginners (3 rd ed.). Sage.

Leedy, P. D. (1981). How to read research and understand it . Macmillan.

Leedy, P. D., & Ormrod, J. E. (2015). Practical research: planning and design (11th ed.). Global Edition.

Merriam-Webster Online Dictionary (2020). Merriam-Webster. Retrieved April 25, 2020 from www.merriam-webster.com/dictionary/research

Mishra, D. S. (2017). Handbook of research methodology: A Compendium for scholars & researchers . Educreation Publishing.

Narayana, P. S., Varalakshmi, D., Pullaiah, T., & Rao, K. S. (2018). Research methodology in Zoology. Scientific Publishers.

Oxford Learner’s Online Dictionaries (2020). Oxford University Press. Retrieved April 25, 2020 from www.oxfordlearnersdictionaries.com/definition/english/research_1?q=research

Polansky, N. A. (Ed.). (1960). Social work research: methods for the helping professions . University of Chicago Press.

Selltiz, C., Wrightsman, L. S., & Cook, S. W. (1976). Research methods in social relations . Holt.

Smith, V. H. (1998). Measuring the benefits of social science research (Vol. 2, pp. 01–21). International Food Policy Research Institute.

Somekh, B., & Lewin, C. (2004). Research Methods in the Social Sciences . Sage Publications.

Suchman, E. (1968). Evaluative Research: Principles and Practice in Public Service and Social Action Programs . Russell Sage Foundation.

Download references

Author information

Authors and affiliations.

Transparency International Bangladesh (TIB), Dhanmondi, Dhaka, 1209, Bangladesh

Kazi Abusaleh

Community Mobilization Manager, Winrock International, Dhaka, 1212, Bangladesh

Akib Bin Anwar

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Kazi Abusaleh .

Editor information

Editors and affiliations.

Centre for Family and Child Studies, Research Institute of Humanities and Social Sciences, University of Sharjah, Sharjah, United Arab Emirates

M. Rezaul Islam

Department of Development Studies, University of Dhaka, Dhaka, Bangladesh

Niaz Ahmed Khan

Department of Social Work, School of Humanities, University of Johannesburg, Johannesburg, South Africa

Rajendra Baikady

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter.

Abusaleh, K., Anwar, A.B. (2022). Research: Meaning and Purpose. In: Islam, M.R., Khan, N.A., Baikady, R. (eds) Principles of Social Research Methodology. Springer, Singapore. https://doi.org/10.1007/978-981-19-5441-2_2

Download citation

DOI : https://doi.org/10.1007/978-981-19-5441-2_2

Published : 27 October 2022

Publisher Name : Springer, Singapore

Print ISBN : 978-981-19-5219-7

Online ISBN : 978-981-19-5441-2

eBook Packages : Social Sciences

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

National Academies Press: OpenBook

Airport Passenger-Related Processing Rates Guidebook (2009)

Chapter: chapter 3 - defining the research: purpose, focus, and potential uses.

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

14 Chapter 3 identifies roles, relationships, and responsibilities of stakeholders. It examines principal steps involved in planning an airport passenger-rate data collection effort. It begins with the ques- tion of whether the potential benefits of the proposed effort outweigh the anticipated cost; describes different types of research (i.e., exploratory, descriptive, inferential); summarizes the questions each type addresses; and notes the ends to which the data might be used. 3.1 Roles and Responsibilities When an airport data collection event is first mentioned, it invariably raises numerous ques- tions: Who is asking for the data? How will it be used? What’s the budget? What’s the schedule? What kind of resources can be made available? Without answers to these fundamental questions, the success of your research is in jeopardy. This section will help the researcher establish the role of key stakeholders and their interrelationships within the team. Many entities can sponsor a data collection study, including airports, airlines, manufacturers, and various agencies. Likewise, there are many ways of managing and staffing the event and pro- moting involvement with stakeholders. There are therefore myriad ways of organizing a study. Exhibit 3-1 is an example of how a study could be arranged with the airport as the sponsor. 3.1.1 Client/Sponsor For airports, oversight is guided by a board, commission, or an authority consisting of appointed or elected officials. While these agencies typically provide oversight to airport man- agement and approve long-term plans and large capital expenditures, usually it is the airport director or manager who makes day-to-day decisions. Depending on the size of the airport, there may be several departments, each having its own manager. In such cases, passenger terminal-related studies would typically fall within the purview of the planning and/or engineering department and would be managed by its director. Regardless of the affiliation of the project sponsor(s), it is essential that the following ques- tions be answered clearly and unambiguously as they pertain to the sponsor at the beginning of any project: • Who has primary responsibility for defining the questions the study is intended to address? • What preference does this person or group have regarding ongoing involvement with the project? – What information would they like to receive, in what format, and with what frequency? – Who should be the principal point-of-contact (POC) on the client’s side for questions that might emerge related to the study’s focus, direction, etc.? C H A P T E R 3 Defining the Research: Purpose, Focus, and Potential Uses

Defining the Research: Purpose, Focus, and Potential Uses 15 • Who is the designated project manager, and what information would he or she like to receive, in what format, and with what frequency? • If the person given responsibility for day-to-day issues pertaining to access, authorizations, etc. is different from the project manager, who is that person, and what is the scope of issues he or she is authorized to address? • If problems or obstacles arise in implementing the study, and the project manager is not able or authorized to resolve them, what is the chain of persons through which the issue should be escalated? 3.1.2 Study Team The size of the study team will depend on the team’s depth and organization, and the size, duration, and complexity of the study itself. For a typical medium- to large-scale study, the roles listed in the following sections are the most typical. Multiple roles might be assumed by a single person or distributed across multiple persons. Titles vary as well, but the functions are largely universal. Project Manager The project manager is typically a mid-level to senior person who has the long-term, day-to- day relationship with his or her client counterpart. The need for the passenger-related process- ing rate study may initially originate from discussions between the project manager and those within the airport or airline. Survey Manager The survey manager is usually a mid-level staff person. His/her role on the project would be to oversee the day-to-day management of the data processing rate study, including leading the development of the scope, schedule, and budget; developing the team; and assigning roles and responsibilities. The survey manager would have the responsibility of ensuring the survey goals were adequately defined and met. Decision Maker Survey Manager Admin. Support Staffing Source (e.g., airport personnel, mkt. research firm) Surveyor Surveyor Surveyor Sponsor/Client (Airport) (Large Airport: Dir./Mgr.) Project Manager (Large Airport: Dir. Planning/Eng.) (Small Airport: Apt. Mgr.) Project Manager (Typ. oversees multiple tasks of which survey is but one part) Study Team (Typically, Consultant) Statistical Technical Expert Survey Assistant Data Analyst IT Analyst Other Stakeholders • Airlines • Agencies • Concessionaires Exhibit 3-1. Typical sponsor and study team roles (assuming an airport is the sponsor).

16 Airport Passenger-Related Processing Rates Guidebook Research and Statistical Expert A person(s) with expertise in research methodology and quantitative/statistical analysis should be consulted to develop, or provide comments and recommendations about, the overall methodology, the sampling plan, and so forth. Most of this person’s input would occur at the project’s initiation. A distinction is sometimes drawn in the consulting literature among differ- ent approaches to consulting. One such approach, generally referred to as process consultation might be of particular appeal.1 When acting in this role, the consultant not only provides tech- nical expertise related to the specific project, but also works with the client to develop expertise. This arrangement has the goal of, over time, reducing the reliance on the consultant. Survey Assistant The survey assistant has primary responsibility for assisting the survey project manager and secondarily to assist others on the project team throughout the duration of the study. Typically, this staff person will be at a junior level. The degree of assistance this person can provide is based on his/her level of education and current skill sets. Data Analyst The data analyst should not only be well-versed in technical analysis, but should also have a strong familiarity with the airport terminal environment. This person could be a terminal or air- port planner or aviation architect. The analyst is often largely responsible for documenting results, and responsibilities might extend to presenting findings to the client. Administrative Support Data collection efforts are inherently complex and, as such, often require a significant level of coordination and administration. The staff person serving this function would be responsible for such things as making travel plans, scheduling visits to the airport’s security office, buying supplies, shipping and receiving materials, scheduling meetings, preparing invoices and con- tracts, and editing/proofing the report. Data Collection Staff For small studies (e.g., small airports where only a few functional elements are being observed for a limited time period), airport/airline or consultant staffing may be used. For larger studies, typically examining multiple functional elements of a medium or large airport over a multi-day period, a market-research firm is frequently employed. The data collection staff reports directly to the survey manager. 3.2 Is the Study Needed? While the need for data collection is often justifiable, the benefit of validating the need, and avoiding what might be a costly, and possibly unjustified, effort well exceeds the relatively minor cost of pausing to consider a few basic questions (see Appendix C for more information). Exhibit 3-2 illustrates these questions. 3.3 Research Fundamentals This section summarizes a number of fundamental issues and terms related to the research process. (Additional detail is included in Appendix C.) 1 Schein, E. H. (1999). Process Consultation Revisited: Building the Helping Relationship. NY: Addison Wesley.

Research is a dynamic process with both deductive and inductive dimensions. This differs in some ways from what some present as the “traditional” approach to research, i.e., that theory drives hypothesis testing. Sometimes it does, but sometimes it doesn’t work this way. 3.3.1 Theory, Hypotheses, and Evidence The word “theory” often implies a formal set of laws, propositions, variables, and the like, whose relationships are clearly defined. A related implication is that theory may not be particu- larly germane to the everyday world of work. This view of theory is not incorrect, but neither is it complete. While theory can be abstract and complex in its detail, it does not necessarily have to be abstract, complex, or formal. It can be thought of more broadly and simply as an explanation of “how the world works.” For exam- ple, an organization might develop a mission or a value statement (or both); engrave the words in a medium intended to last millennia; and prominently display the statement in the workplace with the intent of communicating to all its perspective clients on issues pertinent to its view. In Defining the Research: Purpose, Focus, and Potential Uses 17 Question Things to Consider Have relevant data been collected at this airport in the past that might be used rather than collecting new data? Might you be able to get data from another airport similar in key ways to this airport? Are there data available that might help answer the research question? Might access to the data be blocked due to proprietary or security issues? Sometimes the data are perceived to be so sensitive that the “owner” of the data may not give permission to share it. Has the decision already been made, and the data are being collected to legitimize the decision? Is there anything to suggest that the study is an attempt to “prove” something true or false? What role will the results play in the decision being considered? To what extent will the decision makers be persuaded by the results? What will the decision makers accept as credible evidence? Before collecting data, make certain that the research plan will result in data that the sponsors will accept. It is better to learn beforehand, for example, that the proposed sampling plan does not meet the sponsor’s criteria for rigor. What is the cost of the potential investment that the data will help inform? What is the cost of conducting the research? Does the benefit equal or outweigh the cost? Cost should be considered not only in economic terms, but as safety, inconvenience, and so forth. Exhibit 3-2. Considerations to determine need for data collection.

2008, British Airways announced a new venture: OpenSkies. The “theory” OpenSkies used to define its clients is reflected in its advertising as shown in Exhibit 3-3. So, how does this relate to airport processing rate studies? It relates in the following two ways: 1. The published research literature may well contain formal theories relevant to what data to collect and how to collect it. For example, Appendix B includes a bibliography of recent research articles related to passenger and baggage processing in airports. It is intended to illustrate the scope and diversity of research available on a given topic. Before embarking on an investigation, review the literature to see how it might enhance the quality of the planned research. The Internet provides access to numerous sources for such scholarly documents. 2. Informally, the key decisions about how to go about collecting data are grounded in assump- tions about how things work (i.e., one’s own theory). For example, you might choose to col- lect passenger security screening data between 6:00 a.m. and 8:00 a.m. on a Monday because your experience is that this time period reflects peak checkpoint activity. While this “theory” may be correct in some circumstances, it may also be wrong in others. For example, at many vacation-oriented airports, the peak at the checkpoint occurs in the late morning due to check-out times at hotels. Another common view of research is of the stereotypical scientist, objectively testing hypothe- ses (or an “educated guess”) arising from theory. Exhibit 3-4 reflects this general approach to research. This is certainly one way in which research proceeds, but, similar to theory, it is not the only way. Before considering an “evidence first” approach, we wish to mention a variation on the tra- ditional approach displayed in Exhibit 3-4 that has been gaining dominance in recent years. In particular, this is a confidence interval (CI) approach rather than a hypothesis driven approach. In a hypothesis driven approach, the researcher’s primary interest is in testing a population parameter, and uses a sample drawn from the population. When the researcher takes a CI approach, the intent is to calculate an interval within which the population parameter is likely 18 Airport Passenger-Related Processing Rates Guidebook Exhibit 3-3. OpenSkies advertisement. Question key assumptions, even if they seem to be “common sense,” by checking with informants, look- ing at the literature, etc.

to fall. Hypotheses are stated before data collection; CIs are calculated after data are collected.2 In conducting passenger-processing rate research in airport environments, the CI approach is going to be the most appropriate in most instances. A markedly different approach to those described above is shown in Exhibit 3-5. In contrast to beginning with a theory and then collecting evidence to test the theory or estimate a popula- tion parameter within some CI, this approach begins with evidence for which one seeks poten- tial explanations, or “theories” to explain the evidence. This approach is subsumed under the broad heading of Bayesian Law, so named after the 18th Century English clergyman, Thomas Bayes, credited with developing the approach. Depending on where one begins can result in potentially dramatic conclusions (see Exhibit 3-6). This is important because limiting oneself to a particular perspective of how research should be conducted and how data ought to be gathered may impose unnecessary constraints. What is important is that the research is executed systematically and with rigor. The documented ways in which science proceeds are often idealized: portraying what is inherently a very dynamic and nonlinear process as logical and linear. 3.3.2 Research Questions and Purposes A basic issue in research is specifying the question the research will help answer. Penning a specific question also helps in determining what approach might be best used in seeking an Defining the Research: Purpose, Focus, and Potential Uses 19 Theory Drives questions & hypotheses Hypothesis: Installing n kiosks will reduce the average time of passengers waiting in line by 10% over check-in agents. Leading to a conclusion Drives data collection Followed by analysis Exhibit 3-4. Hypothesis driven approach. Evidence leads to speculation about possible explanations Which may or may not drive more data collection & analysis Theory Exhibit 3-5. Bayesian approach. 2 While these approaches are presented here as mutually exclusive, they might be integrated in practice.

answer. One classic text in research methodology5 suggests that a research question should express a relationship between two or more variables, and it should imply an empirical approach, that is, it should lend itself to being measured using data. A variable is, not surprisingly, some- thing that can vary, or assume different values. In the next section, illustrative questions are given, categorized by the purpose of research with which they are best matched. The five research purposes are presented as the following: 1. Explore, 2. Describe, 3. Test, 4. Evaluate, and 5. Predict. The distinctions among these purposes are not absolute, nor are they necessarily exclusive of one another. A research initiative might be directed at answering questions with multiple pur- poses. Indeed, this is but one of many ways of classifying research. In addition, the reader whose practice lies primarily in the arena of modeling and simulation might note their absence from this list. Although modeling and simulation applications require input data, for example, to gen- erate distributions and parameters for use as stochastic varieties in modeling, the techniques used to collect data are largely independent of specific applications (such as simulation and model- ing). Those issues unique to modeling are beyond the scope of this guidebook. Explore (Exploratory Research) Exploratory research is sometimes defined as “what to do when you don’t know what you don’t know.” Its aim is discovery and to develop an understanding of relevant variables and their interactions in a real (field) environment. Exploratory research, as such, is appropriate when the 20 Airport Passenger-Related Processing Rates Guidebook If your intent is to… And take action based on… Use… Example Test a hypothesis regarding a population parameter Whether you reject or fail to reject the null hypothesis Hypothesis testing approach The proportion of coach passengers checking in more than 60 min prior to scheduled departure is 80% H A : p > .80 3 H 0 : p .804 Estimate a population parameter The confidence interval selected CI approach Plus or minus 5%, what is the average time coach passengers check in prior to scheduled departure? Determine the likelihood of an event given some evidence The calculated probability Bayesian approach What is the probability that a passenger’s carry on- luggage will be subject to secondary security screening given that the passenger is boarding an international flight? Exhibit 3-6. Research approaches. 3 This is the research, or Alternative, hypothesis. It reads: The proportion is greater than 80%. 4 This is the null hypothesis. It is what is tested, and reads: The proportion is less than or equal to 80%. 5 Kerlinger F. & Lee, H. (2000). Foundations of Behavioral Research, 4th ed. NY: Harcourt Brace.

problem is not well defined. For example, passenger complaints about signs within a facility might prompt the following exploratory question: • “Where should signage be located to minimize passenger confusion?” As another example, if a new security checkpoint configuration is proposed, it may be too novel to rely on variables used in other studies. The question, therefore, might then be the following: • “How does a given alternative security checkpoint configuration affect capacity?” This type of research is often qualitative rather than quantitative. That is, it employs verbal descriptors of observations, rather than counts of those observations (see Appendix C for more information). Describe (Descriptive Research) Descriptive research, as the name implies, is intended to describe phenomena. While descrip- tive research might involve collecting qualitative data by asking open-ended questions in an interview, it typically employs quantitative methods resulting in reporting frequencies, calculat- ing averages, and the like. The following two questions illustrate the nature of descriptive research. Each implies that the relevant variables have been identified as well as the conditions under which the data should be collected. • “What is the average number of passengers departing on international flights on weekday evenings in July at a given airport?” • “How many men use a given restroom at a particular location at a given time?” Test (Experimental and Quasi-experimental Research and Modeling) Often, the intent of the research is not simply to describe something, but to test the impact of some intervention. In an airport environment, such research might be initiated to evaluate the relative effectiveness of a security screening technology in accurately detecting contraband. It is similar in approach to research conducted to assess the relative effectiveness of an experimental drug in comparison to a control (placebo) or another drug. Variables are often manipulated and controlled. This research lies largely outside the scope of this guidebook and, as such, will not receive much attention. Examples of questions that might be asked in this type of research include the following: • “What is the impact of posting airline personnel near check-in waiting lines on the average passenger waiting time?” In addition to the classic “experiment,” simulation modeling might be used, employing rep- resentative data to help answer questions such as the following: • “What would be the impact on processing time of a new security measure being considered?” • “How many agents are needed to keep passenger waiting time below an average of 10 min?” Evaluate (Evaluative Research) Sometimes, the intent of the research is to assess performance against some standard or stated requirement. Basically, evaluation research is concerned with seeing how well something is work- ing, with an eye toward improving performance, as illustrated by the following two questions: • “Is the performance of a given piece of equipment in the field consistent with manufacturer’s specifications?” • “On average, what proportion of passengers waits in a security checkpoint line longer than the 10-minute maximum threshold specified by an airline?” Defining the Research: Purpose, Focus, and Potential Uses 21

Predict Finally, research might be initiated to attempt to predict or anticipate potential emerging pat- terns before they occur. This is related to environmental scanning, insofar as it represents a delib- erate attempt to monitor potential trends and their impact. For example, in the early 1970s, one might have posed the following question: • “What would be the impact of an increase in the number of women in the workforce on air- port design?” There are numerous documented approaches to answering questions such as these. While well beyond the scope of this guidebook, here is one as illustrative: scenario planning. This method involves convening persons with relevant expertise to identify those areas that might most impact the industry (e.g., regulation, fuel costs, demographic changes), and then to systemati- cally consider what the best, worst, and might likely scenarios might be. The principal value of such an approach is that it facilitates deliberate consideration of future trends, and in so doing, presumably leaves people better prepared. When the goal of the research is to predict, data from multiple sources might be sought. The scenario planning example relies, to an extent, on the judgments of experts. Probabilities can also be drawn from historical data to help identify patterns and trends. Exhibit 3-7 is a summary of the key characteristics of each research type. 3.4 Developing the Research Plan Large research studies, particularly when funding is being requested, often require the researchers to adhere to a specific set of technical requirements. The Research Team is aware that the ad hoc and short timeline of many airport-planning research efforts makes developing a “for- mal” research plan impracticable. Nonetheless, even though you might not have the “luxury” of 22 Airport Passenger-Related Processing Rates Guidebook Research Purpose Characteristics Explore Primary purpose: to better define or understand a situation. Data will help answer the research question. The benefit of conducting the research justifies the cost. Qualitative data are recorded, using observation. Describe Primary purpose: to provide descriptive information about something. Test Primary purpose: to assess the impact of a proposed change in procedure or policy. Evaluate Primary purpose: to assess performance against requirements. Predict Primary purpose: to consider possible future circumstances with the purpose of being better prepared for emerging trends. Exhibit 3-7. Summary of research types.

developing such a plan, there are benefits to considering the issues described in this section, as well as documenting basic information. The following are the three major elements the Research Team believes worth documenting, regardless of the size of the research endeavor.6 1. Goals or aims. 2. Background and significance. 3. Research design and methods. Each is described in the sections that follow. 3.4.1 Goals or Aims Specify the question the research is intended to help answer or the specific purpose of the research. The experience of having to translate an intended purpose into words can help clarify your intent. In addition, a written statement can serve as a way of ensuring that your understand- ing of the purpose of the research is consistent with that of the sponsor and other stakeholders. Two examples follow: Statement of Purpose—Example 1 The purpose of this study is to aid decision makers in determining if extending the dwell time of the airport’s automated guideway transit system (AGTS) vehicles from 30 sec to 35 sec at the Concourse C station might improve overall system capacity by providing more boarding time for passengers. Statement of Purpose—Example 2 The goal of this study is to provide airport management with recent data showing the percent- age of arriving flights whose first checked bag reaches the claim device within the airport’s goal of 15 min. 3.4.2 Background and Significance Document what is already known, and specify how the proposed research initiative will add to this knowledge. Consider a “devil’s advocate” perspective by asking what the consequences of not doing the research might be. 3.4.3 Research Design and Methods In this section, describe how you will go about collecting and analyzing data. Additional infor- mation about these issues, including sampling strategies and sample size, is presented in Chapter 5 and in Appendix C. The research plan does not need be lengthy. It should, however, capture key information that, were it not documented and those familiar with the research were not available, would be diffi- cult to ascertain. Defining the Research: Purpose, Focus, and Potential Uses 23 6 This section is partly based on guidelines published by the Agency for Healthcare Research and Quality, Department of Health and Human Services. http://www.ahrq.gov/fund/esstplan.htm.

TRB’s Airport Cooperative Research Program (ACRP) Report 23: Airport Passenger-Related Processing Rates Guidebook provides guidance on how to collect accurate passenger-related processing data for evaluating facility requirements to promote efficient and cost-effective airport terminal design.

READ FREE ONLINE

Welcome to OpenBook!

You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

Do you want to take a quick tour of the OpenBook's features?

Show this book's table of contents , where you can jump to any chapter by name.

...or use these buttons to go back to the previous chapter or skip to the next one.

Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

To search the entire text of this book, type in your search term here and press Enter .

Share a link to this book page on your preferred social network or via email.

View our suggested citation for this chapter.

Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

Get Email Updates

Do you enjoy reading reports from the Academies online for free ? Sign up for email notifications and we'll let you know about new publications in your areas of interest when they're released.

Logo for M Libraries Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

11.1 The Purpose of Research Writing

Learning objectives.

  • Identify reasons to research writing projects.
  • Outline the steps of the research writing process.

Why was the Great Wall of China built? What have scientists learned about the possibility of life on Mars? What roles did women play in the American Revolution? How does the human brain create, store, and retrieve memories? Who invented the game of football, and how has it changed over the years?

You may know the answers to these questions off the top of your head. If you are like most people, however, you find answers to tough questions like these by searching the Internet, visiting the library, or asking others for information. To put it simply, you perform research.

Whether you are a scientist, an artist, a paralegal, or a parent, you probably perform research in your everyday life. When your boss, your instructor, or a family member asks you a question that you do not know the answer to, you locate relevant information, analyze your findings, and share your results. Locating, analyzing, and sharing information are key steps in the research process, and in this chapter, you will learn more about each step. By developing your research writing skills, you will prepare yourself to answer any question no matter how challenging.

Reasons for Research

When you perform research, you are essentially trying to solve a mystery—you want to know how something works or why something happened. In other words, you want to answer a question that you (and other people) have about the world. This is one of the most basic reasons for performing research.

But the research process does not end when you have solved your mystery. Imagine what would happen if a detective collected enough evidence to solve a criminal case, but she never shared her solution with the authorities. Presenting what you have learned from research can be just as important as performing the research. Research results can be presented in a variety of ways, but one of the most popular—and effective—presentation forms is the research paper . A research paper presents an original thesis, or purpose statement, about a topic and develops that thesis with information gathered from a variety of sources.

If you are curious about the possibility of life on Mars, for example, you might choose to research the topic. What will you do, though, when your research is complete? You will need a way to put your thoughts together in a logical, coherent manner. You may want to use the facts you have learned to create a narrative or to support an argument. And you may want to show the results of your research to your friends, your teachers, or even the editors of magazines and journals. Writing a research paper is an ideal way to organize thoughts, craft narratives or make arguments based on research, and share your newfound knowledge with the world.

Write a paragraph about a time when you used research in your everyday life. Did you look for the cheapest way to travel from Houston to Denver? Did you search for a way to remove gum from the bottom of your shoe? In your paragraph, explain what you wanted to research, how you performed the research, and what you learned as a result.

Research Writing and the Academic Paper

No matter what field of study you are interested in, you will most likely be asked to write a research paper during your academic career. For example, a student in an art history course might write a research paper about an artist’s work. Similarly, a student in a psychology course might write a research paper about current findings in childhood development.

Having to write a research paper may feel intimidating at first. After all, researching and writing a long paper requires a lot of time, effort, and organization. However, writing a research paper can also be a great opportunity to explore a topic that is particularly interesting to you. The research process allows you to gain expertise on a topic of your choice, and the writing process helps you remember what you have learned and understand it on a deeper level.

Research Writing at Work

Knowing how to write a good research paper is a valuable skill that will serve you well throughout your career. Whether you are developing a new product, studying the best way to perform a procedure, or learning about challenges and opportunities in your field of employment, you will use research techniques to guide your exploration. You may even need to create a written report of your findings. And because effective communication is essential to any company, employers seek to hire people who can write clearly and professionally.

Writing at Work

Take a few minutes to think about each of the following careers. How might each of these professionals use researching and research writing skills on the job?

  • Medical laboratory technician
  • Small business owner
  • Information technology professional
  • Freelance magazine writer

A medical laboratory technician or information technology professional might do research to learn about the latest technological developments in either of these fields. A small business owner might conduct research to learn about the latest trends in his or her industry. A freelance magazine writer may need to research a given topic to write an informed, up-to-date article.

Think about the job of your dreams. How might you use research writing skills to perform that job? Create a list of ways in which strong researching, organizing, writing, and critical thinking skills could help you succeed at your dream job. How might these skills help you obtain that job?

Steps of the Research Writing Process

How does a research paper grow from a folder of brainstormed notes to a polished final draft? No two projects are identical, but most projects follow a series of six basic steps.

These are the steps in the research writing process:

  • Choose a topic.
  • Plan and schedule time to research and write.
  • Conduct research.
  • Organize research and ideas.
  • Draft your paper.
  • Revise and edit your paper.

Each of these steps will be discussed in more detail later in this chapter. For now, though, we will take a brief look at what each step involves.

Step 1: Choosing a Topic

As you may recall from Chapter 8 “The Writing Process: How Do I Begin?” , to narrow the focus of your topic, you may try freewriting exercises, such as brainstorming. You may also need to ask a specific research question —a broad, open-ended question that will guide your research—as well as propose a possible answer, or a working thesis . You may use your research question and your working thesis to create a research proposal . In a research proposal, you present your main research question, any related subquestions you plan to explore, and your working thesis.

Step 2: Planning and Scheduling

Before you start researching your topic, take time to plan your researching and writing schedule. Research projects can take days, weeks, or even months to complete. Creating a schedule is a good way to ensure that you do not end up being overwhelmed by all the work you have to do as the deadline approaches.

During this step of the process, it is also a good idea to plan the resources and organizational tools you will use to keep yourself on track throughout the project. Flowcharts, calendars, and checklists can all help you stick to your schedule. See Chapter 11 “Writing from Research: What Will I Learn?” , Section 11.2 “Steps in Developing a Research Proposal” for an example of a research schedule.

Step 3: Conducting Research

When going about your research, you will likely use a variety of sources—anything from books and periodicals to video presentations and in-person interviews.

Your sources will include both primary sources and secondary sources . Primary sources provide firsthand information or raw data. For example, surveys, in-person interviews, and historical documents are primary sources. Secondary sources, such as biographies, literary reviews, or magazine articles, include some analysis or interpretation of the information presented. As you conduct research, you will take detailed, careful notes about your discoveries. You will also evaluate the reliability of each source you find.

Step 4: Organizing Research and the Writer’s Ideas

When your research is complete, you will organize your findings and decide which sources to cite in your paper. You will also have an opportunity to evaluate the evidence you have collected and determine whether it supports your thesis, or the focus of your paper. You may decide to adjust your thesis or conduct additional research to ensure that your thesis is well supported.

Remember, your working thesis is not set in stone. You can and should change your working thesis throughout the research writing process if the evidence you find does not support your original thesis. Never try to force evidence to fit your argument. For example, your working thesis is “Mars cannot support life-forms.” Yet, a week into researching your topic, you find an article in the New York Times detailing new findings of bacteria under the Martian surface. Instead of trying to argue that bacteria are not life forms, you might instead alter your thesis to “Mars cannot support complex life-forms.”

Step 5: Drafting Your Paper

Now you are ready to combine your research findings with your critical analysis of the results in a rough draft. You will incorporate source materials into your paper and discuss each source thoughtfully in relation to your thesis or purpose statement.

When you cite your reference sources, it is important to pay close attention to standard conventions for citing sources in order to avoid plagiarism , or the practice of using someone else’s words without acknowledging the source. Later in this chapter, you will learn how to incorporate sources in your paper and avoid some of the most common pitfalls of attributing information.

Step 6: Revising and Editing Your Paper

In the final step of the research writing process, you will revise and polish your paper. You might reorganize your paper’s structure or revise for unity and cohesion, ensuring that each element in your paper flows into the next logically and naturally. You will also make sure that your paper uses an appropriate and consistent tone.

Once you feel confident in the strength of your writing, you will edit your paper for proper spelling, grammar, punctuation, mechanics, and formatting. When you complete this final step, you will have transformed a simple idea or question into a thoroughly researched and well-written paper you can be proud of!

Review the steps of the research writing process. Then answer the questions on your own sheet of paper.

  • In which steps of the research writing process are you allowed to change your thesis?
  • In step 2, which types of information should you include in your project schedule?
  • What might happen if you eliminated step 4 from the research writing process?

Key Takeaways

  • People undertake research projects throughout their academic and professional careers in order to answer specific questions, share their findings with others, increase their understanding of challenging topics, and strengthen their researching, writing, and analytical skills.
  • The research writing process generally comprises six steps: choosing a topic, scheduling and planning time for research and writing, conducting research, organizing research and ideas, drafting a paper, and revising and editing the paper.

Writing for Success Copyright © 2015 by University of Minnesota is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

2.1 Why Is Research Important?

Learning objectives.

By the end of this section, you will be able to:

  • Explain how scientific research addresses questions about behavior
  • Discuss how scientific research guides public policy
  • Appreciate how scientific research can be important in making personal decisions

Scientific research is a critical tool for successfully navigating our complex world. Without it, we would be forced to rely solely on intuition, other people’s authority, and blind luck. While many of us feel confident in our abilities to decipher and interact with the world around us, history is filled with examples of how very wrong we can be when we fail to recognize the need for evidence in supporting claims. At various times in history, we would have been certain that the sun revolved around a flat earth, that the earth’s continents did not move, and that mental illness was caused by possession ( Figure 2.2 ). It is through systematic scientific research that we divest ourselves of our preconceived notions and superstitions and gain an objective understanding of ourselves and our world.

The goal of all scientists is to better understand the world around them. Psychologists focus their attention on understanding behavior, as well as the cognitive (mental) and physiological (body) processes that underlie behavior. In contrast to other methods that people use to understand the behavior of others, such as intuition and personal experience, the hallmark of scientific research is that there is evidence to support a claim. Scientific knowledge is empirical : It is grounded in objective, tangible evidence that can be observed time and time again, regardless of who is observing.

While behavior is observable, the mind is not. If someone is crying, we can see behavior. However, the reason for the behavior is more difficult to determine. Is the person crying due to being sad, in pain, or happy? Sometimes we can learn the reason for someone’s behavior by simply asking a question, like “Why are you crying?” However, there are situations in which an individual is either uncomfortable or unwilling to answer the question honestly, or is incapable of answering. For example, infants would not be able to explain why they are crying. In such circumstances, the psychologist must be creative in finding ways to better understand behavior. This chapter explores how scientific knowledge is generated, and how important that knowledge is in forming decisions in our personal lives and in the public domain.

Use of Research Information

Trying to determine which theories are and are not accepted by the scientific community can be difficult, especially in an area of research as broad as psychology. More than ever before, we have an incredible amount of information at our fingertips, and a simple internet search on any given research topic might result in a number of contradictory studies. In these cases, we are witnessing the scientific community going through the process of reaching a consensus, and it could be quite some time before a consensus emerges. For example, the explosion in our use of technology has led researchers to question whether this ultimately helps or hinders us. The use and implementation of technology in educational settings has become widespread over the last few decades. Researchers are coming to different conclusions regarding the use of technology. To illustrate this point, a study investigating a smartphone app targeting surgery residents (graduate students in surgery training) found that the use of this app can increase student engagement and raise test scores (Shaw & Tan, 2015). Conversely, another study found that the use of technology in undergraduate student populations had negative impacts on sleep, communication, and time management skills (Massimini & Peterson, 2009). Until sufficient amounts of research have been conducted, there will be no clear consensus on the effects that technology has on a student's acquisition of knowledge, study skills, and mental health.

In the meantime, we should strive to think critically about the information we encounter by exercising a degree of healthy skepticism. When someone makes a claim, we should examine the claim from a number of different perspectives: what is the expertise of the person making the claim, what might they gain if the claim is valid, does the claim seem justified given the evidence, and what do other researchers think of the claim? This is especially important when we consider how much information in advertising campaigns and on the internet claims to be based on “scientific evidence” when in actuality it is a belief or perspective of just a few individuals trying to sell a product or draw attention to their perspectives.

We should be informed consumers of the information made available to us because decisions based on this information have significant consequences. One such consequence can be seen in politics and public policy. Imagine that you have been elected as the governor of your state. One of your responsibilities is to manage the state budget and determine how to best spend your constituents’ tax dollars. As the new governor, you need to decide whether to continue funding early intervention programs. These programs are designed to help children who come from low-income backgrounds, have special needs, or face other disadvantages. These programs may involve providing a wide variety of services to maximize the children's development and position them for optimal levels of success in school and later in life (Blann, 2005). While such programs sound appealing, you would want to be sure that they also proved effective before investing additional money in these programs. Fortunately, psychologists and other scientists have conducted vast amounts of research on such programs and, in general, the programs are found to be effective (Neil & Christensen, 2009; Peters-Scheffer, Didden, Korzilius, & Sturmey, 2011). While not all programs are equally effective, and the short-term effects of many such programs are more pronounced, there is reason to believe that many of these programs produce long-term benefits for participants (Barnett, 2011). If you are committed to being a good steward of taxpayer money, you would want to look at research. Which programs are most effective? What characteristics of these programs make them effective? Which programs promote the best outcomes? After examining the research, you would be best equipped to make decisions about which programs to fund.

Link to Learning

Watch this video about early childhood program effectiveness to learn how scientists evaluate effectiveness and how best to invest money into programs that are most effective.

Ultimately, it is not just politicians who can benefit from using research in guiding their decisions. We all might look to research from time to time when making decisions in our lives. Imagine that your sister, Maria, expresses concern about her two-year-old child, Umberto. Umberto does not speak as much or as clearly as the other children in his daycare or others in the family. Umberto's pediatrician undertakes some screening and recommends an evaluation by a speech pathologist, but does not refer Maria to any other specialists. Maria is concerned that Umberto's speech delays are signs of a developmental disorder, but Umberto's pediatrician does not; she sees indications of differences in Umberto's jaw and facial muscles. Hearing this, you do some internet searches, but you are overwhelmed by the breadth of information and the wide array of sources. You see blog posts, top-ten lists, advertisements from healthcare providers, and recommendations from several advocacy organizations. Why are there so many sites? Which are based in research, and which are not?

In the end, research is what makes the difference between facts and opinions. Facts are observable realities, and opinions are personal judgments, conclusions, or attitudes that may or may not be accurate. In the scientific community, facts can be established only using evidence collected through empirical research.

NOTABLE RESEARCHERS

Psychological research has a long history involving important figures from diverse backgrounds. While the introductory chapter discussed several researchers who made significant contributions to the discipline, there are many more individuals who deserve attention in considering how psychology has advanced as a science through their work ( Figure 2.3 ). For instance, Margaret Floy Washburn (1871–1939) was the first woman to earn a PhD in psychology. Her research focused on animal behavior and cognition (Margaret Floy Washburn, PhD, n.d.). Mary Whiton Calkins (1863–1930) was a preeminent first-generation American psychologist who opposed the behaviorist movement, conducted significant research into memory, and established one of the earliest experimental psychology labs in the United States (Mary Whiton Calkins, n.d.).

Francis Sumner (1895–1954) was the first African American to receive a PhD in psychology in 1920. His dissertation focused on issues related to psychoanalysis. Sumner also had research interests in racial bias and educational justice. Sumner was one of the founders of Howard University’s department of psychology, and because of his accomplishments, he is sometimes referred to as the “Father of Black Psychology.” Thirteen years later, Inez Beverly Prosser (1895–1934) became the first African American woman to receive a PhD in psychology. Prosser’s research highlighted issues related to education in segregated versus integrated schools, and ultimately, her work was very influential in the hallmark Brown v. Board of Education Supreme Court ruling that segregation of public schools was unconstitutional (Ethnicity and Health in America Series: Featured Psychologists, n.d.).

Although the establishment of psychology’s scientific roots occurred first in Europe and the United States, it did not take much time until researchers from around the world began to establish their own laboratories and research programs. For example, some of the first experimental psychology laboratories in South America were founded by Horatio Piñero (1869–1919) at two institutions in Buenos Aires, Argentina (Godoy & Brussino, 2010). In India, Gunamudian David Boaz (1908–1965) and Narendra Nath Sen Gupta (1889–1944) established the first independent departments of psychology at the University of Madras and the University of Calcutta, respectively. These developments provided an opportunity for Indian researchers to make important contributions to the field (Gunamudian David Boaz, n.d.; Narendra Nath Sen Gupta, n.d.).

When the American Psychological Association (APA) was first founded in 1892, all of the members were White males (Women and Minorities in Psychology, n.d.). However, by 1905, Mary Whiton Calkins was elected as the first female president of the APA, and by 1946, nearly one-quarter of American psychologists were female. Psychology became a popular degree option for students enrolled in the nation’s historically Black higher education institutions, increasing the number of Black Americans who went on to become psychologists. Given demographic shifts occurring in the United States and increased access to higher educational opportunities among historically underrepresented populations, there is reason to hope that the diversity of the field will increasingly match the larger population, and that the research contributions made by the psychologists of the future will better serve people of all backgrounds (Women and Minorities in Psychology, n.d.).

The Process of Scientific Research

Scientific knowledge is advanced through a process known as the scientific method . Basically, ideas (in the form of theories and hypotheses) are tested against the real world (in the form of empirical observations), and those empirical observations lead to more ideas that are tested against the real world, and so on. In this sense, the scientific process is circular. The types of reasoning within the circle are called deductive and inductive. In deductive reasoning , ideas are tested in the real world; in inductive reasoning , real-world observations lead to new ideas ( Figure 2.4 ). These processes are inseparable, like inhaling and exhaling, but different research approaches place different emphasis on the deductive and inductive aspects.

In the scientific context, deductive reasoning begins with a generalization—one hypothesis—that is then used to reach logical conclusions about the real world. If the hypothesis is correct, then the logical conclusions reached through deductive reasoning should also be correct. A deductive reasoning argument might go something like this: All living things require energy to survive (this would be your hypothesis). Ducks are living things. Therefore, ducks require energy to survive (logical conclusion). In this example, the hypothesis is correct; therefore, the conclusion is correct as well. Sometimes, however, an incorrect hypothesis may lead to a logical but incorrect conclusion. Consider this argument: all ducks are born with the ability to see. Quackers is a duck. Therefore, Quackers was born with the ability to see. Scientists use deductive reasoning to empirically test their hypotheses. Returning to the example of the ducks, researchers might design a study to test the hypothesis that if all living things require energy to survive, then ducks will be found to require energy to survive.

Deductive reasoning starts with a generalization that is tested against real-world observations; however, inductive reasoning moves in the opposite direction. Inductive reasoning uses empirical observations to construct broad generalizations. Unlike deductive reasoning, conclusions drawn from inductive reasoning may or may not be correct, regardless of the observations on which they are based. For instance, you may notice that your favorite fruits—apples, bananas, and oranges—all grow on trees; therefore, you assume that all fruit must grow on trees. This would be an example of inductive reasoning, and, clearly, the existence of strawberries, blueberries, and kiwi demonstrate that this generalization is not correct despite it being based on a number of direct observations. Scientists use inductive reasoning to formulate theories, which in turn generate hypotheses that are tested with deductive reasoning. In the end, science involves both deductive and inductive processes.

For example, case studies, which you will read about in the next section, are heavily weighted on the side of empirical observations. Thus, case studies are closely associated with inductive processes as researchers gather massive amounts of observations and seek interesting patterns (new ideas) in the data. Experimental research, on the other hand, puts great emphasis on deductive reasoning.

We’ve stated that theories and hypotheses are ideas, but what sort of ideas are they, exactly? A theory is a well-developed set of ideas that propose an explanation for observed phenomena. Theories are repeatedly checked against the world, but they tend to be too complex to be tested all at once; instead, researchers create hypotheses to test specific aspects of a theory.

A hypothesis is a testable prediction about how the world will behave if our idea is correct, and it is often worded as an if-then statement (e.g., if I study all night, I will get a passing grade on the test). The hypothesis is extremely important because it bridges the gap between the realm of ideas and the real world. As specific hypotheses are tested, theories are modified and refined to reflect and incorporate the result of these tests Figure 2.5 .

To see how this process works, let’s consider a specific theory and a hypothesis that might be generated from that theory. As you’ll learn in a later chapter, the James-Lange theory of emotion asserts that emotional experience relies on the physiological arousal associated with the emotional state. If you walked out of your home and discovered a very aggressive snake waiting on your doorstep, your heart would begin to race and your stomach churn. According to the James-Lange theory, these physiological changes would result in your feeling of fear. A hypothesis that could be derived from this theory might be that a person who is unaware of the physiological arousal that the sight of the snake elicits will not feel fear.

A scientific hypothesis is also falsifiable , or capable of being shown to be incorrect. Recall from the introductory chapter that Sigmund Freud had lots of interesting ideas to explain various human behaviors ( Figure 2.6 ). However, a major criticism of Freud’s theories is that many of his ideas are not falsifiable; for example, it is impossible to imagine empirical observations that would disprove the existence of the id, the ego, and the superego—the three elements of personality described in Freud’s theories. Despite this, Freud’s theories are widely taught in introductory psychology texts because of their historical significance for personality psychology and psychotherapy, and these remain the root of all modern forms of therapy.

In contrast, the James-Lange theory does generate falsifiable hypotheses, such as the one described above. Some individuals who suffer significant injuries to their spinal columns are unable to feel the bodily changes that often accompany emotional experiences. Therefore, we could test the hypothesis by determining how emotional experiences differ between individuals who have the ability to detect these changes in their physiological arousal and those who do not. In fact, this research has been conducted and while the emotional experiences of people deprived of an awareness of their physiological arousal may be less intense, they still experience emotion (Chwalisz, Diener, & Gallagher, 1988).

Scientific research’s dependence on falsifiability allows for great confidence in the information that it produces. Typically, by the time information is accepted by the scientific community, it has been tested repeatedly.

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/psychology-2e/pages/1-introduction
  • Authors: Rose M. Spielman, William J. Jenkins, Marilyn D. Lovett
  • Publisher/website: OpenStax
  • Book title: Psychology 2e
  • Publication date: Apr 22, 2020
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/psychology-2e/pages/1-introduction
  • Section URL: https://openstax.org/books/psychology-2e/pages/2-1-why-is-research-important

© Jan 6, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

  • Foundations
  • Write Paper

Search form

  • Experiments
  • Anthropology
  • Self-Esteem
  • Social Anxiety

purpose of research

Purpose of Research

The purpose of research can be a complicated issue and varies across different scientific fields and disciplines. At the most basic level, science can be split, loosely, into two types, 'pure research' and 'applied research'.

This article is a part of the guide:

  • Definition of Research
  • Research Basics
  • What is Research?
  • Steps of the Scientific Method
  • What is the Scientific Method?

Browse Full Outline

  • 1 Research Basics
  • 2.1 What is Research?
  • 2.2 What is the Scientific Method?
  • 2.3 Empirical Research
  • 3.1 Definition of Research
  • 3.2 Definition of the Scientific Method
  • 3.3 Definition of Science
  • 4 Steps of the Scientific Method
  • 5 Scientific Elements
  • 6 Aims of Research
  • 7 Purpose of Research
  • 8 Science Misconceptions

Both of these types follow the same structures and protocols for propagating and testing hypotheses and predictions, but vary slightly in their ultimate purpose.

An excellent example for illustrating the difference is by using pure and applied mathematics. Pure maths is concerned with understanding underlying abstract principles and describing them with elegant theories. Applied maths, by contrast, uses these equations to explain real life phenomena, such as mechanics, ecology and gravity.

purpose of research

Pure Scientific Research

Some science, often referred to as 'pure science', is about explaining the world around us and trying to understand how the universe operates. It is about finding out what is already there without any greater purpose of research than the explanation itself. It is a direct descendent of philosophy, where philosophers and scientists try to understand the underlying principles of existence.

Whilst offering no direct benefits, pure research often has indirect benefits, which can contribute greatly to the advancement of humanity.

For example, pure research into the structure of the atom has led to x-rays, nuclear power and silicon chips.

purpose of research

Applied Scientific Research

Applied scientists might look for answers to specific questions that help humanity, for example medical research or environmental studies. Such research generally takes a specific question and tries to find a definitive and comprehensive answer.

The purpose of research is about testing theories, often generated by pure science, and applying them to real situations, addressing more than just abstract principles.

Applied scientific research can be about finding out the answer to a specific problem, such as 'Is global warming avoidable?' or 'Does a new type of medicine really help the patients?'

Generating Testable Data

However, they all involve generating a theory to explain why something is happening and using the full battery of scientific tools and methods to test it rigorously.

This process opens up new areas for further study and a continued refinement of the hypotheses.

Observation is not accurate enough, with statistically testable and analyzable data the only results accepted across all scientific disciplines. The exact nature of the experimental process may vary, but they all adhere to the same basic principles.

Scientists can be opinionated, like anybody else, and often will adhere to their own theories, even if the evidence shows otherwise. Research is a tool by which they can test their own, and each others' theories, by using this antagonism to find an answer and advance knowledge.

The purpose of research is really an ongoing process of correcting and refining hypotheses , which should lead to the acceptance of certain scientific truths .

Whilst no scientific proof can be accepted as ultimate fact, rigorous testing ensures that proofs can become presumptions. Certain basic presumptions are made before embarking on any research project, and build upon this gradual accumulation of knowledge.

  • Psychology 101
  • Flags and Countries
  • Capitals and Countries

Martyn Shuttleworth (Aug 2, 2008). Purpose of Research. Retrieved Apr 07, 2024 from Explorable.com: https://explorable.com/purpose-of-research

You Are Allowed To Copy The Text

The text in this article is licensed under the Creative Commons-License Attribution 4.0 International (CC BY 4.0) .

This means you're free to copy, share and adapt any parts (or all) of the text in the article, as long as you give appropriate credit and provide a link/reference to this page.

That is it. You don't need our permission to copy the article; just include a link/reference back to this page. You can use it freely (with some kind of link), and we're also okay with people reprinting in publications like books, blogs, newsletters, course-material, papers, wikipedia and presentations (with clear attribution).

Want to stay up to date? Follow us!

Save this course for later.

Don't have time for it all now? No problem, save it as a course and come back to it later.

Footer bottom

  • Privacy Policy

purpose of research

  • Subscribe to our RSS Feed
  • Like us on Facebook
  • Follow us on Twitter

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Social Sci LibreTexts

1.3: What is the Purpose of Research?

  • Last updated
  • Save as PDF
  • Page ID 125309

  • Anol Bhattacherjee
  • University of South Florida via Global Text Project

Learning Objective

  • Differentiate between theory and laws.

The purpose of science is to create scientific knowledge. Scientific knowledge refers to a generalized body of laws and theories to explain a phenomenon or behavior of interest that are acquired using the scientific method. Laws are observed patterns of phenomena or behaviors, while theories are systematic explanations of the underlying phenomenon or behavior. For instance, in physics, the Newtonian Laws of Motion describe what happens when an object is in a state of rest or motion (Newton’s First Law), what force is needed to move a stationary object or stop a moving object (Newton’s Second Law), and what happens when two objects collide (Newton’s Third Law). Collectively, the three laws constitute the basis of classical mechanics – a theory of moving objects. Likewise, the theory of optics explains the properties of light and how it behaves in different media, electromagnetic theory explains the properties of electricity and how to generate it, quantum mechanics explains the properties of subatomic particles, and thermodynamics explains the properties of energy and mechanical work. An introductory college level text book in physics will likely contain separate chapters devoted to each of these theories. Similar theories are also available in social sciences. For instance, cognitive dissonance theory in psychology explains how people react when their observations of an event is different from what they expected of that event, general deterrence theory explains why some people engage in improper or criminal behaviors, such as illegally download music or commit software piracy, and the theory of planned behavior explains how people make conscious reasoned choices in their everyday lives.

The goal of scientific research is to discover laws and postulate theories that can explain natural or social phenomena, or in other words, build scientific knowledge. It is important to understand that this knowledge may be imperfect or even quite far from the truth. Sometimes, there may not be a single universal truth, but rather an equilibrium of “multiple truths.” We must understand that the theories, upon which scientific knowledge is based, are only explanations of a particular phenomenon, as suggested by a scientist. As such, there may be good or poor explanations, depending on the extent to which those explanations fit well with reality, and consequently, there may be good or poor theories. The progress of science is marked by our progression over time from poorer theories to better theories, through better observations using more accurate instruments and more informed logical reasoning.

We arrive at scientific laws or theories through a process of logic and evidence. Logic (theory) and evidence (observations) are the two, and only two, pillars upon which scientific knowledge is based. In science, theories and observations are interrelated and cannot exist without each other. Theories provide meaning and significance to what we observe, and observations help validate or refine existing theory or construct new theory. Any other means of knowledge acquisition, such as faith or authority cannot be considered science.

KEY TAKEAWAY

  • Theories are a means to build up to laws.

U.S. flag

An official website of the United States government

The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Browse Titles

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-.

Cover of StatPearls

StatPearls [Internet].

Qualitative study.

Steven Tenny ; Janelle M. Brannan ; Grace D. Brannan .

Affiliations

Last Update: September 18, 2022 .

  • Introduction

Qualitative research is a type of research that explores and provides deeper insights into real-world problems. [1] Instead of collecting numerical data points or intervene or introduce treatments just like in quantitative research, qualitative research helps generate hypotheses as well as further investigate and understand quantitative data. Qualitative research gathers participants' experiences, perceptions, and behavior. It answers the hows and whys instead of how many or how much. It could be structured as a stand-alone study, purely relying on qualitative data or it could be part of mixed-methods research that combines qualitative and quantitative data. This review introduces the readers to some basic concepts, definitions, terminology, and application of qualitative research.

Qualitative research at its core, ask open-ended questions whose answers are not easily put into numbers such as ‘how’ and ‘why’. [2] Due to the open-ended nature of the research questions at hand, qualitative research design is often not linear in the same way quantitative design is. [2] One of the strengths of qualitative research is its ability to explain processes and patterns of human behavior that can be difficult to quantify. [3] Phenomena such as experiences, attitudes, and behaviors can be difficult to accurately capture quantitatively, whereas a qualitative approach allows participants themselves to explain how, why, or what they were thinking, feeling, and experiencing at a certain time or during an event of interest. Quantifying qualitative data certainly is possible, but at its core, qualitative data is looking for themes and patterns that can be difficult to quantify and it is important to ensure that the context and narrative of qualitative work are not lost by trying to quantify something that is not meant to be quantified.

However, while qualitative research is sometimes placed in opposition to quantitative research, where they are necessarily opposites and therefore ‘compete’ against each other and the philosophical paradigms associated with each, qualitative and quantitative work are not necessarily opposites nor are they incompatible. [4] While qualitative and quantitative approaches are different, they are not necessarily opposites, and they are certainly not mutually exclusive. For instance, qualitative research can help expand and deepen understanding of data or results obtained from quantitative analysis. For example, say a quantitative analysis has determined that there is a correlation between length of stay and level of patient satisfaction, but why does this correlation exist? This dual-focus scenario shows one way in which qualitative and quantitative research could be integrated together.

Examples of Qualitative Research Approaches

Ethnography

Ethnography as a research design has its origins in social and cultural anthropology, and involves the researcher being directly immersed in the participant’s environment. [2] Through this immersion, the ethnographer can use a variety of data collection techniques with the aim of being able to produce a comprehensive account of the social phenomena that occurred during the research period. [2] That is to say, the researcher’s aim with ethnography is to immerse themselves into the research population and come out of it with accounts of actions, behaviors, events, etc. through the eyes of someone involved in the population. Direct involvement of the researcher with the target population is one benefit of ethnographic research because it can then be possible to find data that is otherwise very difficult to extract and record.

Grounded Theory

Grounded Theory is the “generation of a theoretical model through the experience of observing a study population and developing a comparative analysis of their speech and behavior.” [5] As opposed to quantitative research which is deductive and tests or verifies an existing theory, grounded theory research is inductive and therefore lends itself to research that is aiming to study social interactions or experiences. [3] [2] In essence, Grounded Theory’s goal is to explain for example how and why an event occurs or how and why people might behave a certain way. Through observing the population, a researcher using the Grounded Theory approach can then develop a theory to explain the phenomena of interest.

Phenomenology

Phenomenology is defined as the “study of the meaning of phenomena or the study of the particular”. [5] At first glance, it might seem that Grounded Theory and Phenomenology are quite similar, but upon careful examination, the differences can be seen. At its core, phenomenology looks to investigate experiences from the perspective of the individual. [2] Phenomenology is essentially looking into the ‘lived experiences’ of the participants and aims to examine how and why participants behaved a certain way, from their perspective . Herein lies one of the main differences between Grounded Theory and Phenomenology. Grounded Theory aims to develop a theory for social phenomena through an examination of various data sources whereas Phenomenology focuses on describing and explaining an event or phenomena from the perspective of those who have experienced it.

Narrative Research

One of qualitative research’s strengths lies in its ability to tell a story, often from the perspective of those directly involved in it. Reporting on qualitative research involves including details and descriptions of the setting involved and quotes from participants. This detail is called ‘thick’ or ‘rich’ description and is a strength of qualitative research. Narrative research is rife with the possibilities of ‘thick’ description as this approach weaves together a sequence of events, usually from just one or two individuals, in the hopes of creating a cohesive story, or narrative. [2] While it might seem like a waste of time to focus on such a specific, individual level, understanding one or two people’s narratives for an event or phenomenon can help to inform researchers about the influences that helped shape that narrative. The tension or conflict of differing narratives can be “opportunities for innovation”. [2]

Research Paradigm

Research paradigms are the assumptions, norms, and standards that underpin different approaches to research. Essentially, research paradigms are the ‘worldview’ that inform research. [4] It is valuable for researchers, both qualitative and quantitative, to understand what paradigm they are working within because understanding the theoretical basis of research paradigms allows researchers to understand the strengths and weaknesses of the approach being used and adjust accordingly. Different paradigms have different ontology and epistemologies . Ontology is defined as the "assumptions about the nature of reality” whereas epistemology is defined as the “assumptions about the nature of knowledge” that inform the work researchers do. [2] It is important to understand the ontological and epistemological foundations of the research paradigm researchers are working within to allow for a full understanding of the approach being used and the assumptions that underpin the approach as a whole. Further, it is crucial that researchers understand their own ontological and epistemological assumptions about the world in general because their assumptions about the world will necessarily impact how they interact with research. A discussion of the research paradigm is not complete without describing positivist, postpositivist, and constructivist philosophies.

Positivist vs Postpositivist

To further understand qualitative research, we need to discuss positivist and postpositivist frameworks. Positivism is a philosophy that the scientific method can and should be applied to social as well as natural sciences. [4] Essentially, positivist thinking insists that the social sciences should use natural science methods in its research which stems from positivist ontology that there is an objective reality that exists that is fully independent of our perception of the world as individuals. Quantitative research is rooted in positivist philosophy, which can be seen in the value it places on concepts such as causality, generalizability, and replicability.

Conversely, postpositivists argue that social reality can never be one hundred percent explained but it could be approximated. [4] Indeed, qualitative researchers have been insisting that there are “fundamental limits to the extent to which the methods and procedures of the natural sciences could be applied to the social world” and therefore postpositivist philosophy is often associated with qualitative research. [4] An example of positivist versus postpositivist values in research might be that positivist philosophies value hypothesis-testing, whereas postpositivist philosophies value the ability to formulate a substantive theory.

Constructivist

Constructivism is a subcategory of postpositivism. Most researchers invested in postpositivist research are constructivist as well, meaning they think there is no objective external reality that exists but rather that reality is constructed. Constructivism is a theoretical lens that emphasizes the dynamic nature of our world. “Constructivism contends that individuals’ views are directly influenced by their experiences, and it is these individual experiences and views that shape their perspective of reality”. [6] Essentially, Constructivist thought focuses on how ‘reality’ is not a fixed certainty and experiences, interactions, and backgrounds give people a unique view of the world. Constructivism contends, unlike in positivist views, that there is not necessarily an ‘objective’ reality we all experience. This is the ‘relativist’ ontological view that reality and the world we live in are dynamic and socially constructed. Therefore, qualitative scientific knowledge can be inductive as well as deductive.” [4]

So why is it important to understand the differences in assumptions that different philosophies and approaches to research have? Fundamentally, the assumptions underpinning the research tools a researcher selects provide an overall base for the assumptions the rest of the research will have and can even change the role of the researcher themselves. [2] For example, is the researcher an ‘objective’ observer such as in positivist quantitative work? Or is the researcher an active participant in the research itself, as in postpositivist qualitative work? Understanding the philosophical base of the research undertaken allows researchers to fully understand the implications of their work and their role within the research, as well as reflect on their own positionality and bias as it pertains to the research they are conducting.

Data Sampling 

The better the sample represents the intended study population, the more likely the researcher is to encompass the varying factors at play. The following are examples of participant sampling and selection: [7]

  • Purposive sampling- selection based on the researcher’s rationale in terms of being the most informative.
  • Criterion sampling-selection based on pre-identified factors.
  • Convenience sampling- selection based on availability.
  • Snowball sampling- the selection is by referral from other participants or people who know potential participants.
  • Extreme case sampling- targeted selection of rare cases.
  • Typical case sampling-selection based on regular or average participants. 

Data Collection and Analysis

Qualitative research uses several techniques including interviews, focus groups, and observation. [1] [2] [3] Interviews may be unstructured, with open-ended questions on a topic and the interviewer adapts to the responses. Structured interviews have a predetermined number of questions that every participant is asked. It is usually one on one and is appropriate for sensitive topics or topics needing an in-depth exploration. Focus groups are often held with 8-12 target participants and are used when group dynamics and collective views on a topic are desired. Researchers can be a participant-observer to share the experiences of the subject or a non-participant or detached observer.

While quantitative research design prescribes a controlled environment for data collection, qualitative data collection may be in a central location or in the environment of the participants, depending on the study goals and design. Qualitative research could amount to a large amount of data. Data is transcribed which may then be coded manually or with the use of Computer Assisted Qualitative Data Analysis Software or CAQDAS such as ATLAS.ti or NVivo. [8] [9] [10]

After the coding process, qualitative research results could be in various formats. It could be a synthesis and interpretation presented with excerpts from the data. [11] Results also could be in the form of themes and theory or model development.

Dissemination

To standardize and facilitate the dissemination of qualitative research outcomes, the healthcare team can use two reporting standards. The Consolidated Criteria for Reporting Qualitative Research or COREQ is a 32-item checklist for interviews and focus groups. [12] The Standards for Reporting Qualitative Research (SRQR) is a checklist covering a wider range of qualitative research. [13]

Examples of Application

Many times a research question will start with qualitative research. The qualitative research will help generate the research hypothesis which can be tested with quantitative methods. After the data is collected and analyzed with quantitative methods, a set of qualitative methods can be used to dive deeper into the data for a better understanding of what the numbers truly mean and their implications. The qualitative methods can then help clarify the quantitative data and also help refine the hypothesis for future research. Furthermore, with qualitative research researchers can explore subjects that are poorly studied with quantitative methods. These include opinions, individual's actions, and social science research.

A good qualitative study design starts with a goal or objective. This should be clearly defined or stated. The target population needs to be specified. A method for obtaining information from the study population must be carefully detailed to ensure there are no omissions of part of the target population. A proper collection method should be selected which will help obtain the desired information without overly limiting the collected data because many times, the information sought is not well compartmentalized or obtained. Finally, the design should ensure adequate methods for analyzing the data. An example may help better clarify some of the various aspects of qualitative research.

A researcher wants to decrease the number of teenagers who smoke in their community. The researcher could begin by asking current teen smokers why they started smoking through structured or unstructured interviews (qualitative research). The researcher can also get together a group of current teenage smokers and conduct a focus group to help brainstorm factors that may have prevented them from starting to smoke (qualitative research).

In this example, the researcher has used qualitative research methods (interviews and focus groups) to generate a list of ideas of both why teens start to smoke as well as factors that may have prevented them from starting to smoke. Next, the researcher compiles this data. The research found that, hypothetically, peer pressure, health issues, cost, being considered “cool,” and rebellious behavior all might increase or decrease the likelihood of teens starting to smoke.

The researcher creates a survey asking teen participants to rank how important each of the above factors is in either starting smoking (for current smokers) or not smoking (for current non-smokers). This survey provides specific numbers (ranked importance of each factor) and is thus a quantitative research tool.

The researcher can use the results of the survey to focus efforts on the one or two highest-ranked factors. Let us say the researcher found that health was the major factor that keeps teens from starting to smoke, and peer pressure was the major factor that contributed to teens to start smoking. The researcher can go back to qualitative research methods to dive deeper into each of these for more information. The researcher wants to focus on how to keep teens from starting to smoke, so they focus on the peer pressure aspect.

The researcher can conduct interviews and/or focus groups (qualitative research) about what types and forms of peer pressure are commonly encountered, where the peer pressure comes from, and where smoking first starts. The researcher hypothetically finds that peer pressure often occurs after school at the local teen hangouts, mostly the local park. The researcher also hypothetically finds that peer pressure comes from older, current smokers who provide the cigarettes.

The researcher could further explore this observation made at the local teen hangouts (qualitative research) and take notes regarding who is smoking, who is not, and what observable factors are at play for peer pressure of smoking. The researcher finds a local park where many local teenagers hang out and see that a shady, overgrown area of the park is where the smokers tend to hang out. The researcher notes the smoking teenagers buy their cigarettes from a local convenience store adjacent to the park where the clerk does not check identification before selling cigarettes. These observations fall under qualitative research.

If the researcher returns to the park and counts how many individuals smoke in each region of the park, this numerical data would be quantitative research. Based on the researcher's efforts thus far, they conclude that local teen smoking and teenagers who start to smoke may decrease if there are fewer overgrown areas of the park and the local convenience store does not sell cigarettes to underage individuals.

The researcher could try to have the parks department reassess the shady areas to make them less conducive to the smokers or identify how to limit the sales of cigarettes to underage individuals by the convenience store. The researcher would then cycle back to qualitative methods of asking at-risk population their perceptions of the changes, what factors are still at play, as well as quantitative research that includes teen smoking rates in the community, the incidence of new teen smokers, among others. [14] [15]

Qualitative research functions as a standalone research design or in combination with quantitative research to enhance our understanding of the world. Qualitative research uses techniques including structured and unstructured interviews, focus groups, and participant observation to not only help generate hypotheses which can be more rigorously tested with quantitative research but also to help researchers delve deeper into the quantitative research numbers, understand what they mean, and understand what the implications are.  Qualitative research provides researchers with a way to understand what is going on, especially when things are not easily categorized. [16]

  • Issues of Concern

As discussed in the sections above, quantitative and qualitative work differ in many different ways, including the criteria for evaluating them. There are four well-established criteria for evaluating quantitative data: internal validity, external validity, reliability, and objectivity. The correlating concepts in qualitative research are credibility, transferability, dependability, and confirmability. [4] [11] The corresponding quantitative and qualitative concepts can be seen below, with the quantitative concept is on the left, and the qualitative concept is on the right:

  • Internal validity--- Credibility
  • External validity---Transferability
  • Reliability---Dependability
  • Objectivity---Confirmability

In conducting qualitative research, ensuring these concepts are satisfied and well thought out can mitigate potential issues from arising. For example, just as a researcher will ensure that their quantitative study is internally valid so should qualitative researchers ensure that their work has credibility.  

Indicators such as triangulation and peer examination can help evaluate the credibility of qualitative work.

  • Triangulation: Triangulation involves using multiple methods of data collection to increase the likelihood of getting a reliable and accurate result. In our above magic example, the result would be more reliable by also interviewing the magician, back-stage hand, and the person who "vanished." In qualitative research, triangulation can include using telephone surveys, in-person surveys, focus groups, and interviews as well as surveying an adequate cross-section of the target demographic.
  • Peer examination: Results can be reviewed by a peer to ensure the data is consistent with the findings.

‘Thick’ or ‘rich’ description can be used to evaluate the transferability of qualitative research whereas using an indicator such as an audit trail might help with evaluating the dependability and confirmability.

  • Thick or rich description is a detailed and thorough description of details, the setting, and quotes from participants in the research. [5] Thick descriptions will include a detailed explanation of how the study was carried out. Thick descriptions are detailed enough to allow readers to draw conclusions and interpret the data themselves, which can help with transferability and replicability.
  • Audit trail: An audit trail provides a documented set of steps of how the participants were selected and the data was collected. The original records of information should also be kept (e.g., surveys, notes, recordings).

One issue of concern that qualitative researchers should take into consideration is observation bias. Here are a few examples:

  • Hawthorne effect: The Hawthorne effect is the change in participant behavior when they know they are being observed. If a researcher was wanting to identify factors that contribute to employee theft and tells the employees they are going to watch them to see what factors affect employee theft, one would suspect employee behavior would change when they know they are being watched.
  • Observer-expectancy effect: Some participants change their behavior or responses to satisfy the researcher's desired effect. This happens in an unconscious manner for the participant so it is important to eliminate or limit transmitting the researcher's views.
  • Artificial scenario effect: Some qualitative research occurs in artificial scenarios and/or with preset goals. In such situations, the information may not be accurate because of the artificial nature of the scenario. The preset goals may limit the qualitative information obtained.
  • Clinical Significance

Qualitative research by itself or combined with quantitative research helps healthcare providers understand patients and the impact and challenges of the care they deliver. Qualitative research provides an opportunity to generate and refine hypotheses and delve deeper into the data generated by quantitative research. Qualitative research does not exist as an island apart from quantitative research, but as an integral part of research methods to be used for the understanding of the world around us. [17]

  • Enhancing Healthcare Team Outcomes

Qualitative research is important for all members of the health care team as all are affected by qualitative research. Qualitative research may help develop a theory or a model for health research that can be further explored by quantitative research.  Much of the qualitative research data acquisition is completed by numerous team members including social works, scientists, nurses, etc.  Within each area of the medical field, there is copious ongoing qualitative research including physician-patient interactions, nursing-patient interactions, patient-environment interactions, health care team function, patient information delivery, etc. 

  • Review Questions
  • Access free multiple choice questions on this topic.
  • Comment on this article.

Disclosure: Steven Tenny declares no relevant financial relationships with ineligible companies.

Disclosure: Janelle Brannan declares no relevant financial relationships with ineligible companies.

Disclosure: Grace Brannan declares no relevant financial relationships with ineligible companies.

This book is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ), which permits others to distribute the work, provided that the article is not altered or used commercially. You are not required to obtain permission to distribute this article, provided that you credit the author and journal.

  • Cite this Page Tenny S, Brannan JM, Brannan GD. Qualitative Study. [Updated 2022 Sep 18]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-.

In this Page

Bulk download.

  • Bulk download StatPearls data from FTP

Related information

  • PMC PubMed Central citations
  • PubMed Links to PubMed

Similar articles in PubMed

  • Suicidal Ideation. [StatPearls. 2024] Suicidal Ideation. Harmer B, Lee S, Duong TVH, Saadabadi A. StatPearls. 2024 Jan
  • Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. [Cochrane Database Syst Rev. 2022] Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K, Williams J, Qi YP, Gutman J, Yeung L, Mai C, Finkelstain J, Mehta S, Pons-Duran C, Menéndez C, et al. Cochrane Database Syst Rev. 2022 Feb 1; 2(2022). Epub 2022 Feb 1.
  • Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012). [Phys Biol. 2013] Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012). Foffi G, Pastore A, Piazza F, Temussi PA. Phys Biol. 2013 Aug; 10(4):040301. Epub 2013 Aug 2.
  • Review Evidence Brief: The Effectiveness Of Mandatory Computer-Based Trainings On Government Ethics, Workplace Harassment, Or Privacy And Information Security-Related Topics [ 2014] Review Evidence Brief: The Effectiveness Of Mandatory Computer-Based Trainings On Government Ethics, Workplace Harassment, Or Privacy And Information Security-Related Topics Peterson K, McCleery E. 2014 May
  • Review Public sector reforms and their impact on the level of corruption: A systematic review. [Campbell Syst Rev. 2021] Review Public sector reforms and their impact on the level of corruption: A systematic review. Mugellini G, Della Bella S, Colagrossi M, Isenring GL, Killias M. Campbell Syst Rev. 2021 Jun; 17(2):e1173. Epub 2021 May 24.

Recent Activity

  • Qualitative Study - StatPearls Qualitative Study - StatPearls

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

Connect with NLM

National Library of Medicine 8600 Rockville Pike Bethesda, MD 20894

Web Policies FOIA HHS Vulnerability Disclosure

Help Accessibility Careers

statistics

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Starting the research process
  • Research Objectives | Definition & Examples

Research Objectives | Definition & Examples

Published on July 12, 2022 by Eoghan Ryan . Revised on November 20, 2023.

Research objectives describe what your research is trying to achieve and explain why you are pursuing it. They summarize the approach and purpose of your project and help to focus your research.

Your objectives should appear in the introduction of your research paper , at the end of your problem statement . They should:

  • Establish the scope and depth of your project
  • Contribute to your research design
  • Indicate how your project will contribute to existing knowledge

Table of contents

What is a research objective, why are research objectives important, how to write research aims and objectives, smart research objectives, other interesting articles, frequently asked questions about research objectives.

Research objectives describe what your research project intends to accomplish. They should guide every step of the research process , including how you collect data , build your argument , and develop your conclusions .

Your research objectives may evolve slightly as your research progresses, but they should always line up with the research carried out and the actual content of your paper.

Research aims

A distinction is often made between research objectives and research aims.

A research aim typically refers to a broad statement indicating the general purpose of your research project. It should appear at the end of your problem statement, before your research objectives.

Your research objectives are more specific than your research aim and indicate the particular focus and approach of your project. Though you will only have one research aim, you will likely have several research objectives.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

purpose of research

Research objectives are important because they:

  • Establish the scope and depth of your project: This helps you avoid unnecessary research. It also means that your research methods and conclusions can easily be evaluated .
  • Contribute to your research design: When you know what your objectives are, you have a clearer idea of what methods are most appropriate for your research.
  • Indicate how your project will contribute to extant research: They allow you to display your knowledge of up-to-date research, employ or build on current research methods, and attempt to contribute to recent debates.

Once you’ve established a research problem you want to address, you need to decide how you will address it. This is where your research aim and objectives come in.

Step 1: Decide on a general aim

Your research aim should reflect your research problem and should be relatively broad.

Step 2: Decide on specific objectives

Break down your aim into a limited number of steps that will help you resolve your research problem. What specific aspects of the problem do you want to examine or understand?

Step 3: Formulate your aims and objectives

Once you’ve established your research aim and objectives, you need to explain them clearly and concisely to the reader.

You’ll lay out your aims and objectives at the end of your problem statement, which appears in your introduction. Frame them as clear declarative statements, and use appropriate verbs to accurately characterize the work that you will carry out.

The acronym “SMART” is commonly used in relation to research objectives. It states that your objectives should be:

  • Specific: Make sure your objectives aren’t overly vague. Your research needs to be clearly defined in order to get useful results.
  • Measurable: Know how you’ll measure whether your objectives have been achieved.
  • Achievable: Your objectives may be challenging, but they should be feasible. Make sure that relevant groundwork has been done on your topic or that relevant primary or secondary sources exist. Also ensure that you have access to relevant research facilities (labs, library resources , research databases , etc.).
  • Relevant: Make sure that they directly address the research problem you want to work on and that they contribute to the current state of research in your field.
  • Time-based: Set clear deadlines for objectives to ensure that the project stays on track.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

Methodology

  • Sampling methods
  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

Research objectives describe what you intend your research project to accomplish.

They summarize the approach and purpose of the project and help to focus your research.

Your objectives should appear in the introduction of your research paper , at the end of your problem statement .

Your research objectives indicate how you’ll try to address your research problem and should be specific:

Once you’ve decided on your research objectives , you need to explain them in your paper, at the end of your problem statement .

Keep your research objectives clear and concise, and use appropriate verbs to accurately convey the work that you will carry out for each one.

I will compare …

A research aim is a broad statement indicating the general purpose of your research project. It should appear in your introduction at the end of your problem statement , before your research objectives.

Research objectives are more specific than your research aim. They indicate the specific ways you’ll address the overarching aim.

Scope of research is determined at the beginning of your research process , prior to the data collection stage. Sometimes called “scope of study,” your scope delineates what will and will not be covered in your project. It helps you focus your work and your time, ensuring that you’ll be able to achieve your goals and outcomes.

Defining a scope can be very useful in any research project, from a research proposal to a thesis or dissertation . A scope is needed for all types of research: quantitative , qualitative , and mixed methods .

To define your scope of research, consider the following:

  • Budget constraints or any specifics of grant funding
  • Your proposed timeline and duration
  • Specifics about your population of study, your proposed sample size , and the research methodology you’ll pursue
  • Any inclusion and exclusion criteria
  • Any anticipated control , extraneous , or confounding variables that could bias your research if not accounted for properly.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Ryan, E. (2023, November 20). Research Objectives | Definition & Examples. Scribbr. Retrieved April 7, 2024, from https://www.scribbr.com/research-process/research-objectives/

Is this article helpful?

Eoghan Ryan

Eoghan Ryan

Other students also liked, writing strong research questions | criteria & examples, how to write a problem statement | guide & examples, what is your plagiarism score.

Study Site Homepage

  • Request new password
  • Create a new account

Doing Research in Education: Theory and Practice

Student resources, 1. the purpose of research: why do we do it.

Select SAGE Journal articles are available to give you even more insight into chapter topics. These are also an ideal resource to help support your literature reviews, dissertations and assignments.

Click on the following links which will open in a new window.

Brace, M., Herriotts, P., Mccullagh, A. and Nzegwu, F. (2007) ‘Why research — what research should be done?: Report of a collaborative workshop in the UK to discuss social research priorities on visual impairment’, British Journal of Visual Impairment , 25(2): 178–189.

Hannah, D.R. and Lautsch, B.A. (2010) ‘Counting in Qualitative Research: Why to Conduct it, When to Avoid it, and When to Closet it’, in Journal of Management Inquiry , 20(1): 14–22.

ResearchRound

  • Research Capacity
  • Research Systems
  • Research Uptake
  • Events and Trainings

10 Purposes of Research | Introduction to Research | What is Research | ResearchRound

Introduction to Research and 10 Purposes of Research

What is research.

Jonathan O’Donnell of the Faculty of Science, University of Melbourne, Australia, defined research on The Research Whisperer as “the creation of new knowledge and/or the use of existing knowledge in a new and creative way so as to generate new concepts, methodologies and understandings”. Research deals a lot with bringing previously unknown things into focus. The later part goes on to cater to the other arm of research which deals with the use of existing knowledge in ways that are novel and to bring about a new understanding of world phenomena.

The three most widely-accepted purposes of research are exploration , description and explanation .

purpose of research

1. Exploration as a purpose of research is when a research is conducted to explore/investigate a subject or concept;

2. Description fulfils the need to provide more insight to a problem by providing more data and analysing them according to specific needs, 3. Explanation is the use of research to give a new perspective to existing knowledge. This is the purpose of research most students are familiar with as it is the form most undergraduate papers come in.

Six (6) other  purposes of research?

The need to carry out researches is borne out of the necessity to understand phenomena in the world. It is through research that psychologists have refined the Freudian theory providing answers to how the behaviours of people stem from suppressed memories of their childhood. Various life hacks also own their roots to researches carried out by people including how short breaks in between reading sessions can increase the brain function.

1. In most topics dealing with research, the word research is mostly accompanied by another word; development, which is the reason companies have teams/units/departments named Research and Development. The interconnectivity between research and development almost literally translates to knowledge and growth. Thus, apart from the fundamental purposes of research which are exploration, description and explanation, here are some other purposes of research to prompt you into carrying out one yourself:

2. Research brings to light knowledge previously unknown or uncharted: Terry Freedman noted in his book “The Importance of Research for ICT Teachers” that “Research can shed light on issues we did not even know existed and can raise questions we hadn’t realised even needed asking”.

3. Researches in the social sciences have provided insights to crevices of human lives such as providing explanations for people’s political inclinations, exploring the nuances of social ethics in different societies, describing the impact of familial bonding on the psychological wellbeing of a person, among other previously unfamiliar issues.

4. Fact-check: In the age where the internet has made information accessible to everyone with a few clicks, news travel faster than was believed to be possible some decades ago. The speed at which information spread has birthed the need to fact-check news and information that find their ways to the public domain. Researching is the way some journalists go about fact-checking information before they release them to the public. Organisations and websites now exist with their mission being to check the factuality of news and information.

5. Research pushes the boundaries of knowledge: Research provides new perspectives to old issues and brings to light various new problems with a view to providing explanations or solutions to them. Man’s insatiable thirst for knowledge will continue to lead to more understanding of human existence including areas supposedly above the intelligence of man. Research has helped philosophers question almost everything related to human existence and knowledge while psychologists continue to provide explanations for every variation of human behaviour.

6. To test the reliability of their claims and that of others: One of the most essential features of research is the ability to recreate the result by following the same processes. It is through this means that researchers test the stability as well as the reliability of their findings as well as that of other researchers. It follows the logic that if a research can be recreated, it must be transparent enough to ensure its reliability.

7. Finally, research is born out of the need to increase knowledge and improve the understanding of humans about things that affect us. Research makes itself a necessary endeavour to the existence of human beings as there is a need to provide explanations for things that happen around us, seek solutions to problems, provide cures to ailments and just to explain the reason for the existence of man.

Written by Aisha Yusuf for ResearchRound

Join the ResearchRound Community 

We are building a community of minds interested in advancing research in africa. through our community, we hope to provide important research information, opportunities, trainings and support to foster the work of researchers. do you belong to any academic institutions or research institute and want to be part of our growing community signing up enables us reach you with the benefits of the community and more., apply to join.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • 02 April 2024

Impact factors are outdated, but new research assessments still fail scientists

purpose of research

  • Kelly Cobey 0

Kelly Cobey is a scientist at the University of Ottawa Heart Institute, an associate professor in the University of Ottawa School of Epidemiology and Public Health and co-chair of the Declaration on Research Assessment.

You can also search for this author in PubMed   Google Scholar

You have full access to this article via your institution.

Last September, while completing a grant application, I faltered at a section labelled ‘summary of progress’. This section, written in a narrative style, was meant to tell reviewers about who I was and why I should be funded. Among other things, it needed to outline any family leave I’d taken; to spell out why my budget was reasonable, given my past funding; and to include any broad ‘activities, contributions and impacts’ that would support the application.

How could I sensibly combine an acknowledgement of two maternity leaves with a description of my engagement with open science and discuss why I was worthy of the funding I’d requested? There was no indication of the criteria reviewers would use to evaluate what I wrote. I was at a loss.

purpose of research

Bring PhD assessment into the twenty-first century

When my application was rejected in January, the reviewers didn’t comment on my narrative summary. Yet they did mention my publication record, part of the conventional academic CV that I was also required to submit. So I’m still none the wiser as to how the summary was judged — or if it was considered at all.

As co-chair of the Declaration On Research Assessment (DORA) — a global initiative that aims to improve how research is evaluated — I firmly believe in using narrative reflections for job applications, promotions and funding. Narratives make space for broad research impacts, from diversity, equity and inclusion efforts to educational outreach, which are hard to include in typical CVs. But I hear stories like mine time and again. The academic community is attempting, in good faith, to move away from narrow assessment metrics such as publications in high-impact journals. But institutes are struggling to create workable narrative assessments, and researchers struggling to write them .

The problem arises because new research assessment systems are not being planned and implemented properly. This must change. Researchers need explicit evaluation criteria that help them to write narratives by spelling out how different aspects of the text will be weighted and judged.

Research communities must be involved in designing these criteria. All too often, researchers tell me about assessment systems being imposed from the top down, with no consultation. This risks these new systems being no better than those they are replacing.

purpose of research

How to boost your research: take a sabbatical in policy

Assessments should be mission-driven and open to change over time. For example, if an institute wants to increase awareness and implementation of open science, its assessments of which researchers should be promoted could reward those who have undertaken relevant training or implemented practices such as data sharing. As open science becomes more mainstream, assessments could reduce the weight given to such practices.

The value of different research outputs will vary between fields, institutes and countries. Funding bodies in Canada, where I work, might favour grants that prioritize Indigenous engagement and perspectives in research — a key focus of diversity, equity and inclusion efforts in the Canadian scientific community. But the same will not apply in all countries.

Organizations must understand that reform can’t be done well on the cheap. They should invest in implementation scientists, who are trained to investigate the factors that stop new initiatives succeeding and find ways to overcome them. These experts can help to get input from the research community, and to bring broad perspectives together into a coherent assessment framework.

Some might argue that it would be better for cash-strapped research organizations to rework existing assessments to suit their needs rather than spend money on experts to develop a new one. Yes, sharing resources and experiences is often useful. But because each research community is unique, copying a template is unlikely to produce a useful assessment. DORA is creating tools to help. One is Reformscape (see go.nature.com/4ab8aky ) — an organized database of mini case studies that highlight progress in research reform, including policies and sample CVs that can be adapted for use in fresh settings. This will allow institutions to build on existing successes.

purpose of research

The postdoc experience is broken. Funders such as the NIH must help to reimagine it

Crucially, implementation scientists are also well placed to audit how a new system is doing, and to make iterative changes. No research evaluation system will work perfectly at first — organizations must commit sustained resources to monitoring and improving it.

The Luxembourg National Research Fund (FNR) shows the value of this iterative approach. In 2021, it began requesting a narrative CV for funding applications, rather than a CV made up of the usual list of affiliations and publications. Since then, it has been studying how well this system works. It has had mostly positive feedback, but researchers in some fields are less satisfied, and there is evidence that institutes aren’t providing all researchers with the guidance they need to complete the narrative CV. In response, the FNR is now investigating how to adapt the CV to better serve its communities.

Each institution has its own work to do, if academia is truly to reform research assessment. Those institutions that drag their feet are sending a message that they are prepared to continue supporting a flawed system that wastes research time and investment.

Nature 628 , 9 (2024)

doi: https://doi.org/10.1038/d41586-024-00899-8

Reprints and permissions

Competing Interests

K.C. is the co-chair of DORA (Declaration On Research Assessment) — this in an unpaid role.

Related Articles

purpose of research

  • Scientific community

Exclusive: official investigation reveals how superconductivity physicist faked blockbuster results

Exclusive: official investigation reveals how superconductivity physicist faked blockbuster results

News 06 APR 24

Will the Gates Foundation’s preprint-centric policy help open access?

Will the Gates Foundation’s preprint-centric policy help open access?

News 04 APR 24

The EU’s ominous emphasis on ‘open strategic autonomy’ in research

The EU’s ominous emphasis on ‘open strategic autonomy’ in research

Editorial 03 APR 24

How can we make PhD training fit for the modern world? Broaden its philosophical foundations

Correspondence 02 APR 24

Allow researchers with caring responsibilities ‘promotion pauses’ to make research more equitable

How scientists are making the most of Reddit

How scientists are making the most of Reddit

Career Feature 01 APR 24

Africa’s postdoc workforce is on the rise — but at what cost?

Africa’s postdoc workforce is on the rise — but at what cost?

Career Feature 02 APR 24

Overcoming low vision to prove my abilities under pressure

Overcoming low vision to prove my abilities under pressure

Career Q&A 28 MAR 24

High-Level Talents at the First Affiliated Hospital of Nanchang University

For clinical medicine and basic medicine; basic research of emerging inter-disciplines and medical big data.

Nanchang, Jiangxi, China

The First Affiliated Hospital of Nanchang University

purpose of research

POSTDOCTORAL Fellow -- DEPARTMENT OF Surgery – BIDMC, Harvard Medical School

The Division of Urologic Surgery in the Department of Surgery at Beth Israel Deaconess Medical Center and Harvard Medical School invites applicatio...

Boston, Massachusetts (US)

purpose of research

Director of Research

Applications are invited for the post of Director of Research at Cancer Institute (WIA), Chennai, India.

Chennai, Tamil Nadu (IN)

Cancer Institute (W.I.A)

purpose of research

Postdoctoral Fellow in Human Immunology (wet lab)

Join Atomic Lab in Boston as a postdoc in human immunology for universal flu vaccine project. Expertise in cytometry, cell sorting, scRNAseq.

Boston University Atomic Lab

purpose of research

Research Associate - Neuroscience and Respiratory Physiology

Houston, Texas (US)

Baylor College of Medicine (BCM)

purpose of research

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

UW finance upgrade: ‘The best research enterprises are creative’

The article “ UW’s $340 million finance upgrade is still struggling, despite progress ” [April 25] was sadly predictable, especially for university research functions.

The best research enterprises are creative, innovative, flexible, adaptable, and diverse. The purpose of enterprise systems is to simplify, standardize, and “unify” accounting systems upon which research programs depend, exactly the opposite characteristics of creative and nimble research enterprises.

I have had formal and informal appointments with five research organizations – one with the federal government and four with universities – and I have been involved in many different aspects of research grant and collaboration processes in biological, economic, and social sciences. I have found that enterprise systems are usually long delayed and more expensive to implement than expected, even though administrators never calculate the additional time and frustration costs for impacted scientists and staff during implementation.

Once implemented, the system is declared a “success” by organizational leaders but since it was implemented from the top down, it does not reflect many of the unique, diverse needs of the research enterprise, resulting in further frustration for scientists and, I suspect, reduced scientific creativity over time as research activities must conform to newly standardized systems.

Dale J. Blahna, Kenmore

Most Read Opinion Stories

  • When it comes to math, maybe the kids aren't the problem
  • School truancy crisis means more than missed classes VIEW
  • Caitlin Clark is having a moment in women's basketball. She shouldn't be the only one
  • Bailed out Alaska Airlines executives are raking in big bonuses
  • Keep lights on as Washington transitions to clean power

The opinions expressed in reader comments are those of the author only and do not reflect the opinions of The Seattle Times.

  • Conference Services
  • Student Accounts
  • Human Resources
  • Information Technology

Information For  

  • Advancement

Taylor University Home

  • Pursue Life to the Full
  • Mission, Distinctions, and Beliefs
  • Heritage & History
  • Samuel Morris Story
  • Profile & Rankings
  • Accreditation
  • Area Attractions & Entertainment
  • Area Churches
  • Area Dining
  • Area Lodging
  • Area Retail
  • Area Services
  • Title IX Policies
  • Organizational Values
  • Contact Taylor University
  • International Students
  • Missionary & Third Culture Students
  • Transfer Students
  • Homeschool Students
  • Testing and Placement
  • Financial Aid
  • Scholarships
  • Federal Work Study Program
  • Student Jobs
  • Net Price Calculator
  • Additional Resources
  • Financial Aid FAQ
  • Data Science Camp
  • Engineering Camp
  • Forensic Science Camp
  • Health Science & Preventive Medicine Camp
  • Music, Theatre & Dance Camp
  • Songwriting and Worship Arts Camp
  • Pre-College Dual Enrollment
  • Online Pre-College Courses
  • Maps & Directions
  • Undergraduate Programs
  • Art Program
  • Biblical Studies, Christian Ministries, Intercultural Studies & Philosophy Department
  • Biology Program
  • Business Department
  • Chemistry Department
  • Communication Department
  • Computer Science & Engineering Department
  • Education Department
  • Engineering Program
  • English Program
  • Environmental Science & Sustainable Development Program
  • Film & Media Program
  • History, Global & Political Studies Department
  • Kinesiology Department
  • Mathematics Department
  • Modern Languages Program
  • Music Program
  • Physics Program
  • Psychology Department
  • Social Work Program
  • Sociology Program
  • Theatre & Dance Program
  • Liberal Arts
  • Semester Studies
  • January Travel Programs
  • Ecuador Semester Program
  • Irish Studies Program
  • Los Angeles Internship Program
  • Graduate Programs
  • Online Programs & Licensures
  • Health Sciences
  • Honors Guild
  • English as a Second Language
  • Information Systems Curriculum
  • Health Professions Advising
  • King Sejong Institute—Upland
  • Redeem Project
  • Academic Enrichment Center
  • Bergwall Hall
  • Breuninger Hall
  • English Hall
  • Samuel Morris Hall
  • Swallow Robin Hall
  • Wengatz Hall
  • On-Campus Apartments
  • Special Dietary Needs & Allergies
  • Dining Services FAQ
  • Life Together Covenant
  • Ethics Bowl
  • Poms Dance Team
  • Equestrian Team
  • Women's Lacrosse
  • Music & Theatre
  • Local Ministries
  • Spring Break Missions
  • Student Leadership
  • Student Media
  • Traditions & Events
  • Multicultural Programs & Events
  • Intercultural Leadership
  • Counseling Center
  • Athletic & Fitness Locations
  • Academic Buildings
  • Gathering & Performance Spaces
  • Campus Store
  • Art Gallery
  • Student Health
  • Student Life Contacts
  • Life At Taylor
  • About Taylor
  • Area Information
  • Administration
  • Office of the President
  • Related Links
  • Meet Your Admissions Counselor
  • How to Apply
  • Pre-College Programs
  • Information For ...
  • Accepted Students
  • Study Abroad
  • Special Programs
  • Special Education
  • Academic Advising
  • Calling and Career Office
  • Zondervan Library
  • Student Life
  • Spiritual Development
  • Residence Life
  • Dining Services
  • Opportunities
  • Student Activities
  • Service & Outreach
  • Multicultural Community

Chemistry Professor Leads Students in Cancer, Parkinson’s, Alzheimer’s Research

  • By: Anna Molendorp
  • Published: Apr 4, 2024 8 am

Sichula with research students

Professor of Chemistry Dr. Vincent Sichula, PhD , is leading organic chemistry students in researching ways to combat cancer, Parkinson’s disease, and Alzheimer’s disease.   

His studies and the places those studies take his students after college are a testament to the weight that college experience with research has in the eyes of graduate schools and employers, especially in a difficult field like Chemistry . His aim isn’t just to help students gain experience, however.  

“I tell my students, ‘You see these compounds we are making?’” Sichula said. “‘Don’t be surprised if you find these compounds are being developed into pharmaceutical drugs one day. You never know where they’re going to lead us.’”  

The Research  

One area of Sichula’s research is on the preparation of organic molecules for pharmaceutical drug development.   

In the past, before computational technology, scientists tested thousands of molecules randomly against a single disease target. This process bore many errors and took up time and resources, but today’s technology enables Sichula and his students to simulate reactions between molecules and disease targets.   

One of his research studies is focused on finding compounds that can inhibit a crucial enzyme found in Parkinson’s disease.  

“We have made the molecules, and we have tested them, and so far, the results have been very encouraging,” Sichula said. “We presented the data from this project at the American Chemical Society Conference in Chicago last year.”  

Sichula is also the lead investigator on another project concerning cancer research. The molecules he is looking for are those related to angiogenesis—the formation of new blood cells. One of Sichula’s students presented the research data to the American Cancer Society .   

Sometimes, research in one area leads to success in another area. Sichula experienced this early in his career when his research centered around skin cancer. He ended up finding a compound that could split water into hydrogen and oxygen.  

It just so happened that companies were searching for a way to use water as a fuel source. This compound provided a way to convert hydrogen and oxygen into fuel cells that generate electricity.  

“During my PhD, I gained experience in renewable energy research,” Sichula said. “Now, I engage students in renewable energy.”  

This is done through Sichula’s third research project, where he is looking to make molecules that could convert carbon dioxide—a greenhouse gas—into liquid fuels such as methanol. Through this research, he hopes to find an alternative method of reducing carbon dioxide from the atmosphere and at the same time converting it into fuels.  

Vincent_thumb2.jpg

Preparation for the Future  

Whether or not Sichula’s students pursue medical chemistry as a career, they learn many skills during their time in the organic chemistry lab, and many financial opportunities and careers become accessible to them.  

Some Chemistry and Biochemistry majors, for example, may plan to become dentists or take up other occupations that require a graduate school degree.   

“It really helps students get internships, jobs, admissions into universities and medical school because the admission officers are interested in what they’ve done besides their coursework,” said Sichula. “It helps students to get into good programs.”  

Experience in research and lab work has another benefit. Students who wish to pay for their graduate degrees by doing research for their school already have experience. Sichula himself did this while getting his PhD in Chemistry.  

Sichula’s students cultivate their critical thinking skills, precision, and coordination.   

“I would say if you’re interested in the sciences, chemistry is the best place to begin,” Sichula said.  

A Greater Purpose  

For Sichula, his work is more than a humanitarian occupation; it’s Kingdom work.  

“It’s another way of doing God’s work, contributing to the redemptive plan of God,” Sichula said. “Just imagine, the Scripture says God forgives all our iniquities and heals all diseases. So just to be part of that, you can make these molecules and they can do amazing things.”  

Sichula urges his students to see God as the grand Designer who orchestrates all of nature. Human processes cannot compare to the inner workings of God’s creation.  

“You know, first you make one compound and purify it,” Sichula said. “Then you mix it again with another one, make another one, check the temperature and everything before we get to the final product. But then the question is, how does nature do that? God is a Creator and a Designer.”  

Are you interested in pursuing a great purpose through your education? Learn more about our American Chemical Society-certified Chemistry and Biochemistry Department , its 95% placement rate into medical and pre-healthcare schools, its near-100% placement rate into graduate schools, and its 99% placement rate for direct entry into a chemistry career.   

Want to see it for yourself? Schedule a visit today!  

purpose of research

Navy captain relieved for ‘loss of confidence’ following investigation

The Navy has fired six commanding officers so far in 2024.

By Jeff Schogol | Updated Apr 5, 2024 5:16 PM EDT

Abigail Yablonsky Marter

The commanding officer of a Naval medical command in Peru has been fired due to “a loss of confidence in her ability to command,” service officials announced on Friday. Capt. Abigail Yablonsky Marter was relieved of command of Naval Medical Research Unit SOUTH, or NAMRU SOUTH, on Friday by Capt. Franca Jones, head of Naval Medical Research Command, a Navy news release says.

A career nurse in the Navy, Marter assumed command of Naval Medical Research Unit SOUTH in July, the news release says. She will be temporarily reassigned to Naval Medical Research Command.

Based in Lima, Peru, NAMRU SOUTH researches potentially fatal infectious diseases in Central America including malaria, dengue fever, diarrheal diseases, sexually transmitted infections. The unit also monitors antimicrobial resistance.

The Navy’s news release does not include any specific information about why Marter was fired.

Subscribe to Task & Purpose today. Get the latest military news and culture in your inbox daily.

“After an investigation, Capt. Abigail Yablonsky Marter was relieved due to a loss of confidence in her ability to command,” Cmdr. Jessica McNulty, a spokeswoman with the Bureau of Medicine and Surgery, told Task & Purpose on Friday.

“The Navy holds commanding officers to the highest standards of leadership, performance, and operational effectiveness,” McNulty continued. “When these leaders fall short of these high standards, the Navy holds them accountable. As a matter of policy, the Navy does not comment or speculate on any future or pending administrative or disciplinary actions.” 

The term “loss of confidence” is a euphemism that military branches use rather than specify why commanders have been relieved. Military commanding officers and senior enlisted leaders can be fired for a variety of reasons, ranging from poor leadership or poor performance to personal issues unrelated to work but which a higher commander views as incompatible with command.

By not saying exactly why commanding officers have been fired, the military often creates an information vacuum that can be filled with conspiracy theories.

The Navy has relieved six commanding officers so far this year. Three of those officers were fired after being arrested off-base for driving under the influence, Task & Purpose has confirmed.

Finding out exactly why a commanding officer has been fired can take time. Media outlets can submit Freedom of Information Act requests to learn what prompted a commander to be relieved, but the process can take months, if not longer.

Task & Purpose will continue to seek information about what promoted military commanding officers to be fired to dispel disinformation.

UPDATE: 04/05/2024; this story was updated with comments from Navy Cmdr. Jessica McNulty, a spokeswoman with the Bureau of Medicine and Surgery

The latest on Task & Purpose

  • Air Force special operators must take class before getting shaving waivers
  • Camp Pendleton Marines encouraged to fix their own barracks rooms
  • 101st Airborne soldiers are first to receive new Next Gen Squad Weapon
  • Air Force fires commander of Holloman maintenance group
  • Army investigating Nazi imagery on Special Forces patch posted online

Jeff Schogol

Jeff Schogol is a senior staff writer for Task & Purpose. He has covered the military for 15 years, with previous bylines at the Express-Times in Easton, Pennsylvania, Stars & Stripes, and Military Times. You can email him at [email protected], direct message @JeffSchogol on Twitter, or reach him on WhatsApp and Signal at 703-909-6488. Contact the author here.

Subscribe to Task & Purpose Today

Get the latest in military news, entertainment and gear in your inbox daily.

      April 5, 2024 - Notice of Intent to Publish a Notice of Funding Opportunity for ML/AI Tools to Advance Genomic Translational Research (MAGen) - Coordinating Center NOT-HG-24-030

The National Human Genome Research Institute intends to issue a Notice of Funding Opportunity (NOFO) to solicit applications to explore the feasibility of developing Machine Learning (ML) and Artificial Intelligence (AI) tools that can enhance the accuracy and precision of predicting how individuals with pathogenic genetic variants manifest disease.  The objective of the NOFO is to collaboratively identify both genomic and non-genomic factors influencing disease development in individuals carrying pathogenic genetic variants within a research consortium, ML/AI Tools to Advance Genomic Translational Research (MAGen). This consortium will include the MAGen Sites funded by the NOFO and MAGen Coordinating Center funded by the companion NOFO (see NOT-HG-24-030). The ML/AI tools will leverage existing multimodal genomic and non-genomic data and will be cross validated in genomic translational research settings to ensure the robustness and generalizability of the tools. In addition, the Consortium will explore the ethical, legal, and social implications (ELSI) of integrating ML/AI tools into genomic medicine through the establishment of an ELSI framework for their development and through implementation of ELSI research projects.

The intended NOFO is based on a  concept recently approved by the National Advisory Council on Human Genome Research and accompanying  discussion .

This Notice is being provided to allow potential applicants sufficient time to develop collaborations and responsive projects.

The NOFO is expected to be published in Spring 2024 with an expected application due date in Summer 2024.

This NOFO will utilize the UG3/UH3 activity code. Details of the planned NOFO are provided below.

MAGen Sites, with support from the MAGen Coordinating Center, will collaboratively develop the following Consortium-wide resources pertinent to ML/AI tool development and cross validation: an ELSI framework for ML/AI tool development and cross validation for translational research purposes; the consortium’s collective set of human genes with pathogenic variants selected from the list proposed by the MAGen Sites; ML/AI tools' key requirements; a common data model; a cross validation plan; research questions and outcomes that are to be assessed by the ELSI project(s); and a plan for dissemination of the Consortium-generated resources. In accordance with the agreed-upon consortium-wide plans and resources identified above, each MAGen Site will: develop and cross validate tools; conduct ELSI research projects; and generate resources for dissemination.

The MAGen consortium is not focused on any specific disease or condition. However, the proposed genes must have pathogenic variants associated with known human diseases and with variable clinical manifestation.

Important considerations include: (1) funding will not be provided for new data generation; (2) groups need to have sufficient multimodal genomic, other-omic, and non-genomic data (clinical including electronic health records, social determinants of health, environmental, wearable etc.) accessible to them to address a range of diseases to be used for development, validation, and cross validation of ML/AI tools in translational research settings. The MAGen Sites will work collaboratively with each other and the MAGen CC (NOT-HG-24-030) within the Consortium to achieve the goals of the NOFO.

This Notice encourages investigators with multi-disciplinary expertise, including biomedical informatics, data science, genomics, computer science, clinical data management, ELSI research etc., to begin considering applying for this NOFO.

The NOFO will use the UG3/UH3 cooperative agreement mechanism which entails a two-Phase, one-application approach to accomplish the goals.  

Funding Information

$4.8 million in FY2025

The maximum award for the UG3 phase is $1.6 million total cost per year for up to two years. The maximum award for the UH3 phase is $1.6 million direct cost per year for up to three years. 

Applications are not being solicited at this time.  

Please direct all inquiries to:

Sandhya Xirasagar Ph.D. National Human Genome Research Institute (NHGRI) Office of Genomic Data Science Telephone: 240-380-0400 Email: [email protected]

NIH Office of Extramural Research Logo

Note: For help accessing PDF, RTF, MS Word, Excel, PowerPoint, Audio or Video files, see Help Downloading Files .

IMAGES

  1. The Research Process Is Best Described as a

    purpose of research

  2. purpose of research presentation

    purpose of research

  3. purpose of research presentation

    purpose of research

  4. Purpose of Research

    purpose of research

  5. What is the purpose of writing a research paper

    purpose of research

  6. The Purpose of Research and Its Characteristics (3-5 min read

    purpose of research

VIDEO

  1. NYX Multi-Purpose Research Complex Trailer

  2. What is research

  3. Problem purpose research question and title

  4. 05 March 2024 Nifty 50 Option trading with Logic

  5. 06th MARCH 2024 NIFTY50 OPTION BUY TRADING WITH LOGIC

  6. 2023 ki yend

COMMENTS

  1. What is Research?

    The purpose of research is to further understand the world and to learn how this knowledge can be applied to better everyday life. It is an integral part of problem solving. Although research can take many forms, there are three main purposes of research: Exploratory: Exploratory research is the first research to be conducted around a problem ...

  2. Purpose of Research

    The purpose of research can vary depending on the field of study, the research question, and the intended audience. In general, research can be used to: Generate new knowledge and theories. Test existing theories or hypotheses. Identify trends or patterns. Gather information for decision-making. Evaluate the effectiveness of programs, policies ...

  3. Research

    Original research, also called primary research, is research that is not exclusively based on a summary, review, or synthesis of earlier publications on the subject of research.This material is of a primary-source character. The purpose of the original research is to produce new knowledge rather than present the existing knowledge in a new form (e.g., summarized or classified).

  4. What is Research

    Research is the careful consideration of study regarding a particular concern or research problem using scientific methods. According to the American sociologist Earl Robert Babbie, "research is a systematic inquiry to describe, explain, predict, and control the observed phenomenon. It involves inductive and deductive methods.".

  5. What Is Research, and Why Do People Do It?

    And, because research is a social practice, you should also think about whether the results of your study are likely to be important and significant to the education community. If you are doing research in the way we have described—as scientific inquiry—then one purpose of your study is to understand, not just to describe or evaluate or ...

  6. Research

    In the simplest of terms, the research definition is a process of seeking out knowledge. This knowledge can be new, or it can support an already known fact. The purpose of research is to inform ...

  7. What is Scientific Research and How Can it be Done?

    Research conducted for the purpose of contributing towards science by the systematic collection, interpretation and evaluation of data and that, too, in a planned manner is called scientific research: a researcher is the one who conducts this research. The results obtained from a small group through scientific studies are socialised, and new ...

  8. Scientific Research

    The purpose of scientific research is to systematically investigate phenomena, acquire new knowledge, and advance our understanding of the world around us. Scientific research has several key goals, including: Exploring the unknown: Scientific research is often driven by curiosity and the desire to explore uncharted territory. Scientists ...

  9. 2.1 Why is Research Important

    Discuss how scientific research guides public policy. Appreciate how scientific research can be important in making personal decisions. Scientific research is a critical tool for successfully navigating our complex world. Without it, we would be forced to rely solely on intuition, other people's authority, and blind luck.

  10. Research: Meaning and Purpose

    Leedy and Ormrod ( 2015 p. 20) "Research is a process step used to collect and analyze information to increase our understanding of a topic or issue. It consists of three steps: pose a question, collect data to answer questions, present an answer to the question". Creswell ( 2008 p. 03)

  11. Chapter 3

    A variable is, not surprisingly, some- thing that can vary, or assume different values. In the next section, illustrative questions are given, categorized by the purpose of research with which they are best matched. The five research purposes are presented as the following: 1. Explore, 2. Describe, 3. Test, 4. Evaluate, and 5. Predict.

  12. 11.1 The Purpose of Research Writing

    Research results can be presented in a variety of ways, but one of the most popular—and effective—presentation forms is the research paper. A research paper presents an original thesis, or purpose statement, about a topic and develops that thesis with information gathered from a variety of sources.

  13. Definition, Purposes, and Dimensions of Research

    Smith's definition also refers to the fact that the research must stand on its own merit, not the status of the researcher or the eloquence of the writing. Purposes of Research Research has 2 general purposes: (1) increasing knowledge within rhe discipline and (2) increasing knowledge within oneself as a professional consumer of research in ...

  14. 2.1 Why Is Research Important?

    Our mission is to improve educational access and learning for everyone. OpenStax is part of Rice University, which is a 501 (c) (3) nonprofit. Give today and help us reach more students. Help. OpenStax. This free textbook is an OpenStax resource written to increase student access to high-quality, peer-reviewed learning materials.

  15. Purpose of Research

    The purpose of research can be a complicated issue and varies across different scientific fields and disciplines. At the most basic level, science can be split, loosely, into two types, 'pure research' and 'applied research'. This article is a part of the guide:

  16. What is Research? Definition, Types, Methods and Process

    Research is defined as a meticulous and systematic inquiry process designed to explore and unravel specific subjects or issues with precision. This methodical approach encompasses the thorough collection, rigorous analysis, and insightful interpretation of information, aiming to delve deep into the nuances of a chosen field of study.

  17. 1.3: What is the Purpose of Research?

    The purpose of science is to create scientific knowledge. Scientific knowledge refers to a generalized body of laws and theories to explain a phenomenon or behavior of interest that are acquired using the scientific method. Laws are observed patterns of phenomena or behaviors, while theories are systematic explanations of the underlying ...

  18. Qualitative Study

    Qualitative research is a type of research that explores and provides deeper insights into real-world problems.[1] Instead of collecting numerical data points or intervene or introduce treatments just like in quantitative research, qualitative research helps generate hypotheses as well as further investigate and understand quantitative data. Qualitative research gathers participants ...

  19. Research Objectives

    A research aim is a broad statement indicating the general purpose of your research project. It should appear in your introduction at the end of your problem statement, before your research objectives. Research objectives are more specific than your research aim. They indicate the specific ways you'll address the overarching aim.

  20. 1. The Purpose of Research: Why do we do it?

    by Ioanna Palaiologou, David Needham and Trevor Male. 1. The Purpose of Research: Why do we do it? Select SAGE Journal articles are available to give you even more insight into chapter topics. These are also an ideal resource to help support your literature reviews, dissertations and assignments. Click on the following links which will open in ...

  21. 7 Reasons Why Research Is Important

    The main purposes of research are to inform action, gather evidence for theories, and contribute to developing knowledge in a field of study. This article discusses the significance of research and the many reasons why research is important for everyone—not just students and scientists.

  22. Introduction to Research and 10 Purposes of Research

    1. Exploration as a purpose of research is when a research is conducted to explore/investigate a subject or concept; 2. Description fulfils the need to provide more insight to a problem by providing more data and analysing them according to specific needs, 3. Explanation is the use of research to give a new perspective to existing knowledge.

  23. Explanatory Research

    Research should be a systematic approach, commonly known as the scientific method. The three purposes of research are: To be a tool to contribute to and build the developing knowledge in a ...

  24. Impact factors are outdated, but new research assessments ...

    Impact factors are outdated, but new research assessments still fail scientists. A move away from narrow assessment metrics such as publication records is welcome. Now planning and consultation is ...

  25. UW finance upgrade: 'The best research enterprises are creative'

    The purpose of enterprise systems is to simplify, standardize, and "unify" accounting systems upon which research programs depend, exactly the opposite characteristics of creative and nimble ...

  26. Chemistry Professor Leads Students in Cancer, Parkinson's, Alzheimer's

    Published: Apr 4, 2024 8 am. Professor of Chemistry Dr. Vincent Sichula, PhD, is leading organic chemistry students in researching ways to combat cancer, Parkinson's disease, and Alzheimer's disease. His studies and the places those studies take his students after college are a testament to the weight that college experience with research ...

  27. Assessing the Impact of COVID-19 on Rural Hospitals

    Purpose. The purpose of this research is to examine the impact of the COVID-19 pandemic on rural hospital financial performance. The results of this study will provide rural hospital leaders a better understanding of the impact of the COVID-19 pandemic on rural hospital operational and financial performance. Results will also assist policy ...

  28. Introducing DBRX: A New State-of-the-Art Open LLM

    DBRX advances the state-of-the-art in efficiency among open models thanks to its fine-grained mixture-of-experts (MoE) architecture. Inference is up to 2x faster than LLaMA2-70B, and DBRX is about 40% of the size of Grok-1 in terms of both total and active parameter-counts. When hosted on Mosaic AI Model Serving, DBRX can generate text at up to ...

  29. Navy captain relieved for 'loss of confidence' following investigation

    Navy Capt. Abigail Yablonsky Marter was fired on April 5 as commanding officer of Naval Medical Research Unit SOUTH in Lima, Peru.

  30. NOT-HG-24-029: Notice of Intent to Publish a Funding Opportunity

    MAGen Sites, with support from the MAGen Coordinating Center, will collaboratively develop the following Consortium-wide resources pertinent to ML/AI tool development and cross validation: an ELSI framework for ML/AI tool development and cross validation for translational research purposes; the consortium's collective set of human genes with pathogenic variants selected from the list ...