Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Social Sci LibreTexts

5.3: Using Critical Thinking Skills- Decision Making and Problem Solving

  • Last updated
  • Save as PDF
  • Page ID 24260

Introduction

In previous lessons, you learned about characteristics of critical thinkers and information literacy. In this module, you will learn how to put those skills into action through the important processes of decision making and problem solving.

As with the process of developing information literacy, asking questions is an important part of decision making and problem solving. Thinking is born of questions. Questions wake us up. Questions alert us to hidden assumptions. Questions promote curiosity and create new distinctions. Questions open up options that otherwise go unexplored. Besides, teachers love questions.

We make decisions all the time, whether we realize it or not. Even avoiding decisions is a form of decision making. The student who puts off studying for a test until the last minute, for example, might really be saying, “I’ve decided this course is not important” or “I’ve decided not to give this course much time.”

Decisions are specific and lead to focused action. When we decide, we narrow down. We give up actions that are inconsistent with our decision.

In addition to decision making, critical thinking skills are important to solving problems. We encounter problems every single day, and having a solid process in place is important to solving them.

At the end of the lesson, you will learn how to put your critical thinking skills to use by reviewing an example of how critical thinking skills can help with making those everyday decisions.

Using Critical Thinking Skills: Asking Questions

Questions have practical power. Asking for directions can shave hours off a trip. Asking a librarian for help can save hours of research time. Asking how to address an instructor—by first name or formal title—can change your relationship with that person. Asking your academic advisor a question can alter your entire education. Asking people about their career plans can alter your career plans.

You can use the following strategies to develop questions for problem solving and decision making:

Ask questions that create possibilities. At any moment, you can ask a question that opens up a new possibility for someone.

  • Suppose a friend walks up to you and says, “People just never listen to me.” You listen carefully. Then you say, “Let me make sure I understand. Who, specifically, doesn’t listen to you? And how do you know they’re not listening?”
  • Another friend tells you, “I just lost my job to someone who has less experience. That should never happen.” You respond, “Wow, that’s hard. I’m sorry you lost your job. Who can help you find another job?”
  • A relative seeks your advice. “My mother-in-law makes me mad,” she says. “You’re having a hard time with this person,” you say. “What does she say and do when you feel mad at her? And are there times when you don’t get mad at her?”

These kinds of questions—asked with compassion and a sense of timing—can help people move from complaining about problems to solving them.

Discover new questions. Students sometimes say, “I don’t know what questions to ask.” Consider the following ways to create questions about any subject you want to study or about any

area of your life that you want to change:

  • Let your pen start moving. Sometimes you can access a deeper level of knowledge by taking out your pen, putting it on a piece of paper, and writing down questions—even before you know what to write. Don’t think. Just watch the pen move across the paper. Notice what appears. The results might be surprising.
  • Ask about what’s missing . Another way to invent useful questions is to notice what’s missing from your life and then ask how to supply it. For example, if you want to take better notes, you can write, “What’s missing is skill in note taking. How can I gain more skill in taking notes?” If you always feel rushed, you can write, “What’s missing is time. How do I create enough time in my day to actually do the things that I say I want to do?”
  • Pretend to be someone else. Another way to invent questions is first to think of someone you greatly respect. Then pretend you’re that person. Ask the questions you think she would ask.
  • What can I do when ... an instructor calls on me in class and I have no idea what to say? When a teacher doesn’t show up for class on time? When I feel overwhelmed with assignments?
  • How can I ... take the kind of courses that I want? Expand my career options? Become much more effective as a student, starting today?
  • When do I ... decide on a major? Transfer to another school? Meet with an instructor to discuss an upcoming term paper?
  • What else do I want to know about ... my academic plan? My career plan? My options for job hunting? My friends? My relatives? My spouse?
  • Who can I ask about ... my career options? My major? My love life? My values and purpose in life?

Many times you can quickly generate questions by simply asking yourself, “What else do I want to know?” Ask this question immediately after you read a paragraph in a book or listen to someone speak.

Start from the assumption that you are brilliant. Then ask questions to unlock your brilliance.

Using Critical Thinking Skills in Decision Making

As you develop your critical thinking skills, you can apply them as you make decisions. The following suggestions can help in your decision-making process:

Recognize decisions. Decisions are more than wishes or desires. There’s a world of difference between “I wish I could be a better student” and “I will take more powerful notes, read with greater retention, and review my class notes daily.” Deciding to eat fruit for dessert instead of ice cream rules out the next trip to the ice cream store.

Establish priorities. Some decisions are trivial. No matter what the outcome, your life is not affected much. Other decisions can shape your circumstances for years. Devote more time and energy to the decisions with big outcomes.

Base decisions on a life plan. The benefit of having long-term goals for our lives is that they provide a basis for many of our daily decisions. Being certain about what we want to accomplish this year and this month makes today’s choices more clear.

Balance learning styles in decision making. To make decisions more effectively, use all four modes of learning explained in a previous lesson. The key is to balance reflection with action, and thinking with experience. First, take the time to think creatively, and generate many options. Then think critically about the possible consequences of each option before choosing one. Remember, however, that thinking is no substitute for experience. Act on your chosen option, and notice what happens. If you’re not getting the results you want, then quickly return to creative thinking to invent new options.

Choose an overall strategy. Every time you make a decision, you choose a strategy—even when you’re not aware of it. Effective decision makers can articulate and choose from among several strategies. For example:

  • Find all of the available options, and choose one deliberately. Save this strategy for times when you have a relatively small number of options, each of which leads to noticeably different results.
  • Find all of the available options, and choose one randomly. This strategy can be risky. Save it for times when your options are basically similar and fairness is the main issue.
  • Limit the options, and then choose. When deciding which search engine to use, visit many search sites and then narrow the list down to two or three from which to choose.

Use time as an ally. Sometimes we face dilemmas—situations in which any course of action leads to undesirable consequences. In such cases, consider putting a decision on hold. Wait it out. Do nothing until the circumstances change, making one alternative clearly preferable to another.

Use intuition. Some decisions seem to make themselves. A solution pops into your mind, and you gain newfound clarity. Using intuition is not the same as forgetting about the decision or refusing to make it. Intuitive decisions usually arrive after we’ve gathered the relevant facts and faced a problem for some time.

Evaluate your decision. Hindsight is a source of insight. After you act on a decision, observe the consequences over time. Reflect on how well your decision worked and what you might have done differently.

Think of choices. This final suggestion involves some creative thinking. Consider that the word decide derives from the same roots as suicide and homicide . In the spirit of those words, a decision forever “kills” all other options. That’s kind of heavy. Instead, use the word choice , and see whether it frees up your thinking. When you choose , you express a preference for one option over others. However, those options remain live possibilities for the future. Choose for today, knowing that as you gain more wisdom and experience, you can choose again.

Using Critical Thinking Skills in Problem Solving

Think of problem solving as a process with four Ps : Define the problem , generate possibilities ,

create a plan , and perform your plan.

Step 1: Define the problem. To define a problem effectively, understand what a problem is—a mismatch between what you want and what you have. Problem solving is all about reducing the gap between these two factors.

Tell the truth about what’s present in your life right now, without shame or blame. For example: “I often get sleepy while reading my physics assignments, and after closing the book I cannot remember what I just read.”

Next, describe in detail what you want. Go for specifics: “I want to remain alert as I read about physics. I also want to accurately summarize each chapter I read.”

Remember that when we define a problem in limiting ways, our solutions merely generate new problems. As Albert Einstein said, “The world we have made is a result of the level of thinking we have done thus far. We cannot solve problems at the same level at which we created them” (Calaprice 2000).

This idea has many applications for success in school. An example is the student who struggles with note taking. The problem, she thinks, is that her notes are too sketchy. The logical solution, she decides, is to take more notes; her new goal is to write down almost everything her instructors say. No matter how fast and furiously she writes, she cannot capture all of the instructors’ comments.

Consider what happens when this student defines the problem in a new way. After more thought, she decides that her dilemma is not the quantity of her notes but their quality . She adopts a new format for taking notes, dividing her notepaper into two columns. In the right-hand column, she writes down only the main points of each lecture. In the left-hand column, she notes two or three supporting details for each point.

Over time, this student makes the joyous discovery that there are usually just three or four core ideas to remember from each lecture. She originally thought the solution was to take more notes. What really worked was taking notes in a new way.

Step 2: Generate possibilities. Now put on your creative thinking hat. Open up. Brainstorm as many possible solutions to the problem as you can. At this stage, quantity counts. As you generate possibilities, gather relevant facts. For example, when you’re faced with a dilemma about what courses to take next semester, get information on class times, locations, and instructors. If you haven’t decided which summer job offer to accept, gather information on salary, benefits, and working conditions.

Step 3: Create a plan. After rereading your problem definition and list of possible solutions, choose the solution that seems most workable. Think about specific actions that will reduce the gap between what you have and what you want. Visualize the steps you will take to make this solution a reality, and arrange them in chronological order. To make your plan even more powerful, put it in writing.

Step 4: Perform your plan. This step gets you off your chair and out into the world. Now you actually do what you have planned.

Ultimately, your skill in solving problems lies in how well you perform your plan. Through the quality of your actions, you become the architect of your own success.

When facing problems, experiment with these four Ps, and remember that the order of steps is not absolute. Also remember that any solution has the potential to create new problems. If that happens, cycle through the four Ps of problem solving again.

Critical Thinking Skills in Action: Thinking About Your Major, Part 1

One decision that troubles many students in higher education is the choice of a major. Weighing the benefits, costs, and outcomes of a possible major is an intellectual challenge. This choice is an opportunity to apply your critical thinking, decision-making, and problem-solving skills. The following suggestions will guide you through this seemingly overwhelming process.

The first step is to discover options. You can use the following suggestions to discover options for choosing your major:

Follow the fun. Perhaps you look forward to attending one of your classes and even like completing the assignments. This is a clue to your choice of major.

See whether you can find lasting patterns in the subjects and extracurricular activities that you’ve enjoyed over the years. Look for a major that allows you to continue and expand on these experiences.

Also, sit down with a stack of 3 × 5 cards and brainstorm answers to the following questions:

  • What do you enjoy doing most with your unscheduled time?
  • Imagine that you’re at a party and having a fascinating conversation. What is this conversation about?
  • What kind of problems do you enjoy solving—those that involve people? Products? Ideas?
  • What interests are revealed by your choices of reading material, television shows, and other entertainment?
  • What would an ideal day look like for you? Describe where you would live, who would be with you, and what you would do throughout the day. Do any of these visions suggest a possible major?

Questions like these can uncover a “fun factor” that energizes you to finish the work of completing a major.

Consider your abilities. In choosing a major, ability counts as much as interest. In addition to considering what you enjoy, think about times and places when you excelled. List the courses that you aced, the work assignments that you mastered, and the hobbies that led to rewards or recognition. Let your choice of a major reflect a discovery of your passions and potentials.

Use formal techniques for self-discovery. Explore questionnaires and inventories that are designed to correlate your interests with specific majors. Examples include the Strong Interest Inventory and the Self-Directed Search. Your academic advisor or someone in your school’s career planning office can give you more details about these and related assessments. For some fun, take several of them and meet with an advisor to interpret the results. Remember inventories can help you gain self-knowledge, and other people can offer valuable perspectives. However, what you do with all this input is entirely up to you.

Critical Thinking Skills in Action: Thinking About Your Major, Part 2

As you review the following additional suggestions of discovering options, think about what strategies you already use in your own decision-making process. Also think about what new strategies you might try in the future.

Link to long-term goals. Your choice of a major can fall into place once you determine what you want in life. Before you choose a major, back up to a bigger picture. List your core values, such as contributing to society, achieving financial security and professional recognition, enjoying good health, or making time for fun. Also write down specific goals that you want to accomplish 5 years, 10 years, or even 50 years from today.

Many students find that the prospect of getting what they want in life justifies all of the time, money, and day-to-day effort invested in going to school. Having a major gives you a powerful incentive for attending classes, taking part in discussions, reading textbooks, writing papers, and completing other assignments. When you see a clear connection between finishing school and creating the life of your dreams, the daily tasks of higher education become charged with meaning.

Ask other people. Key people in your life might have valuable suggestions about your choice of major. Ask for their ideas, and listen with an open mind. At the same time, distance yourself from any pressure to choose a major or career that fails to interest you. If you make a choice solely on the basis of the expectations of other people, you could end up with a major or even a career you don’t enjoy.

Gather information. Check your school’s catalog or website for a list of available majors. Here is a gold mine of information. Take a quick glance, and highlight all the majors that interest you. Then talk to students who have declared these majors. Also read the descriptions of courses required for these majors. Do you get excited about the chance to enroll in them? Pay attention to your gut feelings.

Also chat with instructors who teach courses in a specific major. Ask for copies of their class syllabi. Go to the bookstore and browse the required texts. Based on all of this information, write a list of prospective majors. Discuss them with an academic advisor and someone at your school’s career-planning center.

Invent a major. When choosing a major, you might not need to limit yourself to those listed in your school catalog. Many schools now have flexible programs that allow for independent study. Through such programs, you might be able to combine two existing majors or invent an entirely new one of your own.

Consider a complementary minor. You can add flexibility to your academic program by choosing a minor to complement or contrast with your major. The student who wants to be a minister could opt for a minor in English; all of those courses in composition can help in writing sermons. Or the student with a major in psychology might choose a minor in business administration, with the idea of managing a counseling service some day. An effective choice of a minor can expand your skills and career options.

Think critically about the link between your major and your career. Your career goals might have a significant impact on your choice of major.

You could pursue a rewarding career by choosing among several different majors. Even students planning to apply for law school or medical school have flexibility in their choice of majors. In addition, after graduation, many people tend to be employed in jobs that have little relationship to their major. And you might choose a career in the future that is unrelated to any currently available major.

Critical Thinking Skills in Action: Thinking About Your Major, Part 3

Once you have discovered all of your options, you can move on to the next step in the process— making a trial choice.

Make a Trial Choice

Pretend that you have to choose a major today. Based on the options for a major that you’ve already discovered, write down the first three ideas that come to mind. Review the list for a few minutes, and then choose one.

Evaluate Your Trial Choice

When you’ve made a trial choice of major, take on the role of a scientist. Treat your choice as a hypothesis, and then design a series of experiments to evaluate and test it. For example:

  • Schedule office meetings with instructors who teach courses in the major. Ask about required course work and career options in the field.
  • Discuss your trial choice with an academic advisor or career counselor.
  • Enroll in a course related to your possible major. Remember that introductory courses might not give you a realistic picture of the workload involved in advanced courses. Also, you might not be able to register for certain courses until you’ve actually declared a related major.
  • Find a volunteer experience, internship, part-time job, or service-learning experience related to the major.
  • Interview students who have declared the same major. Ask them in detail about their experiences and suggestions for success.
  • Interview people who work in a field related to the major and “shadow” them—that is, spend time with those people during their workday.
  • Think about whether you can complete your major given the amount of time and money that you plan to invest in higher education.
  • Consider whether declaring this major would require a transfer to another program or even another school.

If your “experiments” confirm your choice of major, celebrate that fact. If they result in choosing a new major, celebrate that outcome as well.

Also remember that higher education represents a safe place to test your choice of major—and to change your mind. As you sort through your options, help is always available from administrators, instructors, advisors, and peers.

Choose Again

Keep your choice of a major in perspective. There is probably no single “correct” choice. Your unique collection of skills is likely to provide the basis for majoring in several fields.

Odds are that you’ll change your major at least once—and that you’ll change careers several times during your life. One benefit of higher education is mobility. You gain the general skills and knowledge that can help you move into a new major or career field at any time.

Viewing a major as a one-time choice that determines your entire future can raise your stress levels. Instead, look at choosing a major as the start of a continuing path that involves discovery, choice, and passionate action.

As you review this example of how you can use critical thinking to make a decision about choosing your major, think about how you will use your critical thinking to make decisions and solve problems in the future.

what is the connection among critical thinking decision making and problem solving

Work Life is Atlassian’s flagship publication dedicated to unleashing the potential of every team through real-life advice, inspiring stories, and thoughtful perspectives from leaders around the world.

Kelli María Korducki

Contributing Writer

Dominic Price

Work Futurist

Dr. Mahreen Khan

Senior Quantitative Researcher, People Insights

Kat Boogaard

Principal Writer

what is the connection among critical thinking decision making and problem solving

How to build critical thinking skills for better decision-making

It’s simple in theory, but tougher in practice – here are five tips to get you started.

Get stories like this in your inbox

Have you heard the riddle about two coins that equal thirty cents, but one of them is not a nickel? What about the one where a surgeon says they can’t operate on their own son?

Those brain teasers tap into your critical thinking skills. But your ability to think critically isn’t just helpful for solving those random puzzles – it plays a big role in your career. 

An impressive 81% of employers say critical thinking carries a lot of weight when they’re evaluating job candidates. It ranks as the top competency companies consider when hiring recent graduates (even ahead of communication ). Plus, once you’re hired, several studies show that critical thinking skills are highly correlated with better job performance.

So what exactly are critical thinking skills? And even more importantly, how do you build and improve them? 

What is critical thinking?

Critical thinking is the ability to evaluate facts and information, remain objective, and make a sound decision about how to move forward.

Does that sound like how you approach every decision or problem? Not so fast. Critical thinking seems simple in theory but is much tougher in practice, which helps explain why 65% of employers say their organization has a need for more critical thinking. 

In reality, critical thinking doesn’t come naturally to a lot of us. In order to do it well, you need to:

  • Remain open-minded and inquisitive, rather than relying on assumptions or jumping to conclusions
  • Ask questions and dig deep, rather than accepting information at face value
  • Keep your own biases and perceptions in check to stay as objective as possible
  • Rely on your emotional intelligence to fill in the blanks and gain a more well-rounded understanding of a situation

So, critical thinking isn’t just being intelligent or analytical. In many ways, it requires you to step outside of yourself, let go of your own preconceived notions, and approach a problem or situation with curiosity and fairness.

It’s a challenge, but it’s well worth it. Critical thinking skills will help you connect ideas, make reasonable decisions, and solve complex problems.

7 critical thinking skills to help you dig deeper

Critical thinking is often labeled as a skill itself (you’ll see it bulleted as a desired trait in a variety of job descriptions). But it’s better to think of critical thinking less as a distinct skill and more as a collection or category of skills. 

To think critically, you’ll need to tap into a bunch of your other soft skills. Here are seven of the most important. 

Open-mindedness

It’s important to kick off the critical thinking process with the idea that anything is possible. The more you’re able to set aside your own suspicions, beliefs, and agenda, the better prepared you are to approach the situation with the level of inquisitiveness you need. 

That means not closing yourself off to any possibilities and allowing yourself the space to pull on every thread – yes, even the ones that seem totally implausible.

As Christopher Dwyer, Ph.D. writes in a piece for Psychology Today , “Even if an idea appears foolish, sometimes its consideration can lead to an intelligent, critically considered conclusion.” He goes on to compare the critical thinking process to brainstorming . Sometimes the “bad” ideas are what lay the foundation for the good ones. 

Open-mindedness is challenging because it requires more effort and mental bandwidth than sticking with your own perceptions. Approaching problems or situations with true impartiality often means:

  • Practicing self-regulation : Giving yourself a pause between when you feel something and when you actually react or take action.
  • Challenging your own biases: Acknowledging your biases and seeking feedback are two powerful ways to get a broader understanding. 

Critical thinking example

In a team meeting, your boss mentioned that your company newsletter signups have been decreasing and she wants to figure out why.

At first, you feel offended and defensive – it feels like she’s blaming you for the dip in subscribers. You recognize and rationalize that emotion before thinking about potential causes. You have a hunch about what’s happening, but you will explore all possibilities and contributions from your team members.

Observation

Observation is, of course, your ability to notice and process the details all around you (even the subtle or seemingly inconsequential ones). Critical thinking demands that you’re flexible and willing to go beyond surface-level information, and solid observation skills help you do that.

Your observations help you pick up on clues from a variety of sources and experiences, all of which help you draw a final conclusion. After all, sometimes it’s the most minuscule realization that leads you to the strongest conclusion.

Over the next week or so, you keep a close eye on your company’s website and newsletter analytics to see if numbers are in fact declining or if your boss’s concerns were just a fluke. 

Critical thinking hinges on objectivity. And, to be objective, you need to base your judgments on the facts – which you collect through research. You’ll lean on your research skills to gather as much information as possible that’s relevant to your problem or situation. 

Keep in mind that this isn’t just about the quantity of information – quality matters too. You want to find data and details from a variety of trusted sources to drill past the surface and build a deeper understanding of what’s happening. 

You dig into your email and website analytics to identify trends in bounce rates, time on page, conversions, and more. You also review recent newsletters and email promotions to understand what customers have received, look through current customer feedback, and connect with your customer support team to learn what they’re hearing in their conversations with customers.

The critical thinking process is sort of like a treasure hunt – you’ll find some nuggets that are fundamental for your final conclusion and some that might be interesting but aren’t pertinent to the problem at hand.

That’s why you need analytical skills. They’re what help you separate the wheat from the chaff, prioritize information, identify trends or themes, and draw conclusions based on the most relevant and influential facts. 

It’s easy to confuse analytical thinking with critical thinking itself, and it’s true there is a lot of overlap between the two. But analytical thinking is just a piece of critical thinking. It focuses strictly on the facts and data, while critical thinking incorporates other factors like emotions, opinions, and experiences. 

As you analyze your research, you notice that one specific webpage has contributed to a significant decline in newsletter signups. While all of the other sources have stayed fairly steady with regard to conversions, that one has sharply decreased.

You decide to move on from your other hypotheses about newsletter quality and dig deeper into the analytics. 

One of the traps of critical thinking is that it’s easy to feel like you’re never done. There’s always more information you could collect and more rabbit holes you could fall down.

But at some point, you need to accept that you’ve done your due diligence and make a decision about how to move forward. That’s where inference comes in. It’s your ability to look at the evidence and facts available to you and draw an informed conclusion based on those. 

When you’re so focused on staying objective and pursuing all possibilities, inference can feel like the antithesis of critical thinking. But ultimately, it’s your inference skills that allow you to move out of the thinking process and onto the action steps. 

You dig deeper into the analytics for the page that hasn’t been converting and notice that the sharp drop-off happened around the same time you switched email providers.

After looking more into the backend, you realize that the signup form on that page isn’t correctly connected to your newsletter platform. It seems like anybody who has signed up on that page hasn’t been fed to your email list. 

Communication

3 ways to improve your communication skills at work

3 ways to improve your communication skills at work

If and when you identify a solution or answer, you can’t keep it close to the vest. You’ll need to use your communication skills to share your findings with the relevant stakeholders – like your boss, team members, or anybody who needs to be involved in the next steps.

Your analysis skills will come in handy here too, as they’ll help you determine what information other people need to know so you can avoid bogging them down with unnecessary details. 

In your next team meeting, you pull up the analytics and show your team the sharp drop-off as well as the missing connection between that page and your email platform. You ask the web team to reinstall and double-check that connection and you also ask a member of the marketing team to draft an apology email to the subscribers who were missed. 

Problem-solving

Critical thinking and problem-solving are two more terms that are frequently confused. After all, when you think critically, you’re often doing so with the objective of solving a problem.

The best way to understand how problem-solving and critical thinking differ is to think of problem-solving as much more narrow. You’re focused on finding a solution.

In contrast, you can use critical thinking for a variety of use cases beyond solving a problem – like answering questions or identifying opportunities for improvement. Even so, within the critical thinking process, you’ll flex your problem-solving skills when it comes time to take action. 

Once the fix is implemented, you monitor the analytics to see if subscribers continue to increase. If not (or if they increase at a slower rate than you anticipated), you’ll roll out some other tests like changing the CTA language or the placement of the subscribe form on the page.

5 ways to improve your critical thinking skills

Beyond the buzzwords: Why interpersonal skills matter at work

Beyond the buzzwords: Why interpersonal skills matter at work

Think critically about critical thinking and you’ll quickly realize that it’s not as instinctive as you’d like it to be. Fortunately, your critical thinking skills are learned competencies and not inherent gifts – and that means you can improve them. Here’s how:

  • Practice active listening: Active listening helps you process and understand what other people share. That’s crucial as you aim to be open-minded and inquisitive.
  • Ask open-ended questions: If your critical thinking process involves collecting feedback and opinions from others, ask open-ended questions (meaning, questions that can’t be answered with “yes” or “no”). Doing so will give you more valuable information and also prevent your own biases from influencing people’s input.
  • Scrutinize your sources: Figuring out what to trust and prioritize is crucial for critical thinking. Boosting your media literacy and asking more questions will help you be more discerning about what to factor in. It’s hard to strike a balance between skepticism and open-mindedness, but approaching information with questions (rather than unquestioning trust) will help you draw better conclusions. 
  • Play a game: Remember those riddles we mentioned at the beginning? As trivial as they might seem, games and exercises like those can help you boost your critical thinking skills. There are plenty of critical thinking exercises you can do individually or as a team . 
  • Give yourself time: Research shows that rushed decisions are often regrettable ones. That’s likely because critical thinking takes time – you can’t do it under the wire. So, for big decisions or hairy problems, give yourself enough time and breathing room to work through the process. It’s hard enough to think critically without a countdown ticking in your brain. 

Critical thinking really is critical

The ability to think critically is important, but it doesn’t come naturally to most of us. It’s just easier to stick with biases, assumptions, and surface-level information. 

But that route often leads you to rash judgments, shaky conclusions, and disappointing decisions. So here’s a conclusion we can draw without any more noodling: Even if it is more demanding on your mental resources, critical thinking is well worth the effort.

Advice, stories, and expertise about work life today.

SEP home page

  • Table of Contents
  • Random Entry
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Advanced Tools
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Critical Thinking

Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking carefully, and the thinking components on which they focus. Its adoption as an educational goal has been recommended on the basis of respect for students’ autonomy and preparing students for success in life and for democratic citizenship. “Critical thinkers” have the dispositions and abilities that lead them to think critically when appropriate. The abilities can be identified directly; the dispositions indirectly, by considering what factors contribute to or impede exercise of the abilities. Standardized tests have been developed to assess the degree to which a person possesses such dispositions and abilities. Educational intervention has been shown experimentally to improve them, particularly when it includes dialogue, anchored instruction, and mentoring. Controversies have arisen over the generalizability of critical thinking across domains, over alleged bias in critical thinking theories and instruction, and over the relationship of critical thinking to other types of thinking.

2.1 Dewey’s Three Main Examples

2.2 dewey’s other examples, 2.3 further examples, 2.4 non-examples, 3. the definition of critical thinking, 4. its value, 5. the process of thinking critically, 6. components of the process, 7. contributory dispositions and abilities, 8.1 initiating dispositions, 8.2 internal dispositions, 9. critical thinking abilities, 10. required knowledge, 11. educational methods, 12.1 the generalizability of critical thinking, 12.2 bias in critical thinking theory and pedagogy, 12.3 relationship of critical thinking to other types of thinking, other internet resources, related entries.

Use of the term ‘critical thinking’ to describe an educational goal goes back to the American philosopher John Dewey (1910), who more commonly called it ‘reflective thinking’. He defined it as

active, persistent and careful consideration of any belief or supposed form of knowledge in the light of the grounds that support it, and the further conclusions to which it tends. (Dewey 1910: 6; 1933: 9)

and identified a habit of such consideration with a scientific attitude of mind. His lengthy quotations of Francis Bacon, John Locke, and John Stuart Mill indicate that he was not the first person to propose development of a scientific attitude of mind as an educational goal.

In the 1930s, many of the schools that participated in the Eight-Year Study of the Progressive Education Association (Aikin 1942) adopted critical thinking as an educational goal, for whose achievement the study’s Evaluation Staff developed tests (Smith, Tyler, & Evaluation Staff 1942). Glaser (1941) showed experimentally that it was possible to improve the critical thinking of high school students. Bloom’s influential taxonomy of cognitive educational objectives (Bloom et al. 1956) incorporated critical thinking abilities. Ennis (1962) proposed 12 aspects of critical thinking as a basis for research on the teaching and evaluation of critical thinking ability.

Since 1980, an annual international conference in California on critical thinking and educational reform has attracted tens of thousands of educators from all levels of education and from many parts of the world. Also since 1980, the state university system in California has required all undergraduate students to take a critical thinking course. Since 1983, the Association for Informal Logic and Critical Thinking has sponsored sessions in conjunction with the divisional meetings of the American Philosophical Association (APA). In 1987, the APA’s Committee on Pre-College Philosophy commissioned a consensus statement on critical thinking for purposes of educational assessment and instruction (Facione 1990a). Researchers have developed standardized tests of critical thinking abilities and dispositions; for details, see the Supplement on Assessment . Educational jurisdictions around the world now include critical thinking in guidelines for curriculum and assessment.

For details on this history, see the Supplement on History .

2. Examples and Non-Examples

Before considering the definition of critical thinking, it will be helpful to have in mind some examples of critical thinking, as well as some examples of kinds of thinking that would apparently not count as critical thinking.

Dewey (1910: 68–71; 1933: 91–94) takes as paradigms of reflective thinking three class papers of students in which they describe their thinking. The examples range from the everyday to the scientific.

Transit : “The other day, when I was down town on 16th Street, a clock caught my eye. I saw that the hands pointed to 12:20. This suggested that I had an engagement at 124th Street, at one o’clock. I reasoned that as it had taken me an hour to come down on a surface car, I should probably be twenty minutes late if I returned the same way. I might save twenty minutes by a subway express. But was there a station near? If not, I might lose more than twenty minutes in looking for one. Then I thought of the elevated, and I saw there was such a line within two blocks. But where was the station? If it were several blocks above or below the street I was on, I should lose time instead of gaining it. My mind went back to the subway express as quicker than the elevated; furthermore, I remembered that it went nearer than the elevated to the part of 124th Street I wished to reach, so that time would be saved at the end of the journey. I concluded in favor of the subway, and reached my destination by one o’clock.” (Dewey 1910: 68–69; 1933: 91–92)

Ferryboat : “Projecting nearly horizontally from the upper deck of the ferryboat on which I daily cross the river is a long white pole, having a gilded ball at its tip. It suggested a flagpole when I first saw it; its color, shape, and gilded ball agreed with this idea, and these reasons seemed to justify me in this belief. But soon difficulties presented themselves. The pole was nearly horizontal, an unusual position for a flagpole; in the next place, there was no pulley, ring, or cord by which to attach a flag; finally, there were elsewhere on the boat two vertical staffs from which flags were occasionally flown. It seemed probable that the pole was not there for flag-flying.

“I then tried to imagine all possible purposes of the pole, and to consider for which of these it was best suited: (a) Possibly it was an ornament. But as all the ferryboats and even the tugboats carried poles, this hypothesis was rejected. (b) Possibly it was the terminal of a wireless telegraph. But the same considerations made this improbable. Besides, the more natural place for such a terminal would be the highest part of the boat, on top of the pilot house. (c) Its purpose might be to point out the direction in which the boat is moving.

“In support of this conclusion, I discovered that the pole was lower than the pilot house, so that the steersman could easily see it. Moreover, the tip was enough higher than the base, so that, from the pilot’s position, it must appear to project far out in front of the boat. Moreover, the pilot being near the front of the boat, he would need some such guide as to its direction. Tugboats would also need poles for such a purpose. This hypothesis was so much more probable than the others that I accepted it. I formed the conclusion that the pole was set up for the purpose of showing the pilot the direction in which the boat pointed, to enable him to steer correctly.” (Dewey 1910: 69–70; 1933: 92–93)

Bubbles : “In washing tumblers in hot soapsuds and placing them mouth downward on a plate, bubbles appeared on the outside of the mouth of the tumblers and then went inside. Why? The presence of bubbles suggests air, which I note must come from inside the tumbler. I see that the soapy water on the plate prevents escape of the air save as it may be caught in bubbles. But why should air leave the tumbler? There was no substance entering to force it out. It must have expanded. It expands by increase of heat, or by decrease of pressure, or both. Could the air have become heated after the tumbler was taken from the hot suds? Clearly not the air that was already entangled in the water. If heated air was the cause, cold air must have entered in transferring the tumblers from the suds to the plate. I test to see if this supposition is true by taking several more tumblers out. Some I shake so as to make sure of entrapping cold air in them. Some I take out holding mouth downward in order to prevent cold air from entering. Bubbles appear on the outside of every one of the former and on none of the latter. I must be right in my inference. Air from the outside must have been expanded by the heat of the tumbler, which explains the appearance of the bubbles on the outside. But why do they then go inside? Cold contracts. The tumbler cooled and also the air inside it. Tension was removed, and hence bubbles appeared inside. To be sure of this, I test by placing a cup of ice on the tumbler while the bubbles are still forming outside. They soon reverse” (Dewey 1910: 70–71; 1933: 93–94).

Dewey (1910, 1933) sprinkles his book with other examples of critical thinking. We will refer to the following.

Weather : A man on a walk notices that it has suddenly become cool, thinks that it is probably going to rain, looks up and sees a dark cloud obscuring the sun, and quickens his steps (1910: 6–10; 1933: 9–13).

Disorder : A man finds his rooms on his return to them in disorder with his belongings thrown about, thinks at first of burglary as an explanation, then thinks of mischievous children as being an alternative explanation, then looks to see whether valuables are missing, and discovers that they are (1910: 82–83; 1933: 166–168).

Typhoid : A physician diagnosing a patient whose conspicuous symptoms suggest typhoid avoids drawing a conclusion until more data are gathered by questioning the patient and by making tests (1910: 85–86; 1933: 170).

Blur : A moving blur catches our eye in the distance, we ask ourselves whether it is a cloud of whirling dust or a tree moving its branches or a man signaling to us, we think of other traits that should be found on each of those possibilities, and we look and see if those traits are found (1910: 102, 108; 1933: 121, 133).

Suction pump : In thinking about the suction pump, the scientist first notes that it will draw water only to a maximum height of 33 feet at sea level and to a lesser maximum height at higher elevations, selects for attention the differing atmospheric pressure at these elevations, sets up experiments in which the air is removed from a vessel containing water (when suction no longer works) and in which the weight of air at various levels is calculated, compares the results of reasoning about the height to which a given weight of air will allow a suction pump to raise water with the observed maximum height at different elevations, and finally assimilates the suction pump to such apparently different phenomena as the siphon and the rising of a balloon (1910: 150–153; 1933: 195–198).

Diamond : A passenger in a car driving in a diamond lane reserved for vehicles with at least one passenger notices that the diamond marks on the pavement are far apart in some places and close together in others. Why? The driver suggests that the reason may be that the diamond marks are not needed where there is a solid double line separating the diamond lane from the adjoining lane, but are needed when there is a dotted single line permitting crossing into the diamond lane. Further observation confirms that the diamonds are close together when a dotted line separates the diamond lane from its neighbour, but otherwise far apart.

Rash : A woman suddenly develops a very itchy red rash on her throat and upper chest. She recently noticed a mark on the back of her right hand, but was not sure whether the mark was a rash or a scrape. She lies down in bed and thinks about what might be causing the rash and what to do about it. About two weeks before, she began taking blood pressure medication that contained a sulfa drug, and the pharmacist had warned her, in view of a previous allergic reaction to a medication containing a sulfa drug, to be on the alert for an allergic reaction; however, she had been taking the medication for two weeks with no such effect. The day before, she began using a new cream on her neck and upper chest; against the new cream as the cause was mark on the back of her hand, which had not been exposed to the cream. She began taking probiotics about a month before. She also recently started new eye drops, but she supposed that manufacturers of eye drops would be careful not to include allergy-causing components in the medication. The rash might be a heat rash, since she recently was sweating profusely from her upper body. Since she is about to go away on a short vacation, where she would not have access to her usual physician, she decides to keep taking the probiotics and using the new eye drops but to discontinue the blood pressure medication and to switch back to the old cream for her neck and upper chest. She forms a plan to consult her regular physician on her return about the blood pressure medication.

Candidate : Although Dewey included no examples of thinking directed at appraising the arguments of others, such thinking has come to be considered a kind of critical thinking. We find an example of such thinking in the performance task on the Collegiate Learning Assessment (CLA+), which its sponsoring organization describes as

a performance-based assessment that provides a measure of an institution’s contribution to the development of critical-thinking and written communication skills of its students. (Council for Aid to Education 2017)

A sample task posted on its website requires the test-taker to write a report for public distribution evaluating a fictional candidate’s policy proposals and their supporting arguments, using supplied background documents, with a recommendation on whether to endorse the candidate.

Immediate acceptance of an idea that suggests itself as a solution to a problem (e.g., a possible explanation of an event or phenomenon, an action that seems likely to produce a desired result) is “uncritical thinking, the minimum of reflection” (Dewey 1910: 13). On-going suspension of judgment in the light of doubt about a possible solution is not critical thinking (Dewey 1910: 108). Critique driven by a dogmatically held political or religious ideology is not critical thinking; thus Paulo Freire (1968 [1970]) is using the term (e.g., at 1970: 71, 81, 100, 146) in a more politically freighted sense that includes not only reflection but also revolutionary action against oppression. Derivation of a conclusion from given data using an algorithm is not critical thinking.

What is critical thinking? There are many definitions. Ennis (2016) lists 14 philosophically oriented scholarly definitions and three dictionary definitions. Following Rawls (1971), who distinguished his conception of justice from a utilitarian conception but regarded them as rival conceptions of the same concept, Ennis maintains that the 17 definitions are different conceptions of the same concept. Rawls articulated the shared concept of justice as

a characteristic set of principles for assigning basic rights and duties and for determining… the proper distribution of the benefits and burdens of social cooperation. (Rawls 1971: 5)

Bailin et al. (1999b) claim that, if one considers what sorts of thinking an educator would take not to be critical thinking and what sorts to be critical thinking, one can conclude that educators typically understand critical thinking to have at least three features.

  • It is done for the purpose of making up one’s mind about what to believe or do.
  • The person engaging in the thinking is trying to fulfill standards of adequacy and accuracy appropriate to the thinking.
  • The thinking fulfills the relevant standards to some threshold level.

One could sum up the core concept that involves these three features by saying that critical thinking is careful goal-directed thinking. This core concept seems to apply to all the examples of critical thinking described in the previous section. As for the non-examples, their exclusion depends on construing careful thinking as excluding jumping immediately to conclusions, suspending judgment no matter how strong the evidence, reasoning from an unquestioned ideological or religious perspective, and routinely using an algorithm to answer a question.

If the core of critical thinking is careful goal-directed thinking, conceptions of it can vary according to its presumed scope, its presumed goal, one’s criteria and threshold for being careful, and the thinking component on which one focuses. As to its scope, some conceptions (e.g., Dewey 1910, 1933) restrict it to constructive thinking on the basis of one’s own observations and experiments, others (e.g., Ennis 1962; Fisher & Scriven 1997; Johnson 1992) to appraisal of the products of such thinking. Ennis (1991) and Bailin et al. (1999b) take it to cover both construction and appraisal. As to its goal, some conceptions restrict it to forming a judgment (Dewey 1910, 1933; Lipman 1987; Facione 1990a). Others allow for actions as well as beliefs as the end point of a process of critical thinking (Ennis 1991; Bailin et al. 1999b). As to the criteria and threshold for being careful, definitions vary in the term used to indicate that critical thinking satisfies certain norms: “intellectually disciplined” (Scriven & Paul 1987), “reasonable” (Ennis 1991), “skillful” (Lipman 1987), “skilled” (Fisher & Scriven 1997), “careful” (Bailin & Battersby 2009). Some definitions specify these norms, referring variously to “consideration of any belief or supposed form of knowledge in the light of the grounds that support it and the further conclusions to which it tends” (Dewey 1910, 1933); “the methods of logical inquiry and reasoning” (Glaser 1941); “conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication” (Scriven & Paul 1987); the requirement that “it is sensitive to context, relies on criteria, and is self-correcting” (Lipman 1987); “evidential, conceptual, methodological, criteriological, or contextual considerations” (Facione 1990a); and “plus-minus considerations of the product in terms of appropriate standards (or criteria)” (Johnson 1992). Stanovich and Stanovich (2010) propose to ground the concept of critical thinking in the concept of rationality, which they understand as combining epistemic rationality (fitting one’s beliefs to the world) and instrumental rationality (optimizing goal fulfillment); a critical thinker, in their view, is someone with “a propensity to override suboptimal responses from the autonomous mind” (2010: 227). These variant specifications of norms for critical thinking are not necessarily incompatible with one another, and in any case presuppose the core notion of thinking carefully. As to the thinking component singled out, some definitions focus on suspension of judgment during the thinking (Dewey 1910; McPeck 1981), others on inquiry while judgment is suspended (Bailin & Battersby 2009, 2021), others on the resulting judgment (Facione 1990a), and still others on responsiveness to reasons (Siegel 1988). Kuhn (2019) takes critical thinking to be more a dialogic practice of advancing and responding to arguments than an individual ability.

In educational contexts, a definition of critical thinking is a “programmatic definition” (Scheffler 1960: 19). It expresses a practical program for achieving an educational goal. For this purpose, a one-sentence formulaic definition is much less useful than articulation of a critical thinking process, with criteria and standards for the kinds of thinking that the process may involve. The real educational goal is recognition, adoption and implementation by students of those criteria and standards. That adoption and implementation in turn consists in acquiring the knowledge, abilities and dispositions of a critical thinker.

Conceptions of critical thinking generally do not include moral integrity as part of the concept. Dewey, for example, took critical thinking to be the ultimate intellectual goal of education, but distinguished it from the development of social cooperation among school children, which he took to be the central moral goal. Ennis (1996, 2011) added to his previous list of critical thinking dispositions a group of dispositions to care about the dignity and worth of every person, which he described as a “correlative” (1996) disposition without which critical thinking would be less valuable and perhaps harmful. An educational program that aimed at developing critical thinking but not the correlative disposition to care about the dignity and worth of every person, he asserted, “would be deficient and perhaps dangerous” (Ennis 1996: 172).

Dewey thought that education for reflective thinking would be of value to both the individual and society; recognition in educational practice of the kinship to the scientific attitude of children’s native curiosity, fertile imagination and love of experimental inquiry “would make for individual happiness and the reduction of social waste” (Dewey 1910: iii). Schools participating in the Eight-Year Study took development of the habit of reflective thinking and skill in solving problems as a means to leading young people to understand, appreciate and live the democratic way of life characteristic of the United States (Aikin 1942: 17–18, 81). Harvey Siegel (1988: 55–61) has offered four considerations in support of adopting critical thinking as an educational ideal. (1) Respect for persons requires that schools and teachers honour students’ demands for reasons and explanations, deal with students honestly, and recognize the need to confront students’ independent judgment; these requirements concern the manner in which teachers treat students. (2) Education has the task of preparing children to be successful adults, a task that requires development of their self-sufficiency. (3) Education should initiate children into the rational traditions in such fields as history, science and mathematics. (4) Education should prepare children to become democratic citizens, which requires reasoned procedures and critical talents and attitudes. To supplement these considerations, Siegel (1988: 62–90) responds to two objections: the ideology objection that adoption of any educational ideal requires a prior ideological commitment and the indoctrination objection that cultivation of critical thinking cannot escape being a form of indoctrination.

Despite the diversity of our 11 examples, one can recognize a common pattern. Dewey analyzed it as consisting of five phases:

  • suggestions , in which the mind leaps forward to a possible solution;
  • an intellectualization of the difficulty or perplexity into a problem to be solved, a question for which the answer must be sought;
  • the use of one suggestion after another as a leading idea, or hypothesis , to initiate and guide observation and other operations in collection of factual material;
  • the mental elaboration of the idea or supposition as an idea or supposition ( reasoning , in the sense on which reasoning is a part, not the whole, of inference); and
  • testing the hypothesis by overt or imaginative action. (Dewey 1933: 106–107; italics in original)

The process of reflective thinking consisting of these phases would be preceded by a perplexed, troubled or confused situation and followed by a cleared-up, unified, resolved situation (Dewey 1933: 106). The term ‘phases’ replaced the term ‘steps’ (Dewey 1910: 72), thus removing the earlier suggestion of an invariant sequence. Variants of the above analysis appeared in (Dewey 1916: 177) and (Dewey 1938: 101–119).

The variant formulations indicate the difficulty of giving a single logical analysis of such a varied process. The process of critical thinking may have a spiral pattern, with the problem being redefined in the light of obstacles to solving it as originally formulated. For example, the person in Transit might have concluded that getting to the appointment at the scheduled time was impossible and have reformulated the problem as that of rescheduling the appointment for a mutually convenient time. Further, defining a problem does not always follow after or lead immediately to an idea of a suggested solution. Nor should it do so, as Dewey himself recognized in describing the physician in Typhoid as avoiding any strong preference for this or that conclusion before getting further information (Dewey 1910: 85; 1933: 170). People with a hypothesis in mind, even one to which they have a very weak commitment, have a so-called “confirmation bias” (Nickerson 1998): they are likely to pay attention to evidence that confirms the hypothesis and to ignore evidence that counts against it or for some competing hypothesis. Detectives, intelligence agencies, and investigators of airplane accidents are well advised to gather relevant evidence systematically and to postpone even tentative adoption of an explanatory hypothesis until the collected evidence rules out with the appropriate degree of certainty all but one explanation. Dewey’s analysis of the critical thinking process can be faulted as well for requiring acceptance or rejection of a possible solution to a defined problem, with no allowance for deciding in the light of the available evidence to suspend judgment. Further, given the great variety of kinds of problems for which reflection is appropriate, there is likely to be variation in its component events. Perhaps the best way to conceptualize the critical thinking process is as a checklist whose component events can occur in a variety of orders, selectively, and more than once. These component events might include (1) noticing a difficulty, (2) defining the problem, (3) dividing the problem into manageable sub-problems, (4) formulating a variety of possible solutions to the problem or sub-problem, (5) determining what evidence is relevant to deciding among possible solutions to the problem or sub-problem, (6) devising a plan of systematic observation or experiment that will uncover the relevant evidence, (7) carrying out the plan of systematic observation or experimentation, (8) noting the results of the systematic observation or experiment, (9) gathering relevant testimony and information from others, (10) judging the credibility of testimony and information gathered from others, (11) drawing conclusions from gathered evidence and accepted testimony, and (12) accepting a solution that the evidence adequately supports (cf. Hitchcock 2017: 485).

Checklist conceptions of the process of critical thinking are open to the objection that they are too mechanical and procedural to fit the multi-dimensional and emotionally charged issues for which critical thinking is urgently needed (Paul 1984). For such issues, a more dialectical process is advocated, in which competing relevant world views are identified, their implications explored, and some sort of creative synthesis attempted.

If one considers the critical thinking process illustrated by the 11 examples, one can identify distinct kinds of mental acts and mental states that form part of it. To distinguish, label and briefly characterize these components is a useful preliminary to identifying abilities, skills, dispositions, attitudes, habits and the like that contribute causally to thinking critically. Identifying such abilities and habits is in turn a useful preliminary to setting educational goals. Setting the goals is in its turn a useful preliminary to designing strategies for helping learners to achieve the goals and to designing ways of measuring the extent to which learners have done so. Such measures provide both feedback to learners on their achievement and a basis for experimental research on the effectiveness of various strategies for educating people to think critically. Let us begin, then, by distinguishing the kinds of mental acts and mental events that can occur in a critical thinking process.

  • Observing : One notices something in one’s immediate environment (sudden cooling of temperature in Weather , bubbles forming outside a glass and then going inside in Bubbles , a moving blur in the distance in Blur , a rash in Rash ). Or one notes the results of an experiment or systematic observation (valuables missing in Disorder , no suction without air pressure in Suction pump )
  • Feeling : One feels puzzled or uncertain about something (how to get to an appointment on time in Transit , why the diamonds vary in spacing in Diamond ). One wants to resolve this perplexity. One feels satisfaction once one has worked out an answer (to take the subway express in Transit , diamonds closer when needed as a warning in Diamond ).
  • Wondering : One formulates a question to be addressed (why bubbles form outside a tumbler taken from hot water in Bubbles , how suction pumps work in Suction pump , what caused the rash in Rash ).
  • Imagining : One thinks of possible answers (bus or subway or elevated in Transit , flagpole or ornament or wireless communication aid or direction indicator in Ferryboat , allergic reaction or heat rash in Rash ).
  • Inferring : One works out what would be the case if a possible answer were assumed (valuables missing if there has been a burglary in Disorder , earlier start to the rash if it is an allergic reaction to a sulfa drug in Rash ). Or one draws a conclusion once sufficient relevant evidence is gathered (take the subway in Transit , burglary in Disorder , discontinue blood pressure medication and new cream in Rash ).
  • Knowledge : One uses stored knowledge of the subject-matter to generate possible answers or to infer what would be expected on the assumption of a particular answer (knowledge of a city’s public transit system in Transit , of the requirements for a flagpole in Ferryboat , of Boyle’s law in Bubbles , of allergic reactions in Rash ).
  • Experimenting : One designs and carries out an experiment or a systematic observation to find out whether the results deduced from a possible answer will occur (looking at the location of the flagpole in relation to the pilot’s position in Ferryboat , putting an ice cube on top of a tumbler taken from hot water in Bubbles , measuring the height to which a suction pump will draw water at different elevations in Suction pump , noticing the spacing of diamonds when movement to or from a diamond lane is allowed in Diamond ).
  • Consulting : One finds a source of information, gets the information from the source, and makes a judgment on whether to accept it. None of our 11 examples include searching for sources of information. In this respect they are unrepresentative, since most people nowadays have almost instant access to information relevant to answering any question, including many of those illustrated by the examples. However, Candidate includes the activities of extracting information from sources and evaluating its credibility.
  • Identifying and analyzing arguments : One notices an argument and works out its structure and content as a preliminary to evaluating its strength. This activity is central to Candidate . It is an important part of a critical thinking process in which one surveys arguments for various positions on an issue.
  • Judging : One makes a judgment on the basis of accumulated evidence and reasoning, such as the judgment in Ferryboat that the purpose of the pole is to provide direction to the pilot.
  • Deciding : One makes a decision on what to do or on what policy to adopt, as in the decision in Transit to take the subway.

By definition, a person who does something voluntarily is both willing and able to do that thing at that time. Both the willingness and the ability contribute causally to the person’s action, in the sense that the voluntary action would not occur if either (or both) of these were lacking. For example, suppose that one is standing with one’s arms at one’s sides and one voluntarily lifts one’s right arm to an extended horizontal position. One would not do so if one were unable to lift one’s arm, if for example one’s right side was paralyzed as the result of a stroke. Nor would one do so if one were unwilling to lift one’s arm, if for example one were participating in a street demonstration at which a white supremacist was urging the crowd to lift their right arm in a Nazi salute and one were unwilling to express support in this way for the racist Nazi ideology. The same analysis applies to a voluntary mental process of thinking critically. It requires both willingness and ability to think critically, including willingness and ability to perform each of the mental acts that compose the process and to coordinate those acts in a sequence that is directed at resolving the initiating perplexity.

Consider willingness first. We can identify causal contributors to willingness to think critically by considering factors that would cause a person who was able to think critically about an issue nevertheless not to do so (Hamby 2014). For each factor, the opposite condition thus contributes causally to willingness to think critically on a particular occasion. For example, people who habitually jump to conclusions without considering alternatives will not think critically about issues that arise, even if they have the required abilities. The contrary condition of willingness to suspend judgment is thus a causal contributor to thinking critically.

Now consider ability. In contrast to the ability to move one’s arm, which can be completely absent because a stroke has left the arm paralyzed, the ability to think critically is a developed ability, whose absence is not a complete absence of ability to think but absence of ability to think well. We can identify the ability to think well directly, in terms of the norms and standards for good thinking. In general, to be able do well the thinking activities that can be components of a critical thinking process, one needs to know the concepts and principles that characterize their good performance, to recognize in particular cases that the concepts and principles apply, and to apply them. The knowledge, recognition and application may be procedural rather than declarative. It may be domain-specific rather than widely applicable, and in either case may need subject-matter knowledge, sometimes of a deep kind.

Reflections of the sort illustrated by the previous two paragraphs have led scholars to identify the knowledge, abilities and dispositions of a “critical thinker”, i.e., someone who thinks critically whenever it is appropriate to do so. We turn now to these three types of causal contributors to thinking critically. We start with dispositions, since arguably these are the most powerful contributors to being a critical thinker, can be fostered at an early stage of a child’s development, and are susceptible to general improvement (Glaser 1941: 175)

8. Critical Thinking Dispositions

Educational researchers use the term ‘dispositions’ broadly for the habits of mind and attitudes that contribute causally to being a critical thinker. Some writers (e.g., Paul & Elder 2006; Hamby 2014; Bailin & Battersby 2016a) propose to use the term ‘virtues’ for this dimension of a critical thinker. The virtues in question, although they are virtues of character, concern the person’s ways of thinking rather than the person’s ways of behaving towards others. They are not moral virtues but intellectual virtues, of the sort articulated by Zagzebski (1996) and discussed by Turri, Alfano, and Greco (2017).

On a realistic conception, thinking dispositions or intellectual virtues are real properties of thinkers. They are general tendencies, propensities, or inclinations to think in particular ways in particular circumstances, and can be genuinely explanatory (Siegel 1999). Sceptics argue that there is no evidence for a specific mental basis for the habits of mind that contribute to thinking critically, and that it is pedagogically misleading to posit such a basis (Bailin et al. 1999a). Whatever their status, critical thinking dispositions need motivation for their initial formation in a child—motivation that may be external or internal. As children develop, the force of habit will gradually become important in sustaining the disposition (Nieto & Valenzuela 2012). Mere force of habit, however, is unlikely to sustain critical thinking dispositions. Critical thinkers must value and enjoy using their knowledge and abilities to think things through for themselves. They must be committed to, and lovers of, inquiry.

A person may have a critical thinking disposition with respect to only some kinds of issues. For example, one could be open-minded about scientific issues but not about religious issues. Similarly, one could be confident in one’s ability to reason about the theological implications of the existence of evil in the world but not in one’s ability to reason about the best design for a guided ballistic missile.

Facione (1990a: 25) divides “affective dispositions” of critical thinking into approaches to life and living in general and approaches to specific issues, questions or problems. Adapting this distinction, one can usefully divide critical thinking dispositions into initiating dispositions (those that contribute causally to starting to think critically about an issue) and internal dispositions (those that contribute causally to doing a good job of thinking critically once one has started). The two categories are not mutually exclusive. For example, open-mindedness, in the sense of willingness to consider alternative points of view to one’s own, is both an initiating and an internal disposition.

Using the strategy of considering factors that would block people with the ability to think critically from doing so, we can identify as initiating dispositions for thinking critically attentiveness, a habit of inquiry, self-confidence, courage, open-mindedness, willingness to suspend judgment, trust in reason, wanting evidence for one’s beliefs, and seeking the truth. We consider briefly what each of these dispositions amounts to, in each case citing sources that acknowledge them.

  • Attentiveness : One will not think critically if one fails to recognize an issue that needs to be thought through. For example, the pedestrian in Weather would not have looked up if he had not noticed that the air was suddenly cooler. To be a critical thinker, then, one needs to be habitually attentive to one’s surroundings, noticing not only what one senses but also sources of perplexity in messages received and in one’s own beliefs and attitudes (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Habit of inquiry : Inquiry is effortful, and one needs an internal push to engage in it. For example, the student in Bubbles could easily have stopped at idle wondering about the cause of the bubbles rather than reasoning to a hypothesis, then designing and executing an experiment to test it. Thus willingness to think critically needs mental energy and initiative. What can supply that energy? Love of inquiry, or perhaps just a habit of inquiry. Hamby (2015) has argued that willingness to inquire is the central critical thinking virtue, one that encompasses all the others. It is recognized as a critical thinking disposition by Dewey (1910: 29; 1933: 35), Glaser (1941: 5), Ennis (1987: 12; 1991: 8), Facione (1990a: 25), Bailin et al. (1999b: 294), Halpern (1998: 452), and Facione, Facione, & Giancarlo (2001).
  • Self-confidence : Lack of confidence in one’s abilities can block critical thinking. For example, if the woman in Rash lacked confidence in her ability to figure things out for herself, she might just have assumed that the rash on her chest was the allergic reaction to her medication against which the pharmacist had warned her. Thus willingness to think critically requires confidence in one’s ability to inquire (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Courage : Fear of thinking for oneself can stop one from doing it. Thus willingness to think critically requires intellectual courage (Paul & Elder 2006: 16).
  • Open-mindedness : A dogmatic attitude will impede thinking critically. For example, a person who adheres rigidly to a “pro-choice” position on the issue of the legal status of induced abortion is likely to be unwilling to consider seriously the issue of when in its development an unborn child acquires a moral right to life. Thus willingness to think critically requires open-mindedness, in the sense of a willingness to examine questions to which one already accepts an answer but which further evidence or reasoning might cause one to answer differently (Dewey 1933; Facione 1990a; Ennis 1991; Bailin et al. 1999b; Halpern 1998, Facione, Facione, & Giancarlo 2001). Paul (1981) emphasizes open-mindedness about alternative world-views, and recommends a dialectical approach to integrating such views as central to what he calls “strong sense” critical thinking. In three studies, Haran, Ritov, & Mellers (2013) found that actively open-minded thinking, including “the tendency to weigh new evidence against a favored belief, to spend sufficient time on a problem before giving up, and to consider carefully the opinions of others in forming one’s own”, led study participants to acquire information and thus to make accurate estimations.
  • Willingness to suspend judgment : Premature closure on an initial solution will block critical thinking. Thus willingness to think critically requires a willingness to suspend judgment while alternatives are explored (Facione 1990a; Ennis 1991; Halpern 1998).
  • Trust in reason : Since distrust in the processes of reasoned inquiry will dissuade one from engaging in it, trust in them is an initiating critical thinking disposition (Facione 1990a, 25; Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001; Paul & Elder 2006). In reaction to an allegedly exclusive emphasis on reason in critical thinking theory and pedagogy, Thayer-Bacon (2000) argues that intuition, imagination, and emotion have important roles to play in an adequate conception of critical thinking that she calls “constructive thinking”. From her point of view, critical thinking requires trust not only in reason but also in intuition, imagination, and emotion.
  • Seeking the truth : If one does not care about the truth but is content to stick with one’s initial bias on an issue, then one will not think critically about it. Seeking the truth is thus an initiating critical thinking disposition (Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001). A disposition to seek the truth is implicit in more specific critical thinking dispositions, such as trying to be well-informed, considering seriously points of view other than one’s own, looking for alternatives, suspending judgment when the evidence is insufficient, and adopting a position when the evidence supporting it is sufficient.

Some of the initiating dispositions, such as open-mindedness and willingness to suspend judgment, are also internal critical thinking dispositions, in the sense of mental habits or attitudes that contribute causally to doing a good job of critical thinking once one starts the process. But there are many other internal critical thinking dispositions. Some of them are parasitic on one’s conception of good thinking. For example, it is constitutive of good thinking about an issue to formulate the issue clearly and to maintain focus on it. For this purpose, one needs not only the corresponding ability but also the corresponding disposition. Ennis (1991: 8) describes it as the disposition “to determine and maintain focus on the conclusion or question”, Facione (1990a: 25) as “clarity in stating the question or concern”. Other internal dispositions are motivators to continue or adjust the critical thinking process, such as willingness to persist in a complex task and willingness to abandon nonproductive strategies in an attempt to self-correct (Halpern 1998: 452). For a list of identified internal critical thinking dispositions, see the Supplement on Internal Critical Thinking Dispositions .

Some theorists postulate skills, i.e., acquired abilities, as operative in critical thinking. It is not obvious, however, that a good mental act is the exercise of a generic acquired skill. Inferring an expected time of arrival, as in Transit , has some generic components but also uses non-generic subject-matter knowledge. Bailin et al. (1999a) argue against viewing critical thinking skills as generic and discrete, on the ground that skilled performance at a critical thinking task cannot be separated from knowledge of concepts and from domain-specific principles of good thinking. Talk of skills, they concede, is unproblematic if it means merely that a person with critical thinking skills is capable of intelligent performance.

Despite such scepticism, theorists of critical thinking have listed as general contributors to critical thinking what they variously call abilities (Glaser 1941; Ennis 1962, 1991), skills (Facione 1990a; Halpern 1998) or competencies (Fisher & Scriven 1997). Amalgamating these lists would produce a confusing and chaotic cornucopia of more than 50 possible educational objectives, with only partial overlap among them. It makes sense instead to try to understand the reasons for the multiplicity and diversity, and to make a selection according to one’s own reasons for singling out abilities to be developed in a critical thinking curriculum. Two reasons for diversity among lists of critical thinking abilities are the underlying conception of critical thinking and the envisaged educational level. Appraisal-only conceptions, for example, involve a different suite of abilities than constructive-only conceptions. Some lists, such as those in (Glaser 1941), are put forward as educational objectives for secondary school students, whereas others are proposed as objectives for college students (e.g., Facione 1990a).

The abilities described in the remaining paragraphs of this section emerge from reflection on the general abilities needed to do well the thinking activities identified in section 6 as components of the critical thinking process described in section 5 . The derivation of each collection of abilities is accompanied by citation of sources that list such abilities and of standardized tests that claim to test them.

Observational abilities : Careful and accurate observation sometimes requires specialist expertise and practice, as in the case of observing birds and observing accident scenes. However, there are general abilities of noticing what one’s senses are picking up from one’s environment and of being able to articulate clearly and accurately to oneself and others what one has observed. It helps in exercising them to be able to recognize and take into account factors that make one’s observation less trustworthy, such as prior framing of the situation, inadequate time, deficient senses, poor observation conditions, and the like. It helps as well to be skilled at taking steps to make one’s observation more trustworthy, such as moving closer to get a better look, measuring something three times and taking the average, and checking what one thinks one is observing with someone else who is in a good position to observe it. It also helps to be skilled at recognizing respects in which one’s report of one’s observation involves inference rather than direct observation, so that one can then consider whether the inference is justified. These abilities come into play as well when one thinks about whether and with what degree of confidence to accept an observation report, for example in the study of history or in a criminal investigation or in assessing news reports. Observational abilities show up in some lists of critical thinking abilities (Ennis 1962: 90; Facione 1990a: 16; Ennis 1991: 9). There are items testing a person’s ability to judge the credibility of observation reports in the Cornell Critical Thinking Tests, Levels X and Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). Norris and King (1983, 1985, 1990a, 1990b) is a test of ability to appraise observation reports.

Emotional abilities : The emotions that drive a critical thinking process are perplexity or puzzlement, a wish to resolve it, and satisfaction at achieving the desired resolution. Children experience these emotions at an early age, without being trained to do so. Education that takes critical thinking as a goal needs only to channel these emotions and to make sure not to stifle them. Collaborative critical thinking benefits from ability to recognize one’s own and others’ emotional commitments and reactions.

Questioning abilities : A critical thinking process needs transformation of an inchoate sense of perplexity into a clear question. Formulating a question well requires not building in questionable assumptions, not prejudging the issue, and using language that in context is unambiguous and precise enough (Ennis 1962: 97; 1991: 9).

Imaginative abilities : Thinking directed at finding the correct causal explanation of a general phenomenon or particular event requires an ability to imagine possible explanations. Thinking about what policy or plan of action to adopt requires generation of options and consideration of possible consequences of each option. Domain knowledge is required for such creative activity, but a general ability to imagine alternatives is helpful and can be nurtured so as to become easier, quicker, more extensive, and deeper (Dewey 1910: 34–39; 1933: 40–47). Facione (1990a) and Halpern (1998) include the ability to imagine alternatives as a critical thinking ability.

Inferential abilities : The ability to draw conclusions from given information, and to recognize with what degree of certainty one’s own or others’ conclusions follow, is universally recognized as a general critical thinking ability. All 11 examples in section 2 of this article include inferences, some from hypotheses or options (as in Transit , Ferryboat and Disorder ), others from something observed (as in Weather and Rash ). None of these inferences is formally valid. Rather, they are licensed by general, sometimes qualified substantive rules of inference (Toulmin 1958) that rest on domain knowledge—that a bus trip takes about the same time in each direction, that the terminal of a wireless telegraph would be located on the highest possible place, that sudden cooling is often followed by rain, that an allergic reaction to a sulfa drug generally shows up soon after one starts taking it. It is a matter of controversy to what extent the specialized ability to deduce conclusions from premisses using formal rules of inference is needed for critical thinking. Dewey (1933) locates logical forms in setting out the products of reflection rather than in the process of reflection. Ennis (1981a), on the other hand, maintains that a liberally-educated person should have the following abilities: to translate natural-language statements into statements using the standard logical operators, to use appropriately the language of necessary and sufficient conditions, to deal with argument forms and arguments containing symbols, to determine whether in virtue of an argument’s form its conclusion follows necessarily from its premisses, to reason with logically complex propositions, and to apply the rules and procedures of deductive logic. Inferential abilities are recognized as critical thinking abilities by Glaser (1941: 6), Facione (1990a: 9), Ennis (1991: 9), Fisher & Scriven (1997: 99, 111), and Halpern (1998: 452). Items testing inferential abilities constitute two of the five subtests of the Watson Glaser Critical Thinking Appraisal (Watson & Glaser 1980a, 1980b, 1994), two of the four sections in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), three of the seven sections in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), 11 of the 34 items on Forms A and B of the California Critical Thinking Skills Test (Facione 1990b, 1992), and a high but variable proportion of the 25 selected-response questions in the Collegiate Learning Assessment (Council for Aid to Education 2017).

Experimenting abilities : Knowing how to design and execute an experiment is important not just in scientific research but also in everyday life, as in Rash . Dewey devoted a whole chapter of his How We Think (1910: 145–156; 1933: 190–202) to the superiority of experimentation over observation in advancing knowledge. Experimenting abilities come into play at one remove in appraising reports of scientific studies. Skill in designing and executing experiments includes the acknowledged abilities to appraise evidence (Glaser 1941: 6), to carry out experiments and to apply appropriate statistical inference techniques (Facione 1990a: 9), to judge inductions to an explanatory hypothesis (Ennis 1991: 9), and to recognize the need for an adequately large sample size (Halpern 1998). The Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) includes four items (out of 52) on experimental design. The Collegiate Learning Assessment (Council for Aid to Education 2017) makes room for appraisal of study design in both its performance task and its selected-response questions.

Consulting abilities : Skill at consulting sources of information comes into play when one seeks information to help resolve a problem, as in Candidate . Ability to find and appraise information includes ability to gather and marshal pertinent information (Glaser 1941: 6), to judge whether a statement made by an alleged authority is acceptable (Ennis 1962: 84), to plan a search for desired information (Facione 1990a: 9), and to judge the credibility of a source (Ennis 1991: 9). Ability to judge the credibility of statements is tested by 24 items (out of 76) in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) and by four items (out of 52) in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). The College Learning Assessment’s performance task requires evaluation of whether information in documents is credible or unreliable (Council for Aid to Education 2017).

Argument analysis abilities : The ability to identify and analyze arguments contributes to the process of surveying arguments on an issue in order to form one’s own reasoned judgment, as in Candidate . The ability to detect and analyze arguments is recognized as a critical thinking skill by Facione (1990a: 7–8), Ennis (1991: 9) and Halpern (1998). Five items (out of 34) on the California Critical Thinking Skills Test (Facione 1990b, 1992) test skill at argument analysis. The College Learning Assessment (Council for Aid to Education 2017) incorporates argument analysis in its selected-response tests of critical reading and evaluation and of critiquing an argument.

Judging skills and deciding skills : Skill at judging and deciding is skill at recognizing what judgment or decision the available evidence and argument supports, and with what degree of confidence. It is thus a component of the inferential skills already discussed.

Lists and tests of critical thinking abilities often include two more abilities: identifying assumptions and constructing and evaluating definitions.

In addition to dispositions and abilities, critical thinking needs knowledge: of critical thinking concepts, of critical thinking principles, and of the subject-matter of the thinking.

We can derive a short list of concepts whose understanding contributes to critical thinking from the critical thinking abilities described in the preceding section. Observational abilities require an understanding of the difference between observation and inference. Questioning abilities require an understanding of the concepts of ambiguity and vagueness. Inferential abilities require an understanding of the difference between conclusive and defeasible inference (traditionally, between deduction and induction), as well as of the difference between necessary and sufficient conditions. Experimenting abilities require an understanding of the concepts of hypothesis, null hypothesis, assumption and prediction, as well as of the concept of statistical significance and of its difference from importance. They also require an understanding of the difference between an experiment and an observational study, and in particular of the difference between a randomized controlled trial, a prospective correlational study and a retrospective (case-control) study. Argument analysis abilities require an understanding of the concepts of argument, premiss, assumption, conclusion and counter-consideration. Additional critical thinking concepts are proposed by Bailin et al. (1999b: 293), Fisher & Scriven (1997: 105–106), Black (2012), and Blair (2021).

According to Glaser (1941: 25), ability to think critically requires knowledge of the methods of logical inquiry and reasoning. If we review the list of abilities in the preceding section, however, we can see that some of them can be acquired and exercised merely through practice, possibly guided in an educational setting, followed by feedback. Searching intelligently for a causal explanation of some phenomenon or event requires that one consider a full range of possible causal contributors, but it seems more important that one implements this principle in one’s practice than that one is able to articulate it. What is important is “operational knowledge” of the standards and principles of good thinking (Bailin et al. 1999b: 291–293). But the development of such critical thinking abilities as designing an experiment or constructing an operational definition can benefit from learning their underlying theory. Further, explicit knowledge of quirks of human thinking seems useful as a cautionary guide. Human memory is not just fallible about details, as people learn from their own experiences of misremembering, but is so malleable that a detailed, clear and vivid recollection of an event can be a total fabrication (Loftus 2017). People seek or interpret evidence in ways that are partial to their existing beliefs and expectations, often unconscious of their “confirmation bias” (Nickerson 1998). Not only are people subject to this and other cognitive biases (Kahneman 2011), of which they are typically unaware, but it may be counter-productive for one to make oneself aware of them and try consciously to counteract them or to counteract social biases such as racial or sexual stereotypes (Kenyon & Beaulac 2014). It is helpful to be aware of these facts and of the superior effectiveness of blocking the operation of biases—for example, by making an immediate record of one’s observations, refraining from forming a preliminary explanatory hypothesis, blind refereeing, double-blind randomized trials, and blind grading of students’ work. It is also helpful to be aware of the prevalence of “noise” (unwanted unsystematic variability of judgments), of how to detect noise (through a noise audit), and of how to reduce noise: make accuracy the goal, think statistically, break a process of arriving at a judgment into independent tasks, resist premature intuitions, in a group get independent judgments first, favour comparative judgments and scales (Kahneman, Sibony, & Sunstein 2021). It is helpful as well to be aware of the concept of “bounded rationality” in decision-making and of the related distinction between “satisficing” and optimizing (Simon 1956; Gigerenzer 2001).

Critical thinking about an issue requires substantive knowledge of the domain to which the issue belongs. Critical thinking abilities are not a magic elixir that can be applied to any issue whatever by somebody who has no knowledge of the facts relevant to exploring that issue. For example, the student in Bubbles needed to know that gases do not penetrate solid objects like a glass, that air expands when heated, that the volume of an enclosed gas varies directly with its temperature and inversely with its pressure, and that hot objects will spontaneously cool down to the ambient temperature of their surroundings unless kept hot by insulation or a source of heat. Critical thinkers thus need a rich fund of subject-matter knowledge relevant to the variety of situations they encounter. This fact is recognized in the inclusion among critical thinking dispositions of a concern to become and remain generally well informed.

Experimental educational interventions, with control groups, have shown that education can improve critical thinking skills and dispositions, as measured by standardized tests. For information about these tests, see the Supplement on Assessment .

What educational methods are most effective at developing the dispositions, abilities and knowledge of a critical thinker? In a comprehensive meta-analysis of experimental and quasi-experimental studies of strategies for teaching students to think critically, Abrami et al. (2015) found that dialogue, anchored instruction, and mentoring each increased the effectiveness of the educational intervention, and that they were most effective when combined. They also found that in these studies a combination of separate instruction in critical thinking with subject-matter instruction in which students are encouraged to think critically was more effective than either by itself. However, the difference was not statistically significant; that is, it might have arisen by chance.

Most of these studies lack the longitudinal follow-up required to determine whether the observed differential improvements in critical thinking abilities or dispositions continue over time, for example until high school or college graduation. For details on studies of methods of developing critical thinking skills and dispositions, see the Supplement on Educational Methods .

12. Controversies

Scholars have denied the generalizability of critical thinking abilities across subject domains, have alleged bias in critical thinking theory and pedagogy, and have investigated the relationship of critical thinking to other kinds of thinking.

McPeck (1981) attacked the thinking skills movement of the 1970s, including the critical thinking movement. He argued that there are no general thinking skills, since thinking is always thinking about some subject-matter. It is futile, he claimed, for schools and colleges to teach thinking as if it were a separate subject. Rather, teachers should lead their pupils to become autonomous thinkers by teaching school subjects in a way that brings out their cognitive structure and that encourages and rewards discussion and argument. As some of his critics (e.g., Paul 1985; Siegel 1985) pointed out, McPeck’s central argument needs elaboration, since it has obvious counter-examples in writing and speaking, for which (up to a certain level of complexity) there are teachable general abilities even though they are always about some subject-matter. To make his argument convincing, McPeck needs to explain how thinking differs from writing and speaking in a way that does not permit useful abstraction of its components from the subject-matters with which it deals. He has not done so. Nevertheless, his position that the dispositions and abilities of a critical thinker are best developed in the context of subject-matter instruction is shared by many theorists of critical thinking, including Dewey (1910, 1933), Glaser (1941), Passmore (1980), Weinstein (1990), Bailin et al. (1999b), and Willingham (2019).

McPeck’s challenge prompted reflection on the extent to which critical thinking is subject-specific. McPeck argued for a strong subject-specificity thesis, according to which it is a conceptual truth that all critical thinking abilities are specific to a subject. (He did not however extend his subject-specificity thesis to critical thinking dispositions. In particular, he took the disposition to suspend judgment in situations of cognitive dissonance to be a general disposition.) Conceptual subject-specificity is subject to obvious counter-examples, such as the general ability to recognize confusion of necessary and sufficient conditions. A more modest thesis, also endorsed by McPeck, is epistemological subject-specificity, according to which the norms of good thinking vary from one field to another. Epistemological subject-specificity clearly holds to a certain extent; for example, the principles in accordance with which one solves a differential equation are quite different from the principles in accordance with which one determines whether a painting is a genuine Picasso. But the thesis suffers, as Ennis (1989) points out, from vagueness of the concept of a field or subject and from the obvious existence of inter-field principles, however broadly the concept of a field is construed. For example, the principles of hypothetico-deductive reasoning hold for all the varied fields in which such reasoning occurs. A third kind of subject-specificity is empirical subject-specificity, according to which as a matter of empirically observable fact a person with the abilities and dispositions of a critical thinker in one area of investigation will not necessarily have them in another area of investigation.

The thesis of empirical subject-specificity raises the general problem of transfer. If critical thinking abilities and dispositions have to be developed independently in each school subject, how are they of any use in dealing with the problems of everyday life and the political and social issues of contemporary society, most of which do not fit into the framework of a traditional school subject? Proponents of empirical subject-specificity tend to argue that transfer is more likely to occur if there is critical thinking instruction in a variety of domains, with explicit attention to dispositions and abilities that cut across domains. But evidence for this claim is scanty. There is a need for well-designed empirical studies that investigate the conditions that make transfer more likely.

It is common ground in debates about the generality or subject-specificity of critical thinking dispositions and abilities that critical thinking about any topic requires background knowledge about the topic. For example, the most sophisticated understanding of the principles of hypothetico-deductive reasoning is of no help unless accompanied by some knowledge of what might be plausible explanations of some phenomenon under investigation.

Critics have objected to bias in the theory, pedagogy and practice of critical thinking. Commentators (e.g., Alston 1995; Ennis 1998) have noted that anyone who takes a position has a bias in the neutral sense of being inclined in one direction rather than others. The critics, however, are objecting to bias in the pejorative sense of an unjustified favoring of certain ways of knowing over others, frequently alleging that the unjustly favoured ways are those of a dominant sex or culture (Bailin 1995). These ways favour:

  • reinforcement of egocentric and sociocentric biases over dialectical engagement with opposing world-views (Paul 1981, 1984; Warren 1998)
  • distancing from the object of inquiry over closeness to it (Martin 1992; Thayer-Bacon 1992)
  • indifference to the situation of others over care for them (Martin 1992)
  • orientation to thought over orientation to action (Martin 1992)
  • being reasonable over caring to understand people’s ideas (Thayer-Bacon 1993)
  • being neutral and objective over being embodied and situated (Thayer-Bacon 1995a)
  • doubting over believing (Thayer-Bacon 1995b)
  • reason over emotion, imagination and intuition (Thayer-Bacon 2000)
  • solitary thinking over collaborative thinking (Thayer-Bacon 2000)
  • written and spoken assignments over other forms of expression (Alston 2001)
  • attention to written and spoken communications over attention to human problems (Alston 2001)
  • winning debates in the public sphere over making and understanding meaning (Alston 2001)

A common thread in this smorgasbord of accusations is dissatisfaction with focusing on the logical analysis and evaluation of reasoning and arguments. While these authors acknowledge that such analysis and evaluation is part of critical thinking and should be part of its conceptualization and pedagogy, they insist that it is only a part. Paul (1981), for example, bemoans the tendency of atomistic teaching of methods of analyzing and evaluating arguments to turn students into more able sophists, adept at finding fault with positions and arguments with which they disagree but even more entrenched in the egocentric and sociocentric biases with which they began. Martin (1992) and Thayer-Bacon (1992) cite with approval the self-reported intimacy with their subject-matter of leading researchers in biology and medicine, an intimacy that conflicts with the distancing allegedly recommended in standard conceptions and pedagogy of critical thinking. Thayer-Bacon (2000) contrasts the embodied and socially embedded learning of her elementary school students in a Montessori school, who used their imagination, intuition and emotions as well as their reason, with conceptions of critical thinking as

thinking that is used to critique arguments, offer justifications, and make judgments about what are the good reasons, or the right answers. (Thayer-Bacon 2000: 127–128)

Alston (2001) reports that her students in a women’s studies class were able to see the flaws in the Cinderella myth that pervades much romantic fiction but in their own romantic relationships still acted as if all failures were the woman’s fault and still accepted the notions of love at first sight and living happily ever after. Students, she writes, should

be able to connect their intellectual critique to a more affective, somatic, and ethical account of making risky choices that have sexist, racist, classist, familial, sexual, or other consequences for themselves and those both near and far… critical thinking that reads arguments, texts, or practices merely on the surface without connections to feeling/desiring/doing or action lacks an ethical depth that should infuse the difference between mere cognitive activity and something we want to call critical thinking. (Alston 2001: 34)

Some critics portray such biases as unfair to women. Thayer-Bacon (1992), for example, has charged modern critical thinking theory with being sexist, on the ground that it separates the self from the object and causes one to lose touch with one’s inner voice, and thus stigmatizes women, who (she asserts) link self to object and listen to their inner voice. Her charge does not imply that women as a group are on average less able than men to analyze and evaluate arguments. Facione (1990c) found no difference by sex in performance on his California Critical Thinking Skills Test. Kuhn (1991: 280–281) found no difference by sex in either the disposition or the competence to engage in argumentative thinking.

The critics propose a variety of remedies for the biases that they allege. In general, they do not propose to eliminate or downplay critical thinking as an educational goal. Rather, they propose to conceptualize critical thinking differently and to change its pedagogy accordingly. Their pedagogical proposals arise logically from their objections. They can be summarized as follows:

  • Focus on argument networks with dialectical exchanges reflecting contesting points of view rather than on atomic arguments, so as to develop “strong sense” critical thinking that transcends egocentric and sociocentric biases (Paul 1981, 1984).
  • Foster closeness to the subject-matter and feeling connected to others in order to inform a humane democracy (Martin 1992).
  • Develop “constructive thinking” as a social activity in a community of physically embodied and socially embedded inquirers with personal voices who value not only reason but also imagination, intuition and emotion (Thayer-Bacon 2000).
  • In developing critical thinking in school subjects, treat as important neither skills nor dispositions but opening worlds of meaning (Alston 2001).
  • Attend to the development of critical thinking dispositions as well as skills, and adopt the “critical pedagogy” practised and advocated by Freire (1968 [1970]) and hooks (1994) (Dalgleish, Girard, & Davies 2017).

A common thread in these proposals is treatment of critical thinking as a social, interactive, personally engaged activity like that of a quilting bee or a barn-raising (Thayer-Bacon 2000) rather than as an individual, solitary, distanced activity symbolized by Rodin’s The Thinker . One can get a vivid description of education with the former type of goal from the writings of bell hooks (1994, 2010). Critical thinking for her is open-minded dialectical exchange across opposing standpoints and from multiple perspectives, a conception similar to Paul’s “strong sense” critical thinking (Paul 1981). She abandons the structure of domination in the traditional classroom. In an introductory course on black women writers, for example, she assigns students to write an autobiographical paragraph about an early racial memory, then to read it aloud as the others listen, thus affirming the uniqueness and value of each voice and creating a communal awareness of the diversity of the group’s experiences (hooks 1994: 84). Her “engaged pedagogy” is thus similar to the “freedom under guidance” implemented in John Dewey’s Laboratory School of Chicago in the late 1890s and early 1900s. It incorporates the dialogue, anchored instruction, and mentoring that Abrami (2015) found to be most effective in improving critical thinking skills and dispositions.

What is the relationship of critical thinking to problem solving, decision-making, higher-order thinking, creative thinking, and other recognized types of thinking? One’s answer to this question obviously depends on how one defines the terms used in the question. If critical thinking is conceived broadly to cover any careful thinking about any topic for any purpose, then problem solving and decision making will be kinds of critical thinking, if they are done carefully. Historically, ‘critical thinking’ and ‘problem solving’ were two names for the same thing. If critical thinking is conceived more narrowly as consisting solely of appraisal of intellectual products, then it will be disjoint with problem solving and decision making, which are constructive.

Bloom’s taxonomy of educational objectives used the phrase “intellectual abilities and skills” for what had been labeled “critical thinking” by some, “reflective thinking” by Dewey and others, and “problem solving” by still others (Bloom et al. 1956: 38). Thus, the so-called “higher-order thinking skills” at the taxonomy’s top levels of analysis, synthesis and evaluation are just critical thinking skills, although they do not come with general criteria for their assessment (Ennis 1981b). The revised version of Bloom’s taxonomy (Anderson et al. 2001) likewise treats critical thinking as cutting across those types of cognitive process that involve more than remembering (Anderson et al. 2001: 269–270). For details, see the Supplement on History .

As to creative thinking, it overlaps with critical thinking (Bailin 1987, 1988). Thinking about the explanation of some phenomenon or event, as in Ferryboat , requires creative imagination in constructing plausible explanatory hypotheses. Likewise, thinking about a policy question, as in Candidate , requires creativity in coming up with options. Conversely, creativity in any field needs to be balanced by critical appraisal of the draft painting or novel or mathematical theory.

  • Abrami, Philip C., Robert M. Bernard, Eugene Borokhovski, David I. Waddington, C. Anne Wade, and Tonje Person, 2015, “Strategies for Teaching Students to Think Critically: A Meta-analysis”, Review of Educational Research , 85(2): 275–314. doi:10.3102/0034654314551063
  • Aikin, Wilford M., 1942, The Story of the Eight-year Study, with Conclusions and Recommendations , Volume I of Adventure in American Education , New York and London: Harper & Brothers. [ Aikin 1942 available online ]
  • Alston, Kal, 1995, “Begging the Question: Is Critical Thinking Biased?”, Educational Theory , 45(2): 225–233. doi:10.1111/j.1741-5446.1995.00225.x
  • –––, 2001, “Re/Thinking Critical Thinking: The Seductions of Everyday Life”, Studies in Philosophy and Education , 20(1): 27–40. doi:10.1023/A:1005247128053
  • American Educational Research Association, 2014, Standards for Educational and Psychological Testing / American Educational Research Association, American Psychological Association, National Council on Measurement in Education , Washington, DC: American Educational Research Association.
  • Anderson, Lorin W., David R. Krathwohl, Peter W. Airiasian, Kathleen A. Cruikshank, Richard E. Mayer, Paul R. Pintrich, James Raths, and Merlin C. Wittrock, 2001, A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives , New York: Longman, complete edition.
  • Bailin, Sharon, 1987, “Critical and Creative Thinking”, Informal Logic , 9(1): 23–30. [ Bailin 1987 available online ]
  • –––, 1988, Achieving Extraordinary Ends: An Essay on Creativity , Dordrecht: Kluwer. doi:10.1007/978-94-009-2780-3
  • –––, 1995, “Is Critical Thinking Biased? Clarifications and Implications”, Educational Theory , 45(2): 191–197. doi:10.1111/j.1741-5446.1995.00191.x
  • Bailin, Sharon and Mark Battersby, 2009, “Inquiry: A Dialectical Approach to Teaching Critical Thinking”, in Juho Ritola (ed.), Argument Cultures: Proceedings of OSSA 09 , CD-ROM (pp. 1–10), Windsor, ON: OSSA. [ Bailin & Battersby 2009 available online ]
  • –––, 2016a, “Fostering the Virtues of Inquiry”, Topoi , 35(2): 367–374. doi:10.1007/s11245-015-9307-6
  • –––, 2016b, Reason in the Balance: An Inquiry Approach to Critical Thinking , Indianapolis: Hackett, 2nd edition.
  • –––, 2021, “Inquiry: Teaching for Reasoned Judgment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 31–46. doi: 10.1163/9789004444591_003
  • Bailin, Sharon, Roland Case, Jerrold R. Coombs, and Leroi B. Daniels, 1999a, “Common Misconceptions of Critical Thinking”, Journal of Curriculum Studies , 31(3): 269–283. doi:10.1080/002202799183124
  • –––, 1999b, “Conceptualizing Critical Thinking”, Journal of Curriculum Studies , 31(3): 285–302. doi:10.1080/002202799183133
  • Blair, J. Anthony, 2021, Studies in Critical Thinking , Windsor, ON: Windsor Studies in Argumentation, 2nd edition. [Available online at https://windsor.scholarsportal.info/omp/index.php/wsia/catalog/book/106]
  • Berman, Alan M., Seth J. Schwartz, William M. Kurtines, and Steven L. Berman, 2001, “The Process of Exploration in Identity Formation: The Role of Style and Competence”, Journal of Adolescence , 24(4): 513–528. doi:10.1006/jado.2001.0386
  • Black, Beth (ed.), 2012, An A to Z of Critical Thinking , London: Continuum International Publishing Group.
  • Bloom, Benjamin Samuel, Max D. Engelhart, Edward J. Furst, Walter H. Hill, and David R. Krathwohl, 1956, Taxonomy of Educational Objectives. Handbook I: Cognitive Domain , New York: David McKay.
  • Boardman, Frank, Nancy M. Cavender, and Howard Kahane, 2018, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Boston: Cengage, 13th edition.
  • Browne, M. Neil and Stuart M. Keeley, 2018, Asking the Right Questions: A Guide to Critical Thinking , Hoboken, NJ: Pearson, 12th edition.
  • Center for Assessment & Improvement of Learning, 2017, Critical Thinking Assessment Test , Cookeville, TN: Tennessee Technological University.
  • Cleghorn, Paul. 2021. “Critical Thinking in the Elementary School: Practical Guidance for Building a Culture of Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessmen t, Leiden: Brill, pp. 150–167. doi: 10.1163/9789004444591_010
  • Cohen, Jacob, 1988, Statistical Power Analysis for the Behavioral Sciences , Hillsdale, NJ: Lawrence Erlbaum Associates, 2nd edition.
  • College Board, 1983, Academic Preparation for College. What Students Need to Know and Be Able to Do , New York: College Entrance Examination Board, ERIC document ED232517.
  • Commission on the Relation of School and College of the Progressive Education Association, 1943, Thirty Schools Tell Their Story , Volume V of Adventure in American Education , New York and London: Harper & Brothers.
  • Council for Aid to Education, 2017, CLA+ Student Guide . Available at http://cae.org/images/uploads/pdf/CLA_Student_Guide_Institution.pdf ; last accessed 2022 07 16.
  • Dalgleish, Adam, Patrick Girard, and Maree Davies, 2017, “Critical Thinking, Bias and Feminist Philosophy: Building a Better Framework through Collaboration”, Informal Logic , 37(4): 351–369. [ Dalgleish et al. available online ]
  • Dewey, John, 1910, How We Think , Boston: D.C. Heath. [ Dewey 1910 available online ]
  • –––, 1916, Democracy and Education: An Introduction to the Philosophy of Education , New York: Macmillan.
  • –––, 1933, How We Think: A Restatement of the Relation of Reflective Thinking to the Educative Process , Lexington, MA: D.C. Heath.
  • –––, 1936, “The Theory of the Chicago Experiment”, Appendix II of Mayhew & Edwards 1936: 463–477.
  • –––, 1938, Logic: The Theory of Inquiry , New York: Henry Holt and Company.
  • Dominguez, Caroline (coord.), 2018a, A European Collection of the Critical Thinking Skills and Dispositions Needed in Different Professional Fields for the 21st Century , Vila Real, Portugal: UTAD. Available at http://bit.ly/CRITHINKEDUO1 ; last accessed 2022 07 16.
  • ––– (coord.), 2018b, A European Review on Critical Thinking Educational Practices in Higher Education Institutions , Vila Real: UTAD. Available at http://bit.ly/CRITHINKEDUO2 ; last accessed 2022 07 16.
  • ––– (coord.), 2018c, The CRITHINKEDU European Course on Critical Thinking Education for University Teachers: From Conception to Delivery , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU03; last accessed 2022 07 16.
  • Dominguez Caroline and Rita Payan-Carreira (eds.), 2019, Promoting Critical Thinking in European Higher Education Institutions: Towards an Educational Protocol , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU04; last accessed 2022 07 16.
  • Ennis, Robert H., 1958, “An Appraisal of the Watson-Glaser Critical Thinking Appraisal”, The Journal of Educational Research , 52(4): 155–158. doi:10.1080/00220671.1958.10882558
  • –––, 1962, “A Concept of Critical Thinking: A Proposed Basis for Research on the Teaching and Evaluation of Critical Thinking Ability”, Harvard Educational Review , 32(1): 81–111.
  • –––, 1981a, “A Conception of Deductive Logical Competence”, Teaching Philosophy , 4(3/4): 337–385. doi:10.5840/teachphil198143/429
  • –––, 1981b, “Eight Fallacies in Bloom’s Taxonomy”, in C. J. B. Macmillan (ed.), Philosophy of Education 1980: Proceedings of the Thirty-seventh Annual Meeting of the Philosophy of Education Society , Bloomington, IL: Philosophy of Education Society, pp. 269–273.
  • –––, 1984, “Problems in Testing Informal Logic, Critical Thinking, Reasoning Ability”, Informal Logic , 6(1): 3–9. [ Ennis 1984 available online ]
  • –––, 1987, “A Taxonomy of Critical Thinking Dispositions and Abilities”, in Joan Boykoff Baron and Robert J. Sternberg (eds.), Teaching Thinking Skills: Theory and Practice , New York: W. H. Freeman, pp. 9–26.
  • –––, 1989, “Critical Thinking and Subject Specificity: Clarification and Needed Research”, Educational Researcher , 18(3): 4–10. doi:10.3102/0013189X018003004
  • –––, 1991, “Critical Thinking: A Streamlined Conception”, Teaching Philosophy , 14(1): 5–24. doi:10.5840/teachphil19911412
  • –––, 1996, “Critical Thinking Dispositions: Their Nature and Assessability”, Informal Logic , 18(2–3): 165–182. [ Ennis 1996 available online ]
  • –––, 1998, “Is Critical Thinking Culturally Biased?”, Teaching Philosophy , 21(1): 15–33. doi:10.5840/teachphil19982113
  • –––, 2011, “Critical Thinking: Reflection and Perspective Part I”, Inquiry: Critical Thinking across the Disciplines , 26(1): 4–18. doi:10.5840/inquiryctnews20112613
  • –––, 2013, “Critical Thinking across the Curriculum: The Wisdom CTAC Program”, Inquiry: Critical Thinking across the Disciplines , 28(2): 25–45. doi:10.5840/inquiryct20132828
  • –––, 2016, “Definition: A Three-Dimensional Analysis with Bearing on Key Concepts”, in Patrick Bondy and Laura Benacquista (eds.), Argumentation, Objectivity, and Bias: Proceedings of the 11th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 18–21 May 2016 , Windsor, ON: OSSA, pp. 1–19. Available at http://scholar.uwindsor.ca/ossaarchive/OSSA11/papersandcommentaries/105 ; last accessed 2022 07 16.
  • –––, 2018, “Critical Thinking Across the Curriculum: A Vision”, Topoi , 37(1): 165–184. doi:10.1007/s11245-016-9401-4
  • Ennis, Robert H., and Jason Millman, 1971, Manual for Cornell Critical Thinking Test, Level X, and Cornell Critical Thinking Test, Level Z , Urbana, IL: Critical Thinking Project, University of Illinois.
  • Ennis, Robert H., Jason Millman, and Thomas Norbert Tomko, 1985, Cornell Critical Thinking Tests Level X & Level Z: Manual , Pacific Grove, CA: Midwest Publication, 3rd edition.
  • –––, 2005, Cornell Critical Thinking Tests Level X & Level Z: Manual , Seaside, CA: Critical Thinking Company, 5th edition.
  • Ennis, Robert H. and Eric Weir, 1985, The Ennis-Weir Critical Thinking Essay Test: Test, Manual, Criteria, Scoring Sheet: An Instrument for Teaching and Testing , Pacific Grove, CA: Midwest Publications.
  • Facione, Peter A., 1990a, Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction , Research Findings and Recommendations Prepared for the Committee on Pre-College Philosophy of the American Philosophical Association, ERIC Document ED315423.
  • –––, 1990b, California Critical Thinking Skills Test, CCTST – Form A , Millbrae, CA: The California Academic Press.
  • –––, 1990c, The California Critical Thinking Skills Test--College Level. Technical Report #3. Gender, Ethnicity, Major, CT Self-Esteem, and the CCTST , ERIC Document ED326584.
  • –––, 1992, California Critical Thinking Skills Test: CCTST – Form B, Millbrae, CA: The California Academic Press.
  • –––, 2000, “The Disposition Toward Critical Thinking: Its Character, Measurement, and Relationship to Critical Thinking Skill”, Informal Logic , 20(1): 61–84. [ Facione 2000 available online ]
  • Facione, Peter A. and Noreen C. Facione, 1992, CCTDI: A Disposition Inventory , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Noreen C. Facione, and Carol Ann F. Giancarlo, 2001, California Critical Thinking Disposition Inventory: CCTDI: Inventory Manual , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Carol A. Sánchez, and Noreen C. Facione, 1994, Are College Students Disposed to Think? , Millbrae, CA: The California Academic Press. ERIC Document ED368311.
  • Fisher, Alec, and Michael Scriven, 1997, Critical Thinking: Its Definition and Assessment , Norwich: Centre for Research in Critical Thinking, University of East Anglia.
  • Freire, Paulo, 1968 [1970], Pedagogia do Oprimido . Translated as Pedagogy of the Oppressed , Myra Bergman Ramos (trans.), New York: Continuum, 1970.
  • Gigerenzer, Gerd, 2001, “The Adaptive Toolbox”, in Gerd Gigerenzer and Reinhard Selten (eds.), Bounded Rationality: The Adaptive Toolbox , Cambridge, MA: MIT Press, pp. 37–50.
  • Glaser, Edward Maynard, 1941, An Experiment in the Development of Critical Thinking , New York: Bureau of Publications, Teachers College, Columbia University.
  • Groarke, Leo A. and Christopher W. Tindale, 2012, Good Reasoning Matters! A Constructive Approach to Critical Thinking , Don Mills, ON: Oxford University Press, 5th edition.
  • Halpern, Diane F., 1998, “Teaching Critical Thinking for Transfer Across Domains: Disposition, Skills, Structure Training, and Metacognitive Monitoring”, American Psychologist , 53(4): 449–455. doi:10.1037/0003-066X.53.4.449
  • –––, 2016, Manual: Halpern Critical Thinking Assessment , Mödling, Austria: Schuhfried. Available at https://pdfcoffee.com/hcta-test-manual-pdf-free.html; last accessed 2022 07 16.
  • Hamby, Benjamin, 2014, The Virtues of Critical Thinkers , Doctoral dissertation, Philosophy, McMaster University. [ Hamby 2014 available online ]
  • –––, 2015, “Willingness to Inquire: The Cardinal Critical Thinking Virtue”, in Martin Davies and Ronald Barnett (eds.), The Palgrave Handbook of Critical Thinking in Higher Education , New York: Palgrave Macmillan, pp. 77–87.
  • Haran, Uriel, Ilana Ritov, and Barbara A. Mellers, 2013, “The Role of Actively Open-minded Thinking in Information Acquisition, Accuracy, and Calibration”, Judgment and Decision Making , 8(3): 188–201.
  • Hatcher, Donald and Kevin Possin, 2021, “Commentary: Thinking Critically about Critical Thinking Assessment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 298–322. doi: 10.1163/9789004444591_017
  • Haynes, Ada, Elizabeth Lisic, Kevin Harris, Katie Leming, Kyle Shanks, and Barry Stein, 2015, “Using the Critical Thinking Assessment Test (CAT) as a Model for Designing Within-Course Assessments: Changing How Faculty Assess Student Learning”, Inquiry: Critical Thinking Across the Disciplines , 30(3): 38–48. doi:10.5840/inquiryct201530316
  • Haynes, Ada and Barry Stein, 2021, “Observations from a Long-Term Effort to Assess and Improve Critical Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 231–254. doi: 10.1163/9789004444591_014
  • Hiner, Amanda L. 2021. “Equipping Students for Success in College and Beyond: Placing Critical Thinking Instruction at the Heart of a General Education Program”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 188–208. doi: 10.1163/9789004444591_012
  • Hitchcock, David, 2017, “Critical Thinking as an Educational Ideal”, in his On Reasoning and Argument: Essays in Informal Logic and on Critical Thinking , Dordrecht: Springer, pp. 477–497. doi:10.1007/978-3-319-53562-3_30
  • –––, 2021, “Seven Philosophical Implications of Critical Thinking: Themes, Variations, Implications”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 9–30. doi: 10.1163/9789004444591_002
  • hooks, bell, 1994, Teaching to Transgress: Education as the Practice of Freedom , New York and London: Routledge.
  • –––, 2010, Teaching Critical Thinking: Practical Wisdom , New York and London: Routledge.
  • Johnson, Ralph H., 1992, “The Problem of Defining Critical Thinking”, in Stephen P, Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 38–53.
  • Kahane, Howard, 1971, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Belmont, CA: Wadsworth.
  • Kahneman, Daniel, 2011, Thinking, Fast and Slow , New York: Farrar, Straus and Giroux.
  • Kahneman, Daniel, Olivier Sibony, & Cass R. Sunstein, 2021, Noise: A Flaw in Human Judgment , New York: Little, Brown Spark.
  • Kenyon, Tim, and Guillaume Beaulac, 2014, “Critical Thinking Education and Debasing”, Informal Logic , 34(4): 341–363. [ Kenyon & Beaulac 2014 available online ]
  • Krathwohl, David R., Benjamin S. Bloom, and Bertram B. Masia, 1964, Taxonomy of Educational Objectives, Handbook II: Affective Domain , New York: David McKay.
  • Kuhn, Deanna, 1991, The Skills of Argument , New York: Cambridge University Press. doi:10.1017/CBO9780511571350
  • –––, 2019, “Critical Thinking as Discourse”, Human Development, 62 (3): 146–164. doi:10.1159/000500171
  • Lipman, Matthew, 1987, “Critical Thinking–What Can It Be?”, Analytic Teaching , 8(1): 5–12. [ Lipman 1987 available online ]
  • –––, 2003, Thinking in Education , Cambridge: Cambridge University Press, 2nd edition.
  • Loftus, Elizabeth F., 2017, “Eavesdropping on Memory”, Annual Review of Psychology , 68: 1–18. doi:10.1146/annurev-psych-010416-044138
  • Makaiau, Amber Strong, 2021, “The Good Thinker’s Tool Kit: How to Engage Critical Thinking and Reasoning in Secondary Education”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 168–187. doi: 10.1163/9789004444591_011
  • Martin, Jane Roland, 1992, “Critical Thinking for a Humane World”, in Stephen P. Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 163–180.
  • Mayhew, Katherine Camp, and Anna Camp Edwards, 1936, The Dewey School: The Laboratory School of the University of Chicago, 1896–1903 , New York: Appleton-Century. [ Mayhew & Edwards 1936 available online ]
  • McPeck, John E., 1981, Critical Thinking and Education , New York: St. Martin’s Press.
  • Moore, Brooke Noel and Richard Parker, 2020, Critical Thinking , New York: McGraw-Hill, 13th edition.
  • Nickerson, Raymond S., 1998, “Confirmation Bias: A Ubiquitous Phenomenon in Many Guises”, Review of General Psychology , 2(2): 175–220. doi:10.1037/1089-2680.2.2.175
  • Nieto, Ana Maria, and Jorge Valenzuela, 2012, “A Study of the Internal Structure of Critical Thinking Dispositions”, Inquiry: Critical Thinking across the Disciplines , 27(1): 31–38. doi:10.5840/inquiryct20122713
  • Norris, Stephen P., 1985, “Controlling for Background Beliefs When Developing Multiple-choice Critical Thinking Tests”, Educational Measurement: Issues and Practice , 7(3): 5–11. doi:10.1111/j.1745-3992.1988.tb00437.x
  • Norris, Stephen P. and Robert H. Ennis, 1989, Evaluating Critical Thinking (The Practitioners’ Guide to Teaching Thinking Series), Pacific Grove, CA: Midwest Publications.
  • Norris, Stephen P. and Ruth Elizabeth King, 1983, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1984, The Design of a Critical Thinking Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland. ERIC Document ED260083.
  • –––, 1985, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1990a, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • –––, 1990b, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • OCR [Oxford, Cambridge and RSA Examinations], 2011, AS/A Level GCE: Critical Thinking – H052, H452 , Cambridge: OCR. Past papers available at https://pastpapers.co/ocr/?dir=A-Level/Critical-Thinking-H052-H452; last accessed 2022 07 16.
  • Ontario Ministry of Education, 2013, The Ontario Curriculum Grades 9 to 12: Social Sciences and Humanities . Available at http://www.edu.gov.on.ca/eng/curriculum/secondary/ssciences9to122013.pdf ; last accessed 2022 07 16.
  • Passmore, John Arthur, 1980, The Philosophy of Teaching , London: Duckworth.
  • Paul, Richard W., 1981, “Teaching Critical Thinking in the ‘Strong’ Sense: A Focus on Self-Deception, World Views, and a Dialectical Mode of Analysis”, Informal Logic , 4(2): 2–7. [ Paul 1981 available online ]
  • –––, 1984, “Critical Thinking: Fundamental to Education for a Free Society”, Educational Leadership , 42(1): 4–14.
  • –––, 1985, “McPeck’s Mistakes”, Informal Logic , 7(1): 35–43. [ Paul 1985 available online ]
  • Paul, Richard W. and Linda Elder, 2006, The Miniature Guide to Critical Thinking: Concepts and Tools , Dillon Beach, CA: Foundation for Critical Thinking, 4th edition.
  • Payette, Patricia, and Edna Ross, 2016, “Making a Campus-Wide Commitment to Critical Thinking: Insights and Promising Practices Utilizing the Paul-Elder Approach at the University of Louisville”, Inquiry: Critical Thinking Across the Disciplines , 31(1): 98–110. doi:10.5840/inquiryct20163118
  • Possin, Kevin, 2008, “A Field Guide to Critical-Thinking Assessment”, Teaching Philosophy , 31(3): 201–228. doi:10.5840/teachphil200831324
  • –––, 2013a, “Some Problems with the Halpern Critical Thinking Assessment (HCTA) Test”, Inquiry: Critical Thinking across the Disciplines , 28(3): 4–12. doi:10.5840/inquiryct201328313
  • –––, 2013b, “A Serious Flaw in the Collegiate Learning Assessment (CLA) Test”, Informal Logic , 33(3): 390–405. [ Possin 2013b available online ]
  • –––, 2013c, “A Fatal Flaw in the Collegiate Learning Assessment Test”, Assessment Update , 25 (1): 8–12.
  • –––, 2014, “Critique of the Watson-Glaser Critical Thinking Appraisal Test: The More You Know, the Lower Your Score”, Informal Logic , 34(4): 393–416. [ Possin 2014 available online ]
  • –––, 2020, “CAT Scan: A Critical Review of the Critical-Thinking Assessment Test”, Informal Logic , 40 (3): 489–508. [Available online at https://informallogic.ca/index.php/informal_logic/article/view/6243]
  • Rawls, John, 1971, A Theory of Justice , Cambridge, MA: Harvard University Press.
  • Rear, David, 2019, “One Size Fits All? The Limitations of Standardised Assessment in Critical Thinking”, Assessment & Evaluation in Higher Education , 44(5): 664–675. doi: 10.1080/02602938.2018.1526255
  • Rousseau, Jean-Jacques, 1762, Émile , Amsterdam: Jean Néaulme.
  • Scheffler, Israel, 1960, The Language of Education , Springfield, IL: Charles C. Thomas.
  • Scriven, Michael, and Richard W. Paul, 1987, Defining Critical Thinking , Draft statement written for the National Council for Excellence in Critical Thinking Instruction. Available at http://www.criticalthinking.org/pages/defining-critical-thinking/766 ; last accessed 2022 07 16.
  • Sheffield, Clarence Burton Jr., 2018, “Promoting Critical Thinking in Higher Education: My Experiences as the Inaugural Eugene H. Fram Chair in Applied Critical Thinking at Rochester Institute of Technology”, Topoi , 37(1): 155–163. doi:10.1007/s11245-016-9392-1
  • Siegel, Harvey, 1985, “McPeck, Informal Logic and the Nature of Critical Thinking”, in David Nyberg (ed.), Philosophy of Education 1985: Proceedings of the Forty-First Annual Meeting of the Philosophy of Education Society , Normal, IL: Philosophy of Education Society, pp. 61–72.
  • –––, 1988, Educating Reason: Rationality, Critical Thinking, and Education , New York: Routledge.
  • –––, 1999, “What (Good) Are Thinking Dispositions?”, Educational Theory , 49(2): 207–221. doi:10.1111/j.1741-5446.1999.00207.x
  • Simon, Herbert A., 1956, “Rational Choice and the Structure of the Environment”, Psychological Review , 63(2): 129–138. doi: 10.1037/h0042769
  • Simpson, Elizabeth, 1966–67, “The Classification of Educational Objectives: Psychomotor Domain”, Illinois Teacher of Home Economics , 10(4): 110–144, ERIC document ED0103613. [ Simpson 1966–67 available online ]
  • Skolverket, 2018, Curriculum for the Compulsory School, Preschool Class and School-age Educare , Stockholm: Skolverket, revised 2018. Available at https://www.skolverket.se/download/18.31c292d516e7445866a218f/1576654682907/pdf3984.pdf; last accessed 2022 07 15.
  • Smith, B. Othanel, 1953, “The Improvement of Critical Thinking”, Progressive Education , 30(5): 129–134.
  • Smith, Eugene Randolph, Ralph Winfred Tyler, and the Evaluation Staff, 1942, Appraising and Recording Student Progress , Volume III of Adventure in American Education , New York and London: Harper & Brothers.
  • Splitter, Laurance J., 1987, “Educational Reform through Philosophy for Children”, Thinking: The Journal of Philosophy for Children , 7(2): 32–39. doi:10.5840/thinking1987729
  • Stanovich Keith E., and Paula J. Stanovich, 2010, “A Framework for Critical Thinking, Rational Thinking, and Intelligence”, in David D. Preiss and Robert J. Sternberg (eds), Innovations in Educational Psychology: Perspectives on Learning, Teaching and Human Development , New York: Springer Publishing, pp 195–237.
  • Stanovich Keith E., Richard F. West, and Maggie E. Toplak, 2011, “Intelligence and Rationality”, in Robert J. Sternberg and Scott Barry Kaufman (eds.), Cambridge Handbook of Intelligence , Cambridge: Cambridge University Press, 3rd edition, pp. 784–826. doi:10.1017/CBO9780511977244.040
  • Tankersley, Karen, 2005, Literacy Strategies for Grades 4–12: Reinforcing the Threads of Reading , Alexandria, VA: Association for Supervision and Curriculum Development.
  • Thayer-Bacon, Barbara J., 1992, “Is Modern Critical Thinking Theory Sexist?”, Inquiry: Critical Thinking Across the Disciplines , 10(1): 3–7. doi:10.5840/inquiryctnews199210123
  • –––, 1993, “Caring and Its Relationship to Critical Thinking”, Educational Theory , 43(3): 323–340. doi:10.1111/j.1741-5446.1993.00323.x
  • –––, 1995a, “Constructive Thinking: Personal Voice”, Journal of Thought , 30(1): 55–70.
  • –––, 1995b, “Doubting and Believing: Both are Important for Critical Thinking”, Inquiry: Critical Thinking across the Disciplines , 15(2): 59–66. doi:10.5840/inquiryctnews199515226
  • –––, 2000, Transforming Critical Thinking: Thinking Constructively , New York: Teachers College Press.
  • Toulmin, Stephen Edelston, 1958, The Uses of Argument , Cambridge: Cambridge University Press.
  • Turri, John, Mark Alfano, and John Greco, 2017, “Virtue Epistemology”, in Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2017 Edition). URL = < https://plato.stanford.edu/archives/win2017/entries/epistemology-virtue/ >
  • Vincent-Lancrin, Stéphan, Carlos González-Sancho, Mathias Bouckaert, Federico de Luca, Meritxell Fernández-Barrerra, Gwénaël Jacotin, Joaquin Urgel, and Quentin Vidal, 2019, Fostering Students’ Creativity and Critical Thinking: What It Means in School. Educational Research and Innovation , Paris: OECD Publishing.
  • Warren, Karen J. 1988. “Critical Thinking and Feminism”, Informal Logic , 10(1): 31–44. [ Warren 1988 available online ]
  • Watson, Goodwin, and Edward M. Glaser, 1980a, Watson-Glaser Critical Thinking Appraisal, Form A , San Antonio, TX: Psychological Corporation.
  • –––, 1980b, Watson-Glaser Critical Thinking Appraisal: Forms A and B; Manual , San Antonio, TX: Psychological Corporation,
  • –––, 1994, Watson-Glaser Critical Thinking Appraisal, Form B , San Antonio, TX: Psychological Corporation.
  • Weinstein, Mark, 1990, “Towards a Research Agenda for Informal Logic and Critical Thinking”, Informal Logic , 12(3): 121–143. [ Weinstein 1990 available online ]
  • –––, 2013, Logic, Truth and Inquiry , London: College Publications.
  • Willingham, Daniel T., 2019, “How to Teach Critical Thinking”, Education: Future Frontiers , 1: 1–17. [Available online at https://prod65.education.nsw.gov.au/content/dam/main-education/teaching-and-learning/education-for-a-changing-world/media/documents/How-to-teach-critical-thinking-Willingham.pdf.]
  • Zagzebski, Linda Trinkaus, 1996, Virtues of the Mind: An Inquiry into the Nature of Virtue and the Ethical Foundations of Knowledge , Cambridge: Cambridge University Press. doi:10.1017/CBO9781139174763
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up topics and thinkers related to this entry at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Association for Informal Logic and Critical Thinking (AILACT)
  • Critical Thinking Across the European Higher Education Curricula (CRITHINKEDU)
  • Critical Thinking Definition, Instruction, and Assessment: A Rigorous Approach
  • Critical Thinking Research (RAIL)
  • Foundation for Critical Thinking
  • Insight Assessment
  • Partnership for 21st Century Learning (P21)
  • The Critical Thinking Consortium
  • The Nature of Critical Thinking: An Outline of Critical Thinking Dispositions and Abilities , by Robert H. Ennis

abilities | bias, implicit | children, philosophy for | civic education | decision-making capacity | Dewey, John | dispositions | education, philosophy of | epistemology: virtue | logic: informal

Copyright © 2022 by David Hitchcock < hitchckd @ mcmaster . ca >

  • Accessibility

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

The Stanford Encyclopedia of Philosophy is copyright © 2024 by The Metaphysics Research Lab , Department of Philosophy, Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

Logo for

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Critical Thinking

Problem Solving, Critical Thinking and Decision Making

Lumen Learning

Agoos, S. (2016, March). 5 tips to improve your critical thinking [Video]. YouTube. http://https://youtu.be/dItUGF8GdTw

Problem-Solving with Critical Thinking

Much of your college and professional life will be spent solving problems; some will be complex, such as deciding on a career, and require time and effort to come up with a solution. Others will be small, such as deciding what to eat for lunch, and will allow you to make a quick decision based entirely on your own experience. For most people, a typical day is filled with critical thinking and problem-solving challenges. In fact, critical thinking and problem-solving go hand-in-hand. They both refer to using knowledge, facts, and data to solve problems effectively. But with problem-solving, you are specifically identifying, selecting, and defending your solution. Below are some examples of using critical thinking to problem-solve:

  • Your roommate was upset and said some unkind words to you, which put a crimp in the relationship. You try to see through the angry behaviors to determine how you might best support the roommate and help bring the relationship back to a comfortable spot.
  • Your campus club has been languishing on account of lack of participation and funds. The new club president, though, is a marketing major and has identified some strategies to interest students in joining and supporting the club. Implementation is forthcoming.
  • Your final art class project challenges you to conceptualize form in new ways. On the last day of class when students present their projects, you describe the techniques you used to fulfill the assignment. You explain why and how you selected that approach.
  • Your math teacher sees that the class is not quite grasping a concept. She uses clever questioning to dispel anxiety and guide you to new understanding of the concept.
  • You have a job interview for a position that you feel you are only partially qualified for, although you really want the job and you are excited about the prospects. You analyze how you will explain your skills and experiences in a way to show that you are a good match for the prospective employer.
  • You are doing well in college, and most of your college and living expenses are covered. But there are some gaps between what you want and what you feel you can afford. You analyze your income, savings, and budget to better calculate what you will need to stay in college and maintain your desired level of spending.

How to Problem Solve

  • Define the problem. Use your analytical skills. What is the real issue? Why is it a problem? What are the root causes? What kinds of outcomes or actions do you expect to generate to solve the problem? What are some of the key characteristics that will make a good choice: Timing? Resources? Availability of tools and materials? For more complex problems, it helps to actually write out the problem and the answers to these questions. Can you clarify your understanding of the problem by using metaphors to illustrate the issue?
  • Narrow the problem. Many problems are made up of a series of smaller problems, each requiring its own solution. Can you break the problem into different facets? What aspects of the current issue are “noise” that should not be considered in the problem solution? (Use critical thinking to separate facts from opinion in this step.)
  • Generate possible solutions. List all your options. Use your creative thinking skills in this phase. Did you come up with the second “right” answer, and the third or the fourth? Can any of these answers be combined into a stronger solution? What past or existing solutions can be adapted or combined to solve this problem?

In sum, the following questions, are ones you may apply to formulate a logical, reasoned perspective:

  • What’s happening? Gather the basic information and begin to think of questions.
  • Why is it important? Ask yourself why it’s significant and whether or not you agree.
  • What don’t I see? Is there anything important missing?
  • How do I know? Ask yourself where the information came from and how it was constructed.
  • Who is saying it? What’s the position of the speaker and what is influencing them?
  • What else? What if? What other ideas exist and are there other possibilities?

Group Think: Effective Brainstorming

Brainstorming is a process of generating ideas for solutions in a group. This method is very effective because ideas from one person will trigger additional ideas from another. The following guidelines make for an effective brainstorming session:

  • Decide who should moderate the session. That person may participate, but his main role is to keep the discussion flowing.
  • Define the problem to be discussed and the time you will allow to consider it.
  • Write all ideas down on a board or flip chart for all participants to see.
  • Encourage everyone to speak.
  • Do not allow criticism of ideas. All ideas are good during a brainstorm. Suspend disbelief until after the session. Remember a wildly impossible idea may trigger a creative and feasible solution to a problem.
  • Choose the best solution. Use your critical thinking skills to select the most likely choices. List the pros and cons for each of your selections. How do these lists compare with the requirements you identified when you defined the problem? If you still can’t decide between options, you may want to seek further input from your brainstorming team.

Decisions, Decisions

You will be called on to make many decisions in your life. Some will be personal, like what to major in, or whether or not to get married. Other times you will be making decisions on behalf of others at work or for a volunteer organization. Occasionally you will be asked for your opinion or experience for decisions others are making. To be effective in all of these circumstances, it is helpful to understand some principles about decision making.

First, define who is responsible for solving the problem or making the decision. In an organization, this may be someone above or below you on the organization chart but is usually the person who will be responsible for implementing the solution. Deciding on an academic major should be your decision, because you will have to follow the course of study. Deciding on the boundaries of a sales territory would most likely be the sales manager who supervises the territories, because he or she will be responsible for producing the results with the combined territories. Once you define who is responsible for making the decision, everyone else will fall into one of two roles: giving input, or in rare cases, approving the decision.

Understanding the role of input is very important for good decisions. Input is sought or given due to experience or expertise, but it is up to the decision maker to weigh the input and decide whether and how to use it. Input should be fact based, or if offering an opinion, it should be clearly stated as such. Finally, once input is given, the person giving the input must support the other’s decision, whether or not the input is actually used.

Consider a team working on a project for a science course. The team assigns you the responsibility of analyzing and presenting a large set of complex data. Others on the team will set up the experiment to demonstrate the hypothesis, prepare the class presentation, and write the paper summarizing the results. As you face the data, you go to the team to seek input about the level of detail on the data you should consider for your analysis. The person doing the experiment setup thinks you should be very detailed, because then it will be easy to compare experiment results with the data. However, the person preparing the class presentation wants only high-level data to be considered because that will make for a clearer presentation. If there is not a clear understanding of the decision-making process, each of you may think the decision is yours to make because it influences the output of your work; there will be conflict and frustration on the team. If the decision maker is clearly defined upfront, however, and the input is thoughtfully given and considered, a good decision can be made (perhaps a creative compromise?) and the team can get behind the decision and work together to complete the project.

Finally, there is the approval role in decisions. This is very common in business decisions but often occurs in college work as well (the professor needs to approve the theme of the team project, for example). Approval decisions are usually based on availability of resources, legality, history, or policy.

https://ed.ted.com/lessons/5-tips-to-improve-your-critical-thinking-samantha-agoos

Key Takeaways

  • Effective problem solving involves critical and creative thinking.

The four steps to effective problem solving are the following:

  • Define the problem
  • Narrow the problem
  • Generate solutions
  • Choose the solution
  • Brainstorming is a good method for generating creative solutions.
  • Understanding the difference between the roles of deciding and providing input makes for better decisions.

About the Author

name: Lumen Learning

Foundations for Success in Nursing: Manual Copyright © 2021 by Lumen Learning. All Rights Reserved.

Share This Book

loading

How it works

For Business

Join Mind Tools

Article • 4 min read

Critical Decision-Making Techniques

An overview of some decision making tools.

By the Mind Tools Content Team

Critical thinking is the mental process that individuals go through to reach an answer or a conclusion. The critical thinking process can be a valuable tool in problem-solving and decision-making. Here we look at some of the techniques involved.

what is the connection among critical thinking decision making and problem solving

Critical thinking is essentially the process of taking information gathered through day-to-day activities such as observation, reflection and reasoning, and, using personal experience and beliefs, analyzing and applying that information to a given situation. Critical thinking tends to be used in conjunction with creative thinking, where the ideas and processes themselves are generated. Critical thinking can then be used to interpret, assess and evaluate these ideas and processes.

Critical Decision-Making Characteristics

When faced with a difficult or complicated decision, there are a number of characteristics found in those who approach the process critically.

  • Truth seeking. The process of critical decision-making requires a desire for the best possible knowledge or outcome, even if, as a result, personal preconceptions, beliefs or self-interests are undermined.
  • Open-minded. Successful critical decision-makers are tolerant to divergent views, and are aware of possible bias in their thought process.
  • Analytical. The decision-making process is necessarily analytical. The application of reason and evidence, remaining alert to problematic situations and being able to anticipate potential consequences are all important.
  • Systematic. Organization, focus and diligence when approaching decisions of all levels of complexity are beneficial to the critical decision-maker.
  • Self-Confidence. When using critical thinking as a decision-making tool, the user must have a high level of trust in their personal reasoning.
  • Inquisitive. A natural curiosity and eagerness to acquire knowledge and seek explanations will help to ensure the decision is made using as much relevant information as can be found.

In addition to these characteristics, critical decision-making requires a certain level of cognitive maturity. The user will be aware of the importance of prudence in making, suspending, or revising their original judgment, and will have an awareness that multiple solutions can be acceptable.

As well as developing the characteristics above, there are a number of techniques which will aid in critical decision-making.

Argument Mapping

Argument mapping is, roughly, making a picture of reasoning. Typically, argument maps are box and arrow diagrams, a bit like flowcharts. Belonging to the same family as mind mapping, argument mapping focuses specifically on the structure of a reason or argument, Argument mapping helps the user to come to a decision by weighing up the evidence for and against specifics, as well as providing a visual picture of where an argument or decision may fail due to an assumption being made.

Positive and negative arguments for potential alternative decisions can then be identified.

A simple decision-making example might look like this.

Should we build more roads in order to reduce traffic congestion in the city?

what is the connection among critical thinking decision making and problem solving

More information on the uses of argument maps and how to create them can be found using these links.

http://philosophy.hku.hk/think/arg/complex.php https://www.rationaleonline.com/docs/en/tutorials#tvy5fw

Critical Decision-Making Model

The critical decision-making model is a quick and easy tool that can be used by anyone who needs to make a decision. First briefly state the problem or decision to be made. Then identify at least three possible options or courses of action. As a simple example: Decision to be made: Should we employ more staff to answer the phones? Possible courses of action/options:

  • Employ more staff.
  • Install an automated system.
  • Accept that some people may have to be kept on hold until the existing staff can answer the phone.
  • Add a frequently asked questions section to the website to reduce the volume of similar calls.

Each course or action/option can then be evaluated to determine the best possible outcome. An argument map or a simple pros and cons list will help here.

Fact or Fiction

Simply write down a list of reasons supporting each possible option for the decision that needs to be made. Then write beside each one whether it is fact or fiction. Only determine something to be fact if the information can be backed up by accepted evidence such as statistics or case studies. For example:

The available options and the accompanying reasons might include:

Build more roads

  • more roads will reduce the amount of congestions
  • more roads will keep traffic moving faster
  • road users are less stressed when more roads are built

Develop public transport instead

  • improved public transport will reduce congestion
  • improved public transport is better for the environment
  • more people will use public transport if the service is more frequent

Some or all of these options may well be fact, however it should be checked that there is available evidence before stating this categorically. The purpose of this exercise is to show where assumptions have been made which may result in making the wrong decision.

Join Mind Tools and get access to exclusive content.

This resource is only available to Mind Tools members.

Already a member? Please Login here

what is the connection among critical thinking decision making and problem solving

Try Mind Tools for FREE

Get unlimited access to all our career-boosting content and member benefits with our 7-day free trial.

Sign-up to our newsletter

Subscribing to the Mind Tools newsletter will keep you up-to-date with our latest updates and newest resources.

Subscribe now

Business Skills

Personal Development

Leadership and Management

Member Extras

Most Popular

Newest Releases

Article aorqe4z

Building Good Work Relationships

Article agbhks2

Defeat Procrastination for Good

Mind Tools Store

About Mind Tools Content

Discover something new today

Pain points podcast - perfectionism.

Why Am I Such a Perfectionist?

NEW! Pain Points - Managing New Hires

Getting onboarding right

How Emotionally Intelligent Are You?

Boosting Your People Skills

Self-Assessment

What's Your Leadership Style?

Learn About the Strengths and Weaknesses of the Way You Like to Lead

Recommended for you

Defining benefits.

Choosing the Right Development Activities

Business Operations and Process Management

Strategy Tools

Customer Service

Business Ethics and Values

Handling Information and Data

Project Management

Knowledge Management

Self-Development and Goal Setting

Time Management

Presentation Skills

Learning Skills

Career Skills

Communication Skills

Negotiation, Persuasion and Influence

Working With Others

Difficult Conversations

Creativity Tools

Self-Management

Work-Life Balance

Stress Management and Wellbeing

Coaching and Mentoring

Change Management

Team Management

Managing Conflict

Delegation and Empowerment

Performance Management

Leadership Skills

Developing Your Team

Talent Management

Problem Solving

Decision Making

Member Podcast

Critical Thinking, Decision Making, and Problem Solving

Cite this chapter.

what is the connection among critical thinking decision making and problem solving

  • John Heywood 2  

Part of the book series: Synthesis Lectures on Engineering ((SLE))

75 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Unable to display preview.  Download preview PDF.

Polya, G. (1957). How to Solve it, 2nd ed., Garden City, Doubleday Anchor. 71

MATH   Google Scholar  

Red, W. E. (1981). Problem solving and beginning engineering students. Engineering Education, 72(2), pp. 167–170. 71

Google Scholar  

Rosati, P. A. (1987). Practising a problem solving strategy with computer tutorials. International Journal of Applied Engineering Education, 3(1), pp. 49–53. 71

Woods, D. R. et al. (1997). Developing problem solving skills: The McMaster problem solving program. Journal of Engineering Education, 86(2), pp. 75–91. 71, 79

Article   Google Scholar  

Fuller, M. and G. Kardos (1980). Structure and process in problem solving in J. Lubkin (Ed.), The Teaching of Problem Solving in Engineering and Related Fields. Washington, DC, ASEE. 71

Wales, C. E. and R. A. Stager (1986). Series of papers in issues, 5, 6, 7, and 8 in volume 62 in Engineering Education. 71

Maslow (i) makes a distinction between primary and secondary needs. The primary needs are basic, such as water, food, sex, lactation, urination, defecation, heat avoidance and cold avoidance. The secondary needs vary from person to person. They are ranked hierarchically in the sense that the primary needs have to be met before the secondary needs can be met. 71

D’Amour, G. and C. A. Wales (1977). Improving problem solving skills through a course in guided design. Engineering Education, February, pp. 381–384. Wales, C. E. and R. A. Stager (1986) issues 5, 6, 7, and 8 of Vol 62 of Engineering Education, contain a series of articles on guided design. 72

Wales, C. E., Nardi, A. H., and R. A. Stager (1986). Professional Decision Making. Mor-ganstown, WV, Center for Guided Design, West Virginia University. 72

Heywood, L. (2008). Instructional and Curriculum Leadership. Towards Inquiry Oriented Schools. Dublin. Original Writing for the National Association of Principals and Deputies. See also Heywood, J. (1996). An approach to teaching decision making skills using an engineering heuristic. ASEE/IEEE Proceedings Frontiers in Education Conference, 1, pp. 67–73. 72, 82

Luchins asked pupils in his research group to obtain specified amounts of water from three jars filled to different levels (capacity). He showed them first two problems which involved all three jars. In a further nine problems, the subjects mainly used the three-jar solution, to solve the problem when two jar solutions were possible. The “set” interfered with their problem solving. Subsequently Luchins divided another group into two subgroups. The first sub-group worked through the problem in the usual way, using the three jar solution. The second sub-group were told to think more carefully about how to solve the problems. Given that instruction, the majority of students in the second sub-group moved to the more simple solution using two jars. 73

Luchins, A. S. (1942). Mechanization in problems solving: The effect of “Einstellung.” Psychological Monographs, no 248.

The quotations in this paragraph come from Heywood (2008) [10]. More details of Ly-don’s plan, which was made available to future classes will also be found in that reference. 73, 75

Larkin, J. H. (1979). Processing information for effective problem solving. Engineering Education, 70(3), pp. 285–288. 73

Marton, F., Hounsell, D., and N. J. Entwistle (Eds.), (1984). The Experience of Learning. Edinburgh. Scottish Academic Press. 73

Cowan, J. (1998). One Becoming an Innovative University Teacher. Reflection in Action. Buckingham. SRHE/Open University Press. 73

McCracken, W. M. and W. C. Newstetter (2001). Text to diagram to symbol. Representational transformations in problem solving. ASEE/IEEE Proceedings Frontiers in Education Conference, F2G-13 to 17. 75

Cajander, A., Daniels, M., and B. R. Komsky (2011). Development of professional competencies in engineering education. ASEE/IEEE Proceedings Frontiers in Education Conference, S1C-1 to 5. 76

A recent review of critical thinking will be found in, Cooney, E., Alfrey, H., and S. Owens (2017). Critical thinking in engineering and technology. A review. Proceedings Annual Conference of the American Society for Engineering Education. Paper 1110. 76

Pascarella, E. T. and P. T. Terenzini (2005). How College Affects Students. A Third Decade, vol 2, San Fransisco. Josey Bass. 77

Kaupp, J. A., Frank, B. M., and A. S.-Y. Chen (2013). Investigating the impact of model eliciting activities on the development of critical thinking. Proceedings of Annual Conference of the American Society for Engineering Education. Paper 6432. 77

Lin, Y., Shahhosseini, A. M., and M. A. Badar (2017). Assessing conceptual mapping based active learning for advancing engineering diagnostic skills. Proceedings Annual Conference of the American Society for Engineering Education. Session T149. 77

The Joint Matriculation Board published each year reports of how the candidates performed in each of the questions. One comment on a question in engineering science was published by Carter, Heywood and Kelly (i). It illustrates just how difficult it is to design such questions. The report reads: “The figure (not shown here) represents some of the more important parts of a single bar, 1 kw radiant electric fire. Discuss the purpose of these components and suggest a suitable material for each. (Base your discussion on the function each part has to fulfil and requisite physical properties). Discuss the other factors that a manufacturer would consider in producing the components from particular materials. Describe and suggest materials for other parts which you believe will be necessary for satisfactory use of the fire, but which has not been indicated in the sketch.” 77 The examiners published comment on the answers was: “This was the most popular question and the most badly done. Only one of the two candidates calculated the resistance required for the element. Candidates tended not to answer the questions asked. E.g., they did not state the function of each of the parts of the fire and materials were often suggested without reasons. Candidates stated factors the manufacturer should consider, without discussion. The question was answered on the whole in too facile a number.” In (i) they expanded on this type of question as follows, “Although this type of question suffered from superficiality of response it was retained in similar form as a component of the examination for six years. However, significant attempts were made to direct candidates’ answers into more detailed engineering analyses of the problems set, by the requiring statements relevant, for example, to improved safety and efficiency, broadening the range of use or versatility of the device, and by specifying more closely, the parameters which were of most importance, e.g., electrical, mechanical, thermal or optical properties. Although this further guidance was given, the Examiners’ reports continued to indicate that a significant proportion of the candidates’ answers were superficial, and that the necessary skills for attempting such questions were not being fully developed by the curriculum study as hoped. In the seventh year, therefore, this type ofquestion was modified to consider not engineering devices, but engineering situations, and the methods of achieving solutions under a variety of constraints. Thus, in the next examination a question was set about the design of a technician’s preparation room and the modifications to the design which would be necessary by imposition of a 50% reduction in available finance after the first design stage. The topic was deliberately chosen to lie within the familiarity and experience of the candidates; logical argument and judgement about possible alternative solutions were required from the candidate. The realities of life were introduced into the question through economic constraints and the skills of evaluation and judgement were tested. This type of question is generally, most difficult to assess but with experience the examiners are readily able to evaluate the cogent and relevant arguments and detect the simplistic and facile. Since the introduction ofthis type ofquestion, there have been many excellent answers and there have been some signs ofa general improvement in the candidates’ engineering reasoning, synthesis and evaluative ability.” (i) Carter, G., Heywood, J., and D. T. Kelly (1986). Case Study in Curriculum Assessment. GCE Engineering Science (Advanced). Manchester. Roundthorn Press.

Download references

Author information

Authors and affiliations.

Trinity College Dublin-University of Dublin, Ireland

John Heywood

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Heywood, J. (2018). Critical Thinking, Decision Making, and Problem Solving. In: Empowering Professional Teaching in Engineering. Synthesis Lectures on Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-79382-0_6

Download citation

DOI : https://doi.org/10.1007/978-3-031-79382-0_6

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-79381-3

Online ISBN : 978-3-031-79382-0

eBook Packages : Synthesis Collection of Technology (R0) eBColl Synthesis Collection 8

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research
  • Subject List
  • Take a Tour
  • For Authors
  • Subscriber Services
  • Publications
  • African American Studies
  • African Studies
  • American Literature
  • Anthropology
  • Architecture Planning and Preservation
  • Art History
  • Atlantic History
  • Biblical Studies
  • British and Irish Literature
  • Childhood Studies
  • Chinese Studies
  • Cinema and Media Studies
  • Communication
  • Criminology
  • Environmental Science
  • Evolutionary Biology
  • International Law
  • International Relations
  • Islamic Studies
  • Jewish Studies
  • Latin American Studies
  • Latino Studies
  • Linguistics
  • Literary and Critical Theory
  • Medieval Studies
  • Military History
  • Political Science
  • Public Health
  • Renaissance and Reformation
  • Social Work
  • Urban Studies
  • Victorian Literature
  • Browse All Subjects

How to Subscribe

  • Free Trials

In This Article Expand or collapse the "in this article" section Problem Solving and Decision Making

Introduction.

  • General Approaches to Problem Solving
  • Representational Accounts
  • Problem Space and Search
  • Working Memory and Problem Solving
  • Domain-Specific Problem Solving
  • The Rational Approach
  • Prospect Theory
  • Dual-Process Theory
  • Cognitive Heuristics and Biases

Related Articles Expand or collapse the "related articles" section about

About related articles close popup.

Lorem Ipsum Sit Dolor Amet

Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam ligula odio, euismod ut aliquam et, vestibulum nec risus. Nulla viverra, arcu et iaculis consequat, justo diam ornare tellus, semper ultrices tellus nunc eu tellus.

  • Artificial Intelligence, Machine Learning, and Psychology
  • Counterfactual Reasoning
  • Critical Thinking
  • Heuristics and Biases
  • Protocol Analysis
  • Psychology and Law

Other Subject Areas

Forthcoming articles expand or collapse the "forthcoming articles" section.

  • Data Visualization
  • Remote Work
  • Workforce Training Evaluation
  • Find more forthcoming articles...
  • Export Citations
  • Share This Facebook LinkedIn Twitter

Problem Solving and Decision Making by Emily G. Nielsen , John Paul Minda LAST REVIEWED: 26 June 2019 LAST MODIFIED: 26 June 2019 DOI: 10.1093/obo/9780199828340-0246

Problem solving and decision making are both examples of complex, higher-order thinking. Both involve the assessment of the environment, the involvement of working memory or short-term memory, reliance on long term memory, effects of knowledge, and the application of heuristics to complete a behavior. A problem can be defined as an impasse or gap between a current state and a desired goal state. Problem solving is the set of cognitive operations that a person engages in to change the current state, to go beyond the impasse, and achieve a desired outcome. Problem solving involves the mental representation of the problem state and the manipulation of this representation in order to move closer to the goal. Problems can vary in complexity, abstraction, and how well defined (or not) the initial state and the goal state are. Research has generally approached problem solving by examining the behaviors and cognitive processes involved, and some work has examined problem solving using computational processes as well. Decision making is the process of selecting and choosing one action or behavior out of several alternatives. Like problem solving, decision making involves the coordination of memories and executive resources. Research on decision making has paid particular attention to the cognitive biases that account for suboptimal decisions and decisions that deviate from rationality. The current bibliography first outlines some general resources on the psychology of problem solving and decision making before examining each of these topics in detail. Specifically, this review covers cognitive, neuroscientific, and computational approaches to problem solving, as well as decision making models and cognitive heuristics and biases.

General Overviews

Current research in the area of problem solving and decision making is published in both general and specialized scientific journals. Theoretical and scholarly work is often summarized and developed in full-length books and chapter. These may focus on the subfields of problem solving and decision making or the larger field of thinking and higher-order cognition.

back to top

Users without a subscription are not able to see the full content on this page. Please subscribe or login .

Oxford Bibliographies Online is available by subscription and perpetual access to institutions. For more information or to contact an Oxford Sales Representative click here .

  • About Psychology »
  • Meet the Editorial Board »
  • Abnormal Psychology
  • Academic Assessment
  • Acculturation and Health
  • Action Regulation Theory
  • Action Research
  • Addictive Behavior
  • Adolescence
  • Adoption, Social, Psychological, and Evolutionary Perspect...
  • Advanced Theory of Mind
  • Affective Forecasting
  • Affirmative Action
  • Ageism at Work
  • Allport, Gordon
  • Alzheimer’s Disease
  • Ambulatory Assessment in Behavioral Science
  • Analysis of Covariance (ANCOVA)
  • Animal Behavior
  • Animal Learning
  • Anxiety Disorders
  • Art and Aesthetics, Psychology of
  • Assessment and Clinical Applications of Individual Differe...
  • Attachment in Social and Emotional Development across the ...
  • Attention-Deficit/Hyperactivity Disorder (ADHD) in Adults
  • Attention-Deficit/Hyperactivity Disorder (ADHD) in Childre...
  • Attitudinal Ambivalence
  • Attraction in Close Relationships
  • Attribution Theory
  • Authoritarian Personality
  • Bayesian Statistical Methods in Psychology
  • Behavior Therapy, Rational Emotive
  • Behavioral Economics
  • Behavioral Genetics
  • Belief Perseverance
  • Bereavement and Grief
  • Biological Psychology
  • Birth Order
  • Body Image in Men and Women
  • Bystander Effect
  • Categorical Data Analysis in Psychology
  • Childhood and Adolescence, Peer Victimization and Bullying...
  • Clark, Mamie Phipps
  • Clinical Neuropsychology
  • Clinical Psychology
  • Cognitive Consistency Theories
  • Cognitive Dissonance Theory
  • Cognitive Neuroscience
  • Communication, Nonverbal Cues and
  • Comparative Psychology
  • Competence to Stand Trial: Restoration Services
  • Competency to Stand Trial
  • Computational Psychology
  • Conflict Management in the Workplace
  • Conformity, Compliance, and Obedience
  • Consciousness
  • Coping Processes
  • Correspondence Analysis in Psychology
  • Counseling Psychology
  • Creativity at Work
  • Cross-Cultural Psychology
  • Cultural Psychology
  • Daily Life, Research Methods for Studying
  • Data Science Methods for Psychology
  • Data Sharing in Psychology
  • Death and Dying
  • Deceiving and Detecting Deceit
  • Defensive Processes
  • Depressive Disorders
  • Development, Prenatal
  • Developmental Psychology (Cognitive)
  • Developmental Psychology (Social)
  • Diagnostic and Statistical Manual of Mental Disorders (DSM...
  • Discrimination
  • Dissociative Disorders
  • Drugs and Behavior
  • Eating Disorders
  • Ecological Psychology
  • Educational Settings, Assessment of Thinking in
  • Effect Size
  • Embodiment and Embodied Cognition
  • Emerging Adulthood
  • Emotional Intelligence
  • Empathy and Altruism
  • Employee Stress and Well-Being
  • Environmental Neuroscience and Environmental Psychology
  • Ethics in Psychological Practice
  • Event Perception
  • Evolutionary Psychology
  • Expansive Posture
  • Experimental Existential Psychology
  • Exploratory Data Analysis
  • Eyewitness Testimony
  • Eysenck, Hans
  • Factor Analysis
  • Festinger, Leon
  • Five-Factor Model of Personality
  • Flynn Effect, The
  • Forensic Psychology
  • Forgiveness
  • Friendships, Children's
  • Fundamental Attribution Error/Correspondence Bias
  • Gambler's Fallacy
  • Game Theory and Psychology
  • Geropsychology, Clinical
  • Global Mental Health
  • Habit Formation and Behavior Change
  • Health Psychology
  • Health Psychology Research and Practice, Measurement in
  • Heider, Fritz
  • History of Psychology
  • Human Factors
  • Humanistic Psychology
  • Implicit Association Test (IAT)
  • Industrial and Organizational Psychology
  • Inferential Statistics in Psychology
  • Insanity Defense, The
  • Intelligence
  • Intelligence, Crystallized and Fluid
  • Intercultural Psychology
  • Intergroup Conflict
  • International Classification of Diseases and Related Healt...
  • International Psychology
  • Interviewing in Forensic Settings
  • Intimate Partner Violence, Psychological Perspectives on
  • Introversion–Extraversion
  • Item Response Theory
  • Law, Psychology and
  • Lazarus, Richard
  • Learned Helplessness
  • Learning Theory
  • Learning versus Performance
  • LGBTQ+ Romantic Relationships
  • Lie Detection in a Forensic Context
  • Life-Span Development
  • Locus of Control
  • Loneliness and Health
  • Mathematical Psychology
  • Meaning in Life
  • Mechanisms and Processes of Peer Contagion
  • Media Violence, Psychological Perspectives on
  • Mediation Analysis
  • Memories, Autobiographical
  • Memories, Flashbulb
  • Memories, Repressed and Recovered
  • Memory, False
  • Memory, Human
  • Memory, Implicit versus Explicit
  • Memory in Educational Settings
  • Memory, Semantic
  • Meta-Analysis
  • Metacognition
  • Metaphor, Psychological Perspectives on
  • Microaggressions
  • Military Psychology
  • Mindfulness
  • Mindfulness and Education
  • Minnesota Multiphasic Personality Inventory (MMPI)
  • Money, Psychology of
  • Moral Conviction
  • Moral Development
  • Moral Psychology
  • Moral Reasoning
  • Nature versus Nurture Debate in Psychology
  • Neuroscience of Associative Learning
  • Nonergodicity in Psychology and Neuroscience
  • Nonparametric Statistical Analysis in Psychology
  • Observational (Non-Randomized) Studies
  • Obsessive-Complusive Disorder (OCD)
  • Occupational Health Psychology
  • Olfaction, Human
  • Operant Conditioning
  • Optimism and Pessimism
  • Organizational Justice
  • Parenting Stress
  • Parenting Styles
  • Parents' Beliefs about Children
  • Path Models
  • Peace Psychology
  • Perception, Person
  • Performance Appraisal
  • Personality and Health
  • Personality Disorders
  • Personality Psychology
  • Person-Centered and Experiential Psychotherapies: From Car...
  • Phenomenological Psychology
  • Placebo Effects in Psychology
  • Play Behavior
  • Positive Psychological Capital (PsyCap)
  • Positive Psychology
  • Posttraumatic Stress Disorder (PTSD)
  • Prejudice and Stereotyping
  • Pretrial Publicity
  • Prisoner's Dilemma
  • Problem Solving and Decision Making
  • Procrastination
  • Prosocial Behavior
  • Prosocial Spending and Well-Being
  • Psycholinguistics
  • Psychological Literacy
  • Psychological Perspectives on Food and Eating
  • Psychology, Political
  • Psychoneuroimmunology
  • Psychophysics, Visual
  • Psychotherapy
  • Psychotic Disorders
  • Publication Bias in Psychology
  • Reasoning, Counterfactual
  • Rehabilitation Psychology
  • Relationships
  • Reliability–Contemporary Psychometric Conceptions
  • Religion, Psychology and
  • Replication Initiatives in Psychology
  • Research Methods
  • Risk Taking
  • Role of the Expert Witness in Forensic Psychology, The
  • Sample Size Planning for Statistical Power and Accurate Es...
  • Schizophrenic Disorders
  • School Psychology
  • School Psychology, Counseling Services in
  • Self, Gender and
  • Self, Psychology of the
  • Self-Construal
  • Self-Control
  • Self-Deception
  • Self-Determination Theory
  • Self-Efficacy
  • Self-Esteem
  • Self-Monitoring
  • Self-Regulation in Educational Settings
  • Self-Report Tests, Measures, and Inventories in Clinical P...
  • Sensation Seeking
  • Sex and Gender
  • Sexual Minority Parenting
  • Sexual Orientation
  • Signal Detection Theory and its Applications
  • Simpson's Paradox in Psychology
  • Single People
  • Single-Case Experimental Designs
  • Skinner, B.F.
  • Sleep and Dreaming
  • Small Groups
  • Social Class and Social Status
  • Social Cognition
  • Social Neuroscience
  • Social Support
  • Social Touch and Massage Therapy Research
  • Somatoform Disorders
  • Spatial Attention
  • Sports Psychology
  • Stanford Prison Experiment (SPE): Icon and Controversy
  • Stereotype Threat
  • Stereotypes
  • Stress and Coping, Psychology of
  • Student Success in College
  • Subjective Wellbeing Homeostasis
  • Taste, Psychological Perspectives on
  • Teaching of Psychology
  • Terror Management Theory
  • Testing and Assessment
  • The Concept of Validity in Psychological Assessment
  • The Neuroscience of Emotion Regulation
  • The Reasoned Action Approach and the Theories of Reasoned ...
  • The Weapon Focus Effect in Eyewitness Memory
  • Theory of Mind
  • Therapy, Cognitive-Behavioral
  • Thinking Skills in Educational Settings
  • Time Perception
  • Trait Perspective
  • Trauma Psychology
  • Twin Studies
  • Type A Behavior Pattern (Coronary Prone Personality)
  • Unconscious Processes
  • Video Games and Violent Content
  • Virtues and Character Strengths
  • Women and Science, Technology, Engineering, and Math (STEM...
  • Women, Psychology of
  • Work Well-Being
  • Wundt, Wilhelm
  • Privacy Policy
  • Cookie Policy
  • Legal Notice
  • Accessibility

Powered by:

  • [66.249.64.20|185.80.151.9]
  • 185.80.151.9

SLO campus power restored at 8:13am

  • Cuesta College Home
  • Current Students
  • Student Success Centers

Study Guides

  • Critical Thinking

Decision-making and Problem-solving

Appreciate the complexities involved in decision-making & problem solving.

Develop evidence to support views

Analyze situations carefully

Discuss subjects in an organized way

Predict the consequences of actions

Weigh alternatives

Generate and organize ideas

Form and apply concepts

Design systematic plans of action

A 5-Step Problem-Solving Strategy

Specify the problem – a first step to solving a problem is to identify it as specifically as possible.  It involves evaluating the present state and determining how it differs from the goal state.

Analyze the problem – analyzing the problem involves learning as much as you can about it.  It may be necessary to look beyond the obvious, surface situation, to stretch your imagination and reach for more creative options.

seek other perspectives

be flexible in your analysis

consider various strands of impact

brainstorm about all possibilities and implications

research problems for which you lack complete information. Get help.

Formulate possible solutions – identify a wide range of possible solutions.

try to think of all possible solutions

be creative

consider similar problems and how you have solved them

Evaluate possible solutions – weigh the advantages and disadvantages of each solution.  Think through each solution and consider how, when, and where you could accomplish each.  Consider both immediate and long-term results.  Mapping your solutions can be helpful at this stage.

Choose a solution – consider 3 factors:

compatibility with your priorities

amount of risk

practicality

Keys to Problem Solving

Think aloud – problem solving is a cognitive, mental process.  Thinking aloud or talking yourself through the steps of problem solving is useful.  Hearing yourself think can facilitate the process.

Allow time for ideas to "gel" or consolidate.  If time permits, give yourself time for solutions to develop.  Distance from a problem can allow you to clear your mind and get a new perspective.

Talk about the problem – describing the problem to someone else and talking about it can often make a problem become more clear and defined so that a new solution will surface.

Decision Making Strategies

Decision making is a process of identifying and evaluating choices.  We make numerous decisions every day and our decisions may range from routine, every-day types of decisions to those decisions which will have far reaching impacts.  The types of decisions we make are routine, impulsive, and reasoned.  Deciding what to eat for breakfast is a routine decision; deciding to do or buy something at the last minute is considered an impulsive decision; and choosing your college major is, hopefully, a reasoned decision.  College coursework often requires you to make the latter, or reasoned decisions.

Decision making has much in common with problem solving.  In problem solving you identify and evaluate solution paths; in decision making you make a similar discovery and evaluation of alternatives.  The crux of decision making, then, is the careful identification and evaluation of alternatives.  As you weigh alternatives, use the following suggestions:

Consider the outcome each is likely to produce, in both the short term and the long term.

Compare alternatives based on how easily you can accomplish each.

Evaluate possible negative side effects each may produce.

Consider the risk involved in each.

Be creative, original; don't eliminate alternatives because you have not heard or used them before.

An important part of decision making is to predict both short-term and long-term outcomes for each alternative.  You may find that while an alternative seems most desirable at the present, it may pose problems or complications over a longer time period.

  • Uses of Critical Thinking
  • Critically Evaluating the Logic and Validity of Information
  • Recognizing Propaganda Techniques and Errors of Faulty Logic
  • Developing the Ability to Analyze Historical and Contemporary Information
  • Recognize and Value Various Viewpoints
  • Appreciating the Complexities Involved in Decision-Making and Problem-Solving
  • Being a Responsible Critical Thinker & Collaborating with Others
  • Suggestions
  • Read the Textbook
  • When to Take Notes
  • 10 Steps to Tests
  • Studying for Exams
  • Test-Taking Errors
  • Test Anxiety
  • Objective Tests
  • Essay Tests
  • The Reading Process
  • Levels of Comprehension
  • Strengthen Your Reading Comprehension
  • Reading Rate
  • How to Read a Textbook
  • Organizational Patterns of a Paragraph
  • Topics, Main Ideas, and Support
  • Inferences and Conclusions
  • Interpreting What You Read
  • Concentrating and Remembering
  • Converting Words into Pictures
  • Spelling and the Dictionary
  • Eight Essential Spelling Rules
  • Exceptions to the Rules
  • Motivation and Goal Setting
  • Effective Studying
  • Time Management
  • Listening and Note-Taking
  • Memory and Learning Styles
  • Textbook Reading Strategies
  • Memory Tips
  • Test-Taking Strategies
  • The First Step
  • Study System
  • Maximize Comprehension
  • Different Reading Modes
  • Paragraph Patterns
  • An Effective Strategy
  • Finding the Main Idea
  • Read a Medical Text
  • Read in the Sciences
  • Read University Level
  • Textbook Study Strategies
  • The Origin of Words
  • Using a Dictionary
  • Interpreting a Dictionary Entry
  • Structure Analysis
  • Common Roots
  • Word Relationships
  • Using Word Relationships
  • Context Clues
  • The Importance of Reading
  • Vocabulary Analogies
  • Guide to Talking with Instructors
  • Writing Help

Miossi Art Gallery Presents Annual Student Art Showcase

Cuesta college's book of the year presents acclaimed author myriam gurba, cuesta college nursing students host senior wellness fair.

The priority deadlines for the 2024-2025 FAFSA  and CADAA have moved to May 2nd, 2024

Visit the Financial Aid website for more information

More From Forbes

The power of critical thinking: enhancing decision-making and problem-solving.

Forbes Coaches Council

  • Share to Facebook
  • Share to Twitter
  • Share to Linkedin

Dr. Ron Young, Founder and Board Chair of Trove, Inc . Ron specializes in psychological coaching & transition consulting.

Critical thinking is a fundamental cognitive process that enables individuals to objectively analyze, evaluate and interpret information to make informed decisions and solve complex problems. It involves employing reasoning and logic, questioning assumptions, recognizing biases and considering multiple perspectives. It requires self-monitored, self-directed, self-disciplined and self-corrective thinking. Critical thinking is essential in a world of information and diverse opinions. It helps us see things more clearly and avoid being misled or deceived.

Importance Of Critical Thinking

Critical thinking is crucial in various aspects of life, including education, professional endeavors and personal decision-making. In academic settings, it allows students to comprehend and engage with complex subjects while discerning valid arguments from fallacious ones. In the workplace, critical thinking empowers individuals to analyze problems, devise creative solutions and make informed judgments. In everyday life, it helps individuals navigate an increasingly complex world by making sound choices and avoiding cognitive biases. It is our primary defense against misleading or "spun" information.

Benefits Of Critical Thinking

There are many benefits of critical thinking.

Enhanced Decision-Making

Critical thinking helps us trust our gut feelings and think independently. It enables individuals to make logical and well-reasoned decisions based on evidence and objective analysis. It encourages the consideration of all relevant factors and the evaluation of potential consequences, leading to more informed choices.

Best High-Yield Savings Accounts Of 2024

Best 5% interest savings accounts of 2024, effective problem-solving.

Critical thinking facilitates the identification of underlying issues, the generation of innovative solutions and the evaluation of their viability. It encourages individuals to approach problems from different angles and consider various perspectives, increasing the likelihood of finding effective resolutions.

Reduction Of Cognitive Biases

Critical thinking supports self-reflection. It helps individuals recognize and challenge cognitive biases that hinder clear judgment. Individuals can better overcome confirmation bias, groupthink and the availability heuristic (judging the likelihood of an event based on recall of similar events) by understanding and questioning their assumptions and beliefs. It requires a commitment to overcoming the tendency to see the world from a narrow, self-centered perspective.

Enhanced Communication Skills

Practicing critical thinking fosters effective communication by enabling individuals to articulate and defend their ideas with logical reasoning and evidence. It encourages active listening, empathy and the ability to evaluate and respond to counterarguments, leading to more constructive and meaningful discussions.

More United Citizens

Using critical thinking enables citizens to see the whole picture by better protecting against biases and propaganda. It reduces partisanship and a “we/they” mentality.

Cultivating Critical Thinking

How can you cultivate critical thinking?

Be curious and inquisitive.

Foster a mindset of curiosity and an eagerness to explore and understand the world. Talk with people from different backgrounds, cultures, political affiliations or religions. Ask probing questions, seek new perspectives and engage in active learning. Learn from people who hold different viewpoints.

Develop analytical skills.

You can do this by learning to break down complex problems into manageable parts, recognize patterns and identify cause-and-effect relationships. Remember, not all opinions are equal, and some are flat-out wrong.

Evaluate information.

Develop skills to evaluate the credibility and reliability of information sources. Be aware of bias, assess evidence and differentiate between fact and opinion. Guard against "swallowing information whole" or believing that "If it's on the internet, it must be true."

Practice reflection.

Engage in reflective thinking by evaluating your thoughts, beliefs and assumptions. Consider alternative viewpoints, and be open to changing your perspective based on new information.

Embrace intellectual humility.

Be humble and aware that you could be wrong. Knowledge is an ongoing process; be open to admitting mistakes or gaps in understanding. Embrace a growth mindset that values continuous learning and improvement.

Develop your sense of belonging.

The third tier in Maslow's hierarchy of needs is a sense of belonging. One aspect of belonging is connection. All humans have this need. Without critical thinking, we are vulnerable to making our group's beliefs our own rather than evaluating which beliefs align with our values.

Align your view and your values.

Rather than defining yourself by a particular view, ask whether a different view aligns with your values. When we identify ourselves by the beliefs of our reference group (religious, political, etc.), we look for ways to justify our ideas. In doing so, we deny ourselves access to critical thinking.

Evidence Of Critical Thinking

When you practice critical thinking, it will be evident in several areas:

Evidence-Based Decision-Making

Rely on facts rather than emotions or personal biases. Follow five distinct steps, called the five A’s : ask, access, appraise, apply and audit. Gather relevant information, evaluate the evidence objectively and consider different perspectives before making decisions. Then reevaluate them as you learn new information.

Problem-Solving

Approach problems systematically by defining the issue, gathering relevant data, brainstorming potential solutions and evaluating feasibility. Engage in collaborative problem-solving to benefit from diverse perspectives. Open-mindedly consider alternative systems of thought. Recognize assumptions, implications and practical consequences, then adjust as needed.

Effective Communication

Solve complex problems by clearly and effectively communicating with others. Utilize critical thinking skills to articulate your thoughts clearly, listen actively and engage in respectful and constructive dialogue. Challenge ideas through logical arguments and evidence rather than resorting to personal attacks. Respecting people with different views does not mean you agree with their opinions. Evaluate, formulate and communicate questions with clarity and precision.

Continuous Learning

Apply critical thinking to ongoing personal and professional development. Seek opportunities for further education, engage in intellectual discourse and actively challenge your beliefs and assumptions.

Using Critical Thinking

Critical thinking is a powerful cognitive tool that empowers individuals to navigate the complexities of the modern world. Critical thinking enhances decision-making, problem-solving and communication abilities by fostering logical reasoning, analytical skills and an open mindset. It enables individuals to overcome cognitive biases, evaluate information effectively and make informed choices. Cultivating and applying critical thinking skills benefits individuals and contributes to a more thoughtful and rational society. Embracing critical thinking is essential for fostering intellectual growth, facilitating progress and addressing the challenges of the 21st century.

Forbes Coaches Council is an invitation-only community for leading business and career coaches. Do I qualify?

Ron Young

  • Editorial Standards
  • Reprints & Permissions
  • Departments, units, and programs
  • College leadership
  • Diversity, equity, and inclusion
  • Faculty and staff resources
  • LAS Strategic Plan

Facebook

  • Apply to LAS
  • Liberal arts & sciences majors
  • LAS Insider blog
  • Admissions FAQs
  • Parent resources
  • Pre-college summer programs

Quick Links

Request info

  • Academic policies and standing
  • Advising and support
  • College distinctions
  • Dates and deadlines
  • Intercollegiate transfers
  • LAS Lineup student newsletter
  • Programs of study
  • Scholarships
  • Certificates
  • Student emergencies

Student resources

  • Access and Achievement Program
  • Career services
  • First-Year Experience
  • Honors program
  • International programs
  • Internship opportunities
  • Paul M. Lisnek LAS Hub
  • Student research opportunities
  • Expertise in LAS
  • Research facilities and centers
  • Dean's Distinguished Lecture series
  • Alumni advice
  • Alumni award programs
  • Get involved
  • LAS Alumni Council
  • LAS@Work: Alumni careers
  • Study Abroad Alumni Networks
  • Update your information
  • Nominate an alumnus for an LAS award
  • Faculty honors
  • The Quadrangle Online
  • LAS News email newsletter archive
  • LAS social media
  • Media contact in the College of LAS
  • LAS Landmark Day of Giving
  • About giving to LAS
  • Building projects
  • Corporate engagement
  • Faculty support
  • Lincoln Scholars Initiative
  • Impact of giving

Why is critical thinking important?

What do lawyers, accountants, teachers, and doctors all have in common?

Students in the School of Literatures, Languages, Cultures, and Linguistics give a presentation in a classroom in front of a screen

What is critical thinking?

The Oxford English Dictionary defines critical thinking as “The objective, systematic, and rational analysis and evaluation of factual evidence in order to form a judgment on a subject, issue, etc.” Critical thinking involves the use of logic and reasoning to evaluate available facts and/or evidence to come to a conclusion about a certain subject or topic. We use critical thinking every day, from decision-making to problem-solving, in addition to thinking critically in an academic context!

Why is critical thinking important for academic success?

You may be asking “why is critical thinking important for students?” Critical thinking appears in a diverse set of disciplines and impacts students’ learning every day, regardless of major.

Critical thinking skills are often associated with the value of studying the humanities. In majors such as English, students will be presented with a certain text—whether it’s a novel, short story, essay, or even film—and will have to use textual evidence to make an argument and then defend their argument about what they’ve read. However, the importance of critical thinking does not only apply to the humanities. In the social sciences, an economics major , for example, will use what they’ve learned to figure out solutions to issues as varied as land and other natural resource use, to how much people should work, to how to develop human capital through education. Problem-solving and critical thinking go hand in hand. Biology is a popular major within LAS, and graduates of the biology program often pursue careers in the medical sciences. Doctors use critical thinking every day, tapping into the knowledge they acquired from studying the biological sciences to diagnose and treat different diseases and ailments.

Students in the College of LAS take many courses that require critical thinking before they graduate. You may be asked in an Economics class to use statistical data analysis to evaluate the impact on home improvement spending when the Fed increases interest rates (read more about real-world experience with Datathon ). If you’ve ever been asked “How often do you think about the Roman Empire?”, you may find yourself thinking about the Roman Empire more than you thought—maybe in an English course, where you’ll use text from Shakespeare’s Antony and Cleopatra to make an argument about Roman imperial desire.  No matter what the context is, critical thinking will be involved in your academic life and can take form in many different ways.

The benefits of critical thinking in everyday life

Building better communication.

One of the most important life skills that students learn as early as elementary school is how to give a presentation. Many classes require students to give presentations, because being well-spoken is a key skill in effective communication. This is where critical thinking benefits come into play: using the skills you’ve learned, you’ll be able to gather the information needed for your presentation, narrow down what information is most relevant, and communicate it in an engaging way. 

Typically, the first step in creating a presentation is choosing a topic. For example, your professor might assign a presentation on the Gilded Age and provide a list of figures from the 1870s—1890s to choose from. You’ll use your critical thinking skills to narrow down your choices. You may ask yourself:

  • What figure am I most familiar with?
  • Who am I most interested in? 
  • Will I have to do additional research? 

After choosing your topic, your professor will usually ask a guiding question to help you form a thesis: an argument that is backed up with evidence. Critical thinking benefits this process by allowing you to focus on the information that is most relevant in support of your argument. By focusing on the strongest evidence, you will communicate your thesis clearly.

Finally, once you’ve finished gathering information, you will begin putting your presentation together. Creating a presentation requires a balance of text and visuals. Graphs and tables are popular visuals in STEM-based projects, but digital images and graphics are effective as well. Critical thinking benefits this process because the right images and visuals create a more dynamic experience for the audience, giving them the opportunity to engage with the material.

Presentation skills go beyond the classroom. Students at the University of Illinois will often participate in summer internships to get professional experience before graduation. Many summer interns are required to present about their experience and what they learned at the end of the internship. Jobs frequently also require employees to create presentations of some kind—whether it’s an advertising pitch to win an account from a potential client, or quarterly reporting, giving a presentation is a life skill that directly relates to critical thinking. 

Fostering independence and confidence

An important life skill many people start learning as college students and then finessing once they enter the “adult world” is how to budget. There will be many different expenses to keep track of, including rent, bills, car payments, and groceries, just to name a few! After developing your critical thinking skills, you’ll put them to use to consider your salary and budget your expenses accordingly. Here’s an example:

  • You earn a salary of $75,000 a year. Assume all amounts are before taxes.
  • 1,800 x 12 = 21,600
  • 75,000 – 21,600 = 53,400
  • This leaves you with $53,400
  • 320 x 12 = 3,840 a year
  • 53,400-3,840= 49,560
  • 726 x 12 = 8,712
  • 49,560 – 8,712= 40,848
  • You’re left with $40,848 for miscellaneous expenses. You use your critical thinking skills to decide what to do with your $40,848. You think ahead towards your retirement and decide to put $500 a month into a Roth IRA, leaving $34,848. Since you love coffee, you try to figure out if you can afford a daily coffee run. On average, a cup of coffee will cost you $7. 7 x 365 = $2,555 a year for coffee. 34,848 – 2,555 = 32,293
  • You have $32,293 left. You will use your critical thinking skills to figure out how much you would want to put into savings, how much you want to save to treat yourself from time to time, and how much you want to put aside for emergency funds. With the benefits of critical thinking, you will be well-equipped to budget your lifestyle once you enter the working world.

Enhancing decision-making skills

Choosing the right university for you.

One of the biggest decisions you’ll make in your life is what college or university to go to. There are many factors to consider when making this decision, and critical thinking importance will come into play when determining these factors.

Many high school seniors apply to colleges with the hope of being accepted into a certain program, whether it’s biology, psychology, political science, English, or something else entirely. Some students apply with certain schools in mind due to overall rankings. Students also consider the campus a school is set in. While some universities such as the University of Illinois are nestled within college towns, New York University is right in Manhattan, in a big city setting. Some students dream of going to large universities, and other students prefer smaller schools. The diversity of a university’s student body is also a key consideration. For many 17- and 18-year-olds, college is a time to meet peers from diverse racial and socio-economic backgrounds and learn about life experiences different than one’s own.

With all these factors in mind, you’ll use critical thinking to decide which are most important to you—and which school is the right fit for you.

Develop your critical thinking skills at the University of Illinois

At the University of Illinois, not only will you learn how to think critically, but you will put critical thinking into practice. In the College of LAS, you can choose from 70+ majors where you will learn the importance and benefits of critical thinking skills. The College of Liberal Arts & Sciences at U of I offers a wide range of undergraduate and graduate programs in life, physical, and mathematical sciences; humanities; and social and behavioral sciences. No matter which program you choose, you will develop critical thinking skills as you go through your courses in the major of your choice. And in those courses, the first question your professors may ask you is, “What is the goal of critical thinking?” You will be able to respond with confidence that the goal of critical thinking is to help shape people into more informed, more thoughtful members of society.

With such a vast representation of disciplines, an education in the College of LAS will prepare you for a career where you will apply critical thinking skills to real life, both in and outside of the classroom, from your undergraduate experience to your professional career. If you’re interested in becoming a part of a diverse set of students and developing skills for lifelong success, apply to LAS today!

Read more first-hand stories from our amazing students at the LAS Insider blog .

  • Privacy Notice
  • Accessibility

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Review Article
  • Open access
  • Published: 11 January 2023

The effectiveness of collaborative problem solving in promoting students’ critical thinking: A meta-analysis based on empirical literature

  • Enwei Xu   ORCID: orcid.org/0000-0001-6424-8169 1 ,
  • Wei Wang 1 &
  • Qingxia Wang 1  

Humanities and Social Sciences Communications volume  10 , Article number:  16 ( 2023 ) Cite this article

14k Accesses

13 Citations

3 Altmetric

Metrics details

  • Science, technology and society

Collaborative problem-solving has been widely embraced in the classroom instruction of critical thinking, which is regarded as the core of curriculum reform based on key competencies in the field of education as well as a key competence for learners in the 21st century. However, the effectiveness of collaborative problem-solving in promoting students’ critical thinking remains uncertain. This current research presents the major findings of a meta-analysis of 36 pieces of the literature revealed in worldwide educational periodicals during the 21st century to identify the effectiveness of collaborative problem-solving in promoting students’ critical thinking and to determine, based on evidence, whether and to what extent collaborative problem solving can result in a rise or decrease in critical thinking. The findings show that (1) collaborative problem solving is an effective teaching approach to foster students’ critical thinking, with a significant overall effect size (ES = 0.82, z  = 12.78, P  < 0.01, 95% CI [0.69, 0.95]); (2) in respect to the dimensions of critical thinking, collaborative problem solving can significantly and successfully enhance students’ attitudinal tendencies (ES = 1.17, z  = 7.62, P  < 0.01, 95% CI[0.87, 1.47]); nevertheless, it falls short in terms of improving students’ cognitive skills, having only an upper-middle impact (ES = 0.70, z  = 11.55, P  < 0.01, 95% CI[0.58, 0.82]); and (3) the teaching type (chi 2  = 7.20, P  < 0.05), intervention duration (chi 2  = 12.18, P  < 0.01), subject area (chi 2  = 13.36, P  < 0.05), group size (chi 2  = 8.77, P  < 0.05), and learning scaffold (chi 2  = 9.03, P  < 0.01) all have an impact on critical thinking, and they can be viewed as important moderating factors that affect how critical thinking develops. On the basis of these results, recommendations are made for further study and instruction to better support students’ critical thinking in the context of collaborative problem-solving.

Similar content being viewed by others

what is the connection among critical thinking decision making and problem solving

Fostering twenty-first century skills among primary school students through math project-based learning

what is the connection among critical thinking decision making and problem solving

A meta-analysis to gauge the impact of pedagogies employed in mixed-ability high school biology classrooms

what is the connection among critical thinking decision making and problem solving

A guide to critical thinking: implications for dental education

Introduction.

Although critical thinking has a long history in research, the concept of critical thinking, which is regarded as an essential competence for learners in the 21st century, has recently attracted more attention from researchers and teaching practitioners (National Research Council, 2012 ). Critical thinking should be the core of curriculum reform based on key competencies in the field of education (Peng and Deng, 2017 ) because students with critical thinking can not only understand the meaning of knowledge but also effectively solve practical problems in real life even after knowledge is forgotten (Kek and Huijser, 2011 ). The definition of critical thinking is not universal (Ennis, 1989 ; Castle, 2009 ; Niu et al., 2013 ). In general, the definition of critical thinking is a self-aware and self-regulated thought process (Facione, 1990 ; Niu et al., 2013 ). It refers to the cognitive skills needed to interpret, analyze, synthesize, reason, and evaluate information as well as the attitudinal tendency to apply these abilities (Halpern, 2001 ). The view that critical thinking can be taught and learned through curriculum teaching has been widely supported by many researchers (e.g., Kuncel, 2011 ; Leng and Lu, 2020 ), leading to educators’ efforts to foster it among students. In the field of teaching practice, there are three types of courses for teaching critical thinking (Ennis, 1989 ). The first is an independent curriculum in which critical thinking is taught and cultivated without involving the knowledge of specific disciplines; the second is an integrated curriculum in which critical thinking is integrated into the teaching of other disciplines as a clear teaching goal; and the third is a mixed curriculum in which critical thinking is taught in parallel to the teaching of other disciplines for mixed teaching training. Furthermore, numerous measuring tools have been developed by researchers and educators to measure critical thinking in the context of teaching practice. These include standardized measurement tools, such as WGCTA, CCTST, CCTT, and CCTDI, which have been verified by repeated experiments and are considered effective and reliable by international scholars (Facione and Facione, 1992 ). In short, descriptions of critical thinking, including its two dimensions of attitudinal tendency and cognitive skills, different types of teaching courses, and standardized measurement tools provide a complex normative framework for understanding, teaching, and evaluating critical thinking.

Cultivating critical thinking in curriculum teaching can start with a problem, and one of the most popular critical thinking instructional approaches is problem-based learning (Liu et al., 2020 ). Duch et al. ( 2001 ) noted that problem-based learning in group collaboration is progressive active learning, which can improve students’ critical thinking and problem-solving skills. Collaborative problem-solving is the organic integration of collaborative learning and problem-based learning, which takes learners as the center of the learning process and uses problems with poor structure in real-world situations as the starting point for the learning process (Liang et al., 2017 ). Students learn the knowledge needed to solve problems in a collaborative group, reach a consensus on problems in the field, and form solutions through social cooperation methods, such as dialogue, interpretation, questioning, debate, negotiation, and reflection, thus promoting the development of learners’ domain knowledge and critical thinking (Cindy, 2004 ; Liang et al., 2017 ).

Collaborative problem-solving has been widely used in the teaching practice of critical thinking, and several studies have attempted to conduct a systematic review and meta-analysis of the empirical literature on critical thinking from various perspectives. However, little attention has been paid to the impact of collaborative problem-solving on critical thinking. Therefore, the best approach for developing and enhancing critical thinking throughout collaborative problem-solving is to examine how to implement critical thinking instruction; however, this issue is still unexplored, which means that many teachers are incapable of better instructing critical thinking (Leng and Lu, 2020 ; Niu et al., 2013 ). For example, Huber ( 2016 ) provided the meta-analysis findings of 71 publications on gaining critical thinking over various time frames in college with the aim of determining whether critical thinking was truly teachable. These authors found that learners significantly improve their critical thinking while in college and that critical thinking differs with factors such as teaching strategies, intervention duration, subject area, and teaching type. The usefulness of collaborative problem-solving in fostering students’ critical thinking, however, was not determined by this study, nor did it reveal whether there existed significant variations among the different elements. A meta-analysis of 31 pieces of educational literature was conducted by Liu et al. ( 2020 ) to assess the impact of problem-solving on college students’ critical thinking. These authors found that problem-solving could promote the development of critical thinking among college students and proposed establishing a reasonable group structure for problem-solving in a follow-up study to improve students’ critical thinking. Additionally, previous empirical studies have reached inconclusive and even contradictory conclusions about whether and to what extent collaborative problem-solving increases or decreases critical thinking levels. As an illustration, Yang et al. ( 2008 ) carried out an experiment on the integrated curriculum teaching of college students based on a web bulletin board with the goal of fostering participants’ critical thinking in the context of collaborative problem-solving. These authors’ research revealed that through sharing, debating, examining, and reflecting on various experiences and ideas, collaborative problem-solving can considerably enhance students’ critical thinking in real-life problem situations. In contrast, collaborative problem-solving had a positive impact on learners’ interaction and could improve learning interest and motivation but could not significantly improve students’ critical thinking when compared to traditional classroom teaching, according to research by Naber and Wyatt ( 2014 ) and Sendag and Odabasi ( 2009 ) on undergraduate and high school students, respectively.

The above studies show that there is inconsistency regarding the effectiveness of collaborative problem-solving in promoting students’ critical thinking. Therefore, it is essential to conduct a thorough and trustworthy review to detect and decide whether and to what degree collaborative problem-solving can result in a rise or decrease in critical thinking. Meta-analysis is a quantitative analysis approach that is utilized to examine quantitative data from various separate studies that are all focused on the same research topic. This approach characterizes the effectiveness of its impact by averaging the effect sizes of numerous qualitative studies in an effort to reduce the uncertainty brought on by independent research and produce more conclusive findings (Lipsey and Wilson, 2001 ).

This paper used a meta-analytic approach and carried out a meta-analysis to examine the effectiveness of collaborative problem-solving in promoting students’ critical thinking in order to make a contribution to both research and practice. The following research questions were addressed by this meta-analysis:

What is the overall effect size of collaborative problem-solving in promoting students’ critical thinking and its impact on the two dimensions of critical thinking (i.e., attitudinal tendency and cognitive skills)?

How are the disparities between the study conclusions impacted by various moderating variables if the impacts of various experimental designs in the included studies are heterogeneous?

This research followed the strict procedures (e.g., database searching, identification, screening, eligibility, merging, duplicate removal, and analysis of included studies) of Cooper’s ( 2010 ) proposed meta-analysis approach for examining quantitative data from various separate studies that are all focused on the same research topic. The relevant empirical research that appeared in worldwide educational periodicals within the 21st century was subjected to this meta-analysis using Rev-Man 5.4. The consistency of the data extracted separately by two researchers was tested using Cohen’s kappa coefficient, and a publication bias test and a heterogeneity test were run on the sample data to ascertain the quality of this meta-analysis.

Data sources and search strategies

There were three stages to the data collection process for this meta-analysis, as shown in Fig. 1 , which shows the number of articles included and eliminated during the selection process based on the statement and study eligibility criteria.

figure 1

This flowchart shows the number of records identified, included and excluded in the article.

First, the databases used to systematically search for relevant articles were the journal papers of the Web of Science Core Collection and the Chinese Core source journal, as well as the Chinese Social Science Citation Index (CSSCI) source journal papers included in CNKI. These databases were selected because they are credible platforms that are sources of scholarly and peer-reviewed information with advanced search tools and contain literature relevant to the subject of our topic from reliable researchers and experts. The search string with the Boolean operator used in the Web of Science was “TS = (((“critical thinking” or “ct” and “pretest” or “posttest”) or (“critical thinking” or “ct” and “control group” or “quasi experiment” or “experiment”)) and (“collaboration” or “collaborative learning” or “CSCL”) and (“problem solving” or “problem-based learning” or “PBL”))”. The research area was “Education Educational Research”, and the search period was “January 1, 2000, to December 30, 2021”. A total of 412 papers were obtained. The search string with the Boolean operator used in the CNKI was “SU = (‘critical thinking’*‘collaboration’ + ‘critical thinking’*‘collaborative learning’ + ‘critical thinking’*‘CSCL’ + ‘critical thinking’*‘problem solving’ + ‘critical thinking’*‘problem-based learning’ + ‘critical thinking’*‘PBL’ + ‘critical thinking’*‘problem oriented’) AND FT = (‘experiment’ + ‘quasi experiment’ + ‘pretest’ + ‘posttest’ + ‘empirical study’)” (translated into Chinese when searching). A total of 56 studies were found throughout the search period of “January 2000 to December 2021”. From the databases, all duplicates and retractions were eliminated before exporting the references into Endnote, a program for managing bibliographic references. In all, 466 studies were found.

Second, the studies that matched the inclusion and exclusion criteria for the meta-analysis were chosen by two researchers after they had reviewed the abstracts and titles of the gathered articles, yielding a total of 126 studies.

Third, two researchers thoroughly reviewed each included article’s whole text in accordance with the inclusion and exclusion criteria. Meanwhile, a snowball search was performed using the references and citations of the included articles to ensure complete coverage of the articles. Ultimately, 36 articles were kept.

Two researchers worked together to carry out this entire process, and a consensus rate of almost 94.7% was reached after discussion and negotiation to clarify any emerging differences.

Eligibility criteria

Since not all the retrieved studies matched the criteria for this meta-analysis, eligibility criteria for both inclusion and exclusion were developed as follows:

The publication language of the included studies was limited to English and Chinese, and the full text could be obtained. Articles that did not meet the publication language and articles not published between 2000 and 2021 were excluded.

The research design of the included studies must be empirical and quantitative studies that can assess the effect of collaborative problem-solving on the development of critical thinking. Articles that could not identify the causal mechanisms by which collaborative problem-solving affects critical thinking, such as review articles and theoretical articles, were excluded.

The research method of the included studies must feature a randomized control experiment or a quasi-experiment, or a natural experiment, which have a higher degree of internal validity with strong experimental designs and can all plausibly provide evidence that critical thinking and collaborative problem-solving are causally related. Articles with non-experimental research methods, such as purely correlational or observational studies, were excluded.

The participants of the included studies were only students in school, including K-12 students and college students. Articles in which the participants were non-school students, such as social workers or adult learners, were excluded.

The research results of the included studies must mention definite signs that may be utilized to gauge critical thinking’s impact (e.g., sample size, mean value, or standard deviation). Articles that lacked specific measurement indicators for critical thinking and could not calculate the effect size were excluded.

Data coding design

In order to perform a meta-analysis, it is necessary to collect the most important information from the articles, codify that information’s properties, and convert descriptive data into quantitative data. Therefore, this study designed a data coding template (see Table 1 ). Ultimately, 16 coding fields were retained.

The designed data-coding template consisted of three pieces of information. Basic information about the papers was included in the descriptive information: the publishing year, author, serial number, and title of the paper.

The variable information for the experimental design had three variables: the independent variable (instruction method), the dependent variable (critical thinking), and the moderating variable (learning stage, teaching type, intervention duration, learning scaffold, group size, measuring tool, and subject area). Depending on the topic of this study, the intervention strategy, as the independent variable, was coded into collaborative and non-collaborative problem-solving. The dependent variable, critical thinking, was coded as a cognitive skill and an attitudinal tendency. And seven moderating variables were created by grouping and combining the experimental design variables discovered within the 36 studies (see Table 1 ), where learning stages were encoded as higher education, high school, middle school, and primary school or lower; teaching types were encoded as mixed courses, integrated courses, and independent courses; intervention durations were encoded as 0–1 weeks, 1–4 weeks, 4–12 weeks, and more than 12 weeks; group sizes were encoded as 2–3 persons, 4–6 persons, 7–10 persons, and more than 10 persons; learning scaffolds were encoded as teacher-supported learning scaffold, technique-supported learning scaffold, and resource-supported learning scaffold; measuring tools were encoded as standardized measurement tools (e.g., WGCTA, CCTT, CCTST, and CCTDI) and self-adapting measurement tools (e.g., modified or made by researchers); and subject areas were encoded according to the specific subjects used in the 36 included studies.

The data information contained three metrics for measuring critical thinking: sample size, average value, and standard deviation. It is vital to remember that studies with various experimental designs frequently adopt various formulas to determine the effect size. And this paper used Morris’ proposed standardized mean difference (SMD) calculation formula ( 2008 , p. 369; see Supplementary Table S3 ).

Procedure for extracting and coding data

According to the data coding template (see Table 1 ), the 36 papers’ information was retrieved by two researchers, who then entered them into Excel (see Supplementary Table S1 ). The results of each study were extracted separately in the data extraction procedure if an article contained numerous studies on critical thinking, or if a study assessed different critical thinking dimensions. For instance, Tiwari et al. ( 2010 ) used four time points, which were viewed as numerous different studies, to examine the outcomes of critical thinking, and Chen ( 2013 ) included the two outcome variables of attitudinal tendency and cognitive skills, which were regarded as two studies. After discussion and negotiation during data extraction, the two researchers’ consistency test coefficients were roughly 93.27%. Supplementary Table S2 details the key characteristics of the 36 included articles with 79 effect quantities, including descriptive information (e.g., the publishing year, author, serial number, and title of the paper), variable information (e.g., independent variables, dependent variables, and moderating variables), and data information (e.g., mean values, standard deviations, and sample size). Following that, testing for publication bias and heterogeneity was done on the sample data using the Rev-Man 5.4 software, and then the test results were used to conduct a meta-analysis.

Publication bias test

When the sample of studies included in a meta-analysis does not accurately reflect the general status of research on the relevant subject, publication bias is said to be exhibited in this research. The reliability and accuracy of the meta-analysis may be impacted by publication bias. Due to this, the meta-analysis needs to check the sample data for publication bias (Stewart et al., 2006 ). A popular method to check for publication bias is the funnel plot; and it is unlikely that there will be publishing bias when the data are equally dispersed on either side of the average effect size and targeted within the higher region. The data are equally dispersed within the higher portion of the efficient zone, consistent with the funnel plot connected with this analysis (see Fig. 2 ), indicating that publication bias is unlikely in this situation.

figure 2

This funnel plot shows the result of publication bias of 79 effect quantities across 36 studies.

Heterogeneity test

To select the appropriate effect models for the meta-analysis, one might use the results of a heterogeneity test on the data effect sizes. In a meta-analysis, it is common practice to gauge the degree of data heterogeneity using the I 2 value, and I 2  ≥ 50% is typically understood to denote medium-high heterogeneity, which calls for the adoption of a random effect model; if not, a fixed effect model ought to be applied (Lipsey and Wilson, 2001 ). The findings of the heterogeneity test in this paper (see Table 2 ) revealed that I 2 was 86% and displayed significant heterogeneity ( P  < 0.01). To ensure accuracy and reliability, the overall effect size ought to be calculated utilizing the random effect model.

The analysis of the overall effect size

This meta-analysis utilized a random effect model to examine 79 effect quantities from 36 studies after eliminating heterogeneity. In accordance with Cohen’s criterion (Cohen, 1992 ), it is abundantly clear from the analysis results, which are shown in the forest plot of the overall effect (see Fig. 3 ), that the cumulative impact size of cooperative problem-solving is 0.82, which is statistically significant ( z  = 12.78, P  < 0.01, 95% CI [0.69, 0.95]), and can encourage learners to practice critical thinking.

figure 3

This forest plot shows the analysis result of the overall effect size across 36 studies.

In addition, this study examined two distinct dimensions of critical thinking to better understand the precise contributions that collaborative problem-solving makes to the growth of critical thinking. The findings (see Table 3 ) indicate that collaborative problem-solving improves cognitive skills (ES = 0.70) and attitudinal tendency (ES = 1.17), with significant intergroup differences (chi 2  = 7.95, P  < 0.01). Although collaborative problem-solving improves both dimensions of critical thinking, it is essential to point out that the improvements in students’ attitudinal tendency are much more pronounced and have a significant comprehensive effect (ES = 1.17, z  = 7.62, P  < 0.01, 95% CI [0.87, 1.47]), whereas gains in learners’ cognitive skill are slightly improved and are just above average. (ES = 0.70, z  = 11.55, P  < 0.01, 95% CI [0.58, 0.82]).

The analysis of moderator effect size

The whole forest plot’s 79 effect quantities underwent a two-tailed test, which revealed significant heterogeneity ( I 2  = 86%, z  = 12.78, P  < 0.01), indicating differences between various effect sizes that may have been influenced by moderating factors other than sampling error. Therefore, exploring possible moderating factors that might produce considerable heterogeneity was done using subgroup analysis, such as the learning stage, learning scaffold, teaching type, group size, duration of the intervention, measuring tool, and the subject area included in the 36 experimental designs, in order to further explore the key factors that influence critical thinking. The findings (see Table 4 ) indicate that various moderating factors have advantageous effects on critical thinking. In this situation, the subject area (chi 2  = 13.36, P  < 0.05), group size (chi 2  = 8.77, P  < 0.05), intervention duration (chi 2  = 12.18, P  < 0.01), learning scaffold (chi 2  = 9.03, P  < 0.01), and teaching type (chi 2  = 7.20, P  < 0.05) are all significant moderators that can be applied to support the cultivation of critical thinking. However, since the learning stage and the measuring tools did not significantly differ among intergroup (chi 2  = 3.15, P  = 0.21 > 0.05, and chi 2  = 0.08, P  = 0.78 > 0.05), we are unable to explain why these two factors are crucial in supporting the cultivation of critical thinking in the context of collaborative problem-solving. These are the precise outcomes, as follows:

Various learning stages influenced critical thinking positively, without significant intergroup differences (chi 2  = 3.15, P  = 0.21 > 0.05). High school was first on the list of effect sizes (ES = 1.36, P  < 0.01), then higher education (ES = 0.78, P  < 0.01), and middle school (ES = 0.73, P  < 0.01). These results show that, despite the learning stage’s beneficial influence on cultivating learners’ critical thinking, we are unable to explain why it is essential for cultivating critical thinking in the context of collaborative problem-solving.

Different teaching types had varying degrees of positive impact on critical thinking, with significant intergroup differences (chi 2  = 7.20, P  < 0.05). The effect size was ranked as follows: mixed courses (ES = 1.34, P  < 0.01), integrated courses (ES = 0.81, P  < 0.01), and independent courses (ES = 0.27, P  < 0.01). These results indicate that the most effective approach to cultivate critical thinking utilizing collaborative problem solving is through the teaching type of mixed courses.

Various intervention durations significantly improved critical thinking, and there were significant intergroup differences (chi 2  = 12.18, P  < 0.01). The effect sizes related to this variable showed a tendency to increase with longer intervention durations. The improvement in critical thinking reached a significant level (ES = 0.85, P  < 0.01) after more than 12 weeks of training. These findings indicate that the intervention duration and critical thinking’s impact are positively correlated, with a longer intervention duration having a greater effect.

Different learning scaffolds influenced critical thinking positively, with significant intergroup differences (chi 2  = 9.03, P  < 0.01). The resource-supported learning scaffold (ES = 0.69, P  < 0.01) acquired a medium-to-higher level of impact, the technique-supported learning scaffold (ES = 0.63, P  < 0.01) also attained a medium-to-higher level of impact, and the teacher-supported learning scaffold (ES = 0.92, P  < 0.01) displayed a high level of significant impact. These results show that the learning scaffold with teacher support has the greatest impact on cultivating critical thinking.

Various group sizes influenced critical thinking positively, and the intergroup differences were statistically significant (chi 2  = 8.77, P  < 0.05). Critical thinking showed a general declining trend with increasing group size. The overall effect size of 2–3 people in this situation was the biggest (ES = 0.99, P  < 0.01), and when the group size was greater than 7 people, the improvement in critical thinking was at the lower-middle level (ES < 0.5, P  < 0.01). These results show that the impact on critical thinking is positively connected with group size, and as group size grows, so does the overall impact.

Various measuring tools influenced critical thinking positively, with significant intergroup differences (chi 2  = 0.08, P  = 0.78 > 0.05). In this situation, the self-adapting measurement tools obtained an upper-medium level of effect (ES = 0.78), whereas the complete effect size of the standardized measurement tools was the largest, achieving a significant level of effect (ES = 0.84, P  < 0.01). These results show that, despite the beneficial influence of the measuring tool on cultivating critical thinking, we are unable to explain why it is crucial in fostering the growth of critical thinking by utilizing the approach of collaborative problem-solving.

Different subject areas had a greater impact on critical thinking, and the intergroup differences were statistically significant (chi 2  = 13.36, P  < 0.05). Mathematics had the greatest overall impact, achieving a significant level of effect (ES = 1.68, P  < 0.01), followed by science (ES = 1.25, P  < 0.01) and medical science (ES = 0.87, P  < 0.01), both of which also achieved a significant level of effect. Programming technology was the least effective (ES = 0.39, P  < 0.01), only having a medium-low degree of effect compared to education (ES = 0.72, P  < 0.01) and other fields (such as language, art, and social sciences) (ES = 0.58, P  < 0.01). These results suggest that scientific fields (e.g., mathematics, science) may be the most effective subject areas for cultivating critical thinking utilizing the approach of collaborative problem-solving.

The effectiveness of collaborative problem solving with regard to teaching critical thinking

According to this meta-analysis, using collaborative problem-solving as an intervention strategy in critical thinking teaching has a considerable amount of impact on cultivating learners’ critical thinking as a whole and has a favorable promotional effect on the two dimensions of critical thinking. According to certain studies, collaborative problem solving, the most frequently used critical thinking teaching strategy in curriculum instruction can considerably enhance students’ critical thinking (e.g., Liang et al., 2017 ; Liu et al., 2020 ; Cindy, 2004 ). This meta-analysis provides convergent data support for the above research views. Thus, the findings of this meta-analysis not only effectively address the first research query regarding the overall effect of cultivating critical thinking and its impact on the two dimensions of critical thinking (i.e., attitudinal tendency and cognitive skills) utilizing the approach of collaborative problem-solving, but also enhance our confidence in cultivating critical thinking by using collaborative problem-solving intervention approach in the context of classroom teaching.

Furthermore, the associated improvements in attitudinal tendency are much stronger, but the corresponding improvements in cognitive skill are only marginally better. According to certain studies, cognitive skill differs from the attitudinal tendency in classroom instruction; the cultivation and development of the former as a key ability is a process of gradual accumulation, while the latter as an attitude is affected by the context of the teaching situation (e.g., a novel and exciting teaching approach, challenging and rewarding tasks) (Halpern, 2001 ; Wei and Hong, 2022 ). Collaborative problem-solving as a teaching approach is exciting and interesting, as well as rewarding and challenging; because it takes the learners as the focus and examines problems with poor structure in real situations, and it can inspire students to fully realize their potential for problem-solving, which will significantly improve their attitudinal tendency toward solving problems (Liu et al., 2020 ). Similar to how collaborative problem-solving influences attitudinal tendency, attitudinal tendency impacts cognitive skill when attempting to solve a problem (Liu et al., 2020 ; Zhang et al., 2022 ), and stronger attitudinal tendencies are associated with improved learning achievement and cognitive ability in students (Sison, 2008 ; Zhang et al., 2022 ). It can be seen that the two specific dimensions of critical thinking as well as critical thinking as a whole are affected by collaborative problem-solving, and this study illuminates the nuanced links between cognitive skills and attitudinal tendencies with regard to these two dimensions of critical thinking. To fully develop students’ capacity for critical thinking, future empirical research should pay closer attention to cognitive skills.

The moderating effects of collaborative problem solving with regard to teaching critical thinking

In order to further explore the key factors that influence critical thinking, exploring possible moderating effects that might produce considerable heterogeneity was done using subgroup analysis. The findings show that the moderating factors, such as the teaching type, learning stage, group size, learning scaffold, duration of the intervention, measuring tool, and the subject area included in the 36 experimental designs, could all support the cultivation of collaborative problem-solving in critical thinking. Among them, the effect size differences between the learning stage and measuring tool are not significant, which does not explain why these two factors are crucial in supporting the cultivation of critical thinking utilizing the approach of collaborative problem-solving.

In terms of the learning stage, various learning stages influenced critical thinking positively without significant intergroup differences, indicating that we are unable to explain why it is crucial in fostering the growth of critical thinking.

Although high education accounts for 70.89% of all empirical studies performed by researchers, high school may be the appropriate learning stage to foster students’ critical thinking by utilizing the approach of collaborative problem-solving since it has the largest overall effect size. This phenomenon may be related to student’s cognitive development, which needs to be further studied in follow-up research.

With regard to teaching type, mixed course teaching may be the best teaching method to cultivate students’ critical thinking. Relevant studies have shown that in the actual teaching process if students are trained in thinking methods alone, the methods they learn are isolated and divorced from subject knowledge, which is not conducive to their transfer of thinking methods; therefore, if students’ thinking is trained only in subject teaching without systematic method training, it is challenging to apply to real-world circumstances (Ruggiero, 2012 ; Hu and Liu, 2015 ). Teaching critical thinking as mixed course teaching in parallel to other subject teachings can achieve the best effect on learners’ critical thinking, and explicit critical thinking instruction is more effective than less explicit critical thinking instruction (Bensley and Spero, 2014 ).

In terms of the intervention duration, with longer intervention times, the overall effect size shows an upward tendency. Thus, the intervention duration and critical thinking’s impact are positively correlated. Critical thinking, as a key competency for students in the 21st century, is difficult to get a meaningful improvement in a brief intervention duration. Instead, it could be developed over a lengthy period of time through consistent teaching and the progressive accumulation of knowledge (Halpern, 2001 ; Hu and Liu, 2015 ). Therefore, future empirical studies ought to take these restrictions into account throughout a longer period of critical thinking instruction.

With regard to group size, a group size of 2–3 persons has the highest effect size, and the comprehensive effect size decreases with increasing group size in general. This outcome is in line with some research findings; as an example, a group composed of two to four members is most appropriate for collaborative learning (Schellens and Valcke, 2006 ). However, the meta-analysis results also indicate that once the group size exceeds 7 people, small groups cannot produce better interaction and performance than large groups. This may be because the learning scaffolds of technique support, resource support, and teacher support improve the frequency and effectiveness of interaction among group members, and a collaborative group with more members may increase the diversity of views, which is helpful to cultivate critical thinking utilizing the approach of collaborative problem-solving.

With regard to the learning scaffold, the three different kinds of learning scaffolds can all enhance critical thinking. Among them, the teacher-supported learning scaffold has the largest overall effect size, demonstrating the interdependence of effective learning scaffolds and collaborative problem-solving. This outcome is in line with some research findings; as an example, a successful strategy is to encourage learners to collaborate, come up with solutions, and develop critical thinking skills by using learning scaffolds (Reiser, 2004 ; Xu et al., 2022 ); learning scaffolds can lower task complexity and unpleasant feelings while also enticing students to engage in learning activities (Wood et al., 2006 ); learning scaffolds are designed to assist students in using learning approaches more successfully to adapt the collaborative problem-solving process, and the teacher-supported learning scaffolds have the greatest influence on critical thinking in this process because they are more targeted, informative, and timely (Xu et al., 2022 ).

With respect to the measuring tool, despite the fact that standardized measurement tools (such as the WGCTA, CCTT, and CCTST) have been acknowledged as trustworthy and effective by worldwide experts, only 54.43% of the research included in this meta-analysis adopted them for assessment, and the results indicated no intergroup differences. These results suggest that not all teaching circumstances are appropriate for measuring critical thinking using standardized measurement tools. “The measuring tools for measuring thinking ability have limits in assessing learners in educational situations and should be adapted appropriately to accurately assess the changes in learners’ critical thinking.”, according to Simpson and Courtney ( 2002 , p. 91). As a result, in order to more fully and precisely gauge how learners’ critical thinking has evolved, we must properly modify standardized measuring tools based on collaborative problem-solving learning contexts.

With regard to the subject area, the comprehensive effect size of science departments (e.g., mathematics, science, medical science) is larger than that of language arts and social sciences. Some recent international education reforms have noted that critical thinking is a basic part of scientific literacy. Students with scientific literacy can prove the rationality of their judgment according to accurate evidence and reasonable standards when they face challenges or poorly structured problems (Kyndt et al., 2013 ), which makes critical thinking crucial for developing scientific understanding and applying this understanding to practical problem solving for problems related to science, technology, and society (Yore et al., 2007 ).

Suggestions for critical thinking teaching

Other than those stated in the discussion above, the following suggestions are offered for critical thinking instruction utilizing the approach of collaborative problem-solving.

First, teachers should put a special emphasis on the two core elements, which are collaboration and problem-solving, to design real problems based on collaborative situations. This meta-analysis provides evidence to support the view that collaborative problem-solving has a strong synergistic effect on promoting students’ critical thinking. Asking questions about real situations and allowing learners to take part in critical discussions on real problems during class instruction are key ways to teach critical thinking rather than simply reading speculative articles without practice (Mulnix, 2012 ). Furthermore, the improvement of students’ critical thinking is realized through cognitive conflict with other learners in the problem situation (Yang et al., 2008 ). Consequently, it is essential for teachers to put a special emphasis on the two core elements, which are collaboration and problem-solving, and design real problems and encourage students to discuss, negotiate, and argue based on collaborative problem-solving situations.

Second, teachers should design and implement mixed courses to cultivate learners’ critical thinking, utilizing the approach of collaborative problem-solving. Critical thinking can be taught through curriculum instruction (Kuncel, 2011 ; Leng and Lu, 2020 ), with the goal of cultivating learners’ critical thinking for flexible transfer and application in real problem-solving situations. This meta-analysis shows that mixed course teaching has a highly substantial impact on the cultivation and promotion of learners’ critical thinking. Therefore, teachers should design and implement mixed course teaching with real collaborative problem-solving situations in combination with the knowledge content of specific disciplines in conventional teaching, teach methods and strategies of critical thinking based on poorly structured problems to help students master critical thinking, and provide practical activities in which students can interact with each other to develop knowledge construction and critical thinking utilizing the approach of collaborative problem-solving.

Third, teachers should be more trained in critical thinking, particularly preservice teachers, and they also should be conscious of the ways in which teachers’ support for learning scaffolds can promote critical thinking. The learning scaffold supported by teachers had the greatest impact on learners’ critical thinking, in addition to being more directive, targeted, and timely (Wood et al., 2006 ). Critical thinking can only be effectively taught when teachers recognize the significance of critical thinking for students’ growth and use the proper approaches while designing instructional activities (Forawi, 2016 ). Therefore, with the intention of enabling teachers to create learning scaffolds to cultivate learners’ critical thinking utilizing the approach of collaborative problem solving, it is essential to concentrate on the teacher-supported learning scaffolds and enhance the instruction for teaching critical thinking to teachers, especially preservice teachers.

Implications and limitations

There are certain limitations in this meta-analysis, but future research can correct them. First, the search languages were restricted to English and Chinese, so it is possible that pertinent studies that were written in other languages were overlooked, resulting in an inadequate number of articles for review. Second, these data provided by the included studies are partially missing, such as whether teachers were trained in the theory and practice of critical thinking, the average age and gender of learners, and the differences in critical thinking among learners of various ages and genders. Third, as is typical for review articles, more studies were released while this meta-analysis was being done; therefore, it had a time limit. With the development of relevant research, future studies focusing on these issues are highly relevant and needed.

Conclusions

The subject of the magnitude of collaborative problem-solving’s impact on fostering students’ critical thinking, which received scant attention from other studies, was successfully addressed by this study. The question of the effectiveness of collaborative problem-solving in promoting students’ critical thinking was addressed in this study, which addressed a topic that had gotten little attention in earlier research. The following conclusions can be made:

Regarding the results obtained, collaborative problem solving is an effective teaching approach to foster learners’ critical thinking, with a significant overall effect size (ES = 0.82, z  = 12.78, P  < 0.01, 95% CI [0.69, 0.95]). With respect to the dimensions of critical thinking, collaborative problem-solving can significantly and effectively improve students’ attitudinal tendency, and the comprehensive effect is significant (ES = 1.17, z  = 7.62, P  < 0.01, 95% CI [0.87, 1.47]); nevertheless, it falls short in terms of improving students’ cognitive skills, having only an upper-middle impact (ES = 0.70, z  = 11.55, P  < 0.01, 95% CI [0.58, 0.82]).

As demonstrated by both the results and the discussion, there are varying degrees of beneficial effects on students’ critical thinking from all seven moderating factors, which were found across 36 studies. In this context, the teaching type (chi 2  = 7.20, P  < 0.05), intervention duration (chi 2  = 12.18, P  < 0.01), subject area (chi 2  = 13.36, P  < 0.05), group size (chi 2  = 8.77, P  < 0.05), and learning scaffold (chi 2  = 9.03, P  < 0.01) all have a positive impact on critical thinking, and they can be viewed as important moderating factors that affect how critical thinking develops. Since the learning stage (chi 2  = 3.15, P  = 0.21 > 0.05) and measuring tools (chi 2  = 0.08, P  = 0.78 > 0.05) did not demonstrate any significant intergroup differences, we are unable to explain why these two factors are crucial in supporting the cultivation of critical thinking in the context of collaborative problem-solving.

Data availability

All data generated or analyzed during this study are included within the article and its supplementary information files, and the supplementary information files are available in the Dataverse repository: https://doi.org/10.7910/DVN/IPFJO6 .

Bensley DA, Spero RA (2014) Improving critical thinking skills and meta-cognitive monitoring through direct infusion. Think Skills Creat 12:55–68. https://doi.org/10.1016/j.tsc.2014.02.001

Article   Google Scholar  

Castle A (2009) Defining and assessing critical thinking skills for student radiographers. Radiography 15(1):70–76. https://doi.org/10.1016/j.radi.2007.10.007

Chen XD (2013) An empirical study on the influence of PBL teaching model on critical thinking ability of non-English majors. J PLA Foreign Lang College 36 (04):68–72

Google Scholar  

Cohen A (1992) Antecedents of organizational commitment across occupational groups: a meta-analysis. J Organ Behav. https://doi.org/10.1002/job.4030130602

Cooper H (2010) Research synthesis and meta-analysis: a step-by-step approach, 4th edn. Sage, London, England

Cindy HS (2004) Problem-based learning: what and how do students learn? Educ Psychol Rev 51(1):31–39

Duch BJ, Gron SD, Allen DE (2001) The power of problem-based learning: a practical “how to” for teaching undergraduate courses in any discipline. Stylus Educ Sci 2:190–198

Ennis RH (1989) Critical thinking and subject specificity: clarification and needed research. Educ Res 18(3):4–10. https://doi.org/10.3102/0013189x018003004

Facione PA (1990) Critical thinking: a statement of expert consensus for purposes of educational assessment and instruction. Research findings and recommendations. Eric document reproduction service. https://eric.ed.gov/?id=ed315423

Facione PA, Facione NC (1992) The California Critical Thinking Dispositions Inventory (CCTDI) and the CCTDI test manual. California Academic Press, Millbrae, CA

Forawi SA (2016) Standard-based science education and critical thinking. Think Skills Creat 20:52–62. https://doi.org/10.1016/j.tsc.2016.02.005

Halpern DF (2001) Assessing the effectiveness of critical thinking instruction. J Gen Educ 50(4):270–286. https://doi.org/10.2307/27797889

Hu WP, Liu J (2015) Cultivation of pupils’ thinking ability: a five-year follow-up study. Psychol Behav Res 13(05):648–654. https://doi.org/10.3969/j.issn.1672-0628.2015.05.010

Huber K (2016) Does college teach critical thinking? A meta-analysis. Rev Educ Res 86(2):431–468. https://doi.org/10.3102/0034654315605917

Kek MYCA, Huijser H (2011) The power of problem-based learning in developing critical thinking skills: preparing students for tomorrow’s digital futures in today’s classrooms. High Educ Res Dev 30(3):329–341. https://doi.org/10.1080/07294360.2010.501074

Kuncel NR (2011) Measurement and meaning of critical thinking (Research report for the NRC 21st Century Skills Workshop). National Research Council, Washington, DC

Kyndt E, Raes E, Lismont B, Timmers F, Cascallar E, Dochy F (2013) A meta-analysis of the effects of face-to-face cooperative learning. Do recent studies falsify or verify earlier findings? Educ Res Rev 10(2):133–149. https://doi.org/10.1016/j.edurev.2013.02.002

Leng J, Lu XX (2020) Is critical thinking really teachable?—A meta-analysis based on 79 experimental or quasi experimental studies. Open Educ Res 26(06):110–118. https://doi.org/10.13966/j.cnki.kfjyyj.2020.06.011

Liang YZ, Zhu K, Zhao CL (2017) An empirical study on the depth of interaction promoted by collaborative problem solving learning activities. J E-educ Res 38(10):87–92. https://doi.org/10.13811/j.cnki.eer.2017.10.014

Lipsey M, Wilson D (2001) Practical meta-analysis. International Educational and Professional, London, pp. 92–160

Liu Z, Wu W, Jiang Q (2020) A study on the influence of problem based learning on college students’ critical thinking-based on a meta-analysis of 31 studies. Explor High Educ 03:43–49

Morris SB (2008) Estimating effect sizes from pretest-posttest-control group designs. Organ Res Methods 11(2):364–386. https://doi.org/10.1177/1094428106291059

Article   ADS   Google Scholar  

Mulnix JW (2012) Thinking critically about critical thinking. Educ Philos Theory 44(5):464–479. https://doi.org/10.1111/j.1469-5812.2010.00673.x

Naber J, Wyatt TH (2014) The effect of reflective writing interventions on the critical thinking skills and dispositions of baccalaureate nursing students. Nurse Educ Today 34(1):67–72. https://doi.org/10.1016/j.nedt.2013.04.002

National Research Council (2012) Education for life and work: developing transferable knowledge and skills in the 21st century. The National Academies Press, Washington, DC

Niu L, Behar HLS, Garvan CW (2013) Do instructional interventions influence college students’ critical thinking skills? A meta-analysis. Educ Res Rev 9(12):114–128. https://doi.org/10.1016/j.edurev.2012.12.002

Peng ZM, Deng L (2017) Towards the core of education reform: cultivating critical thinking skills as the core of skills in the 21st century. Res Educ Dev 24:57–63. https://doi.org/10.14121/j.cnki.1008-3855.2017.24.011

Reiser BJ (2004) Scaffolding complex learning: the mechanisms of structuring and problematizing student work. J Learn Sci 13(3):273–304. https://doi.org/10.1207/s15327809jls1303_2

Ruggiero VR (2012) The art of thinking: a guide to critical and creative thought, 4th edn. Harper Collins College Publishers, New York

Schellens T, Valcke M (2006) Fostering knowledge construction in university students through asynchronous discussion groups. Comput Educ 46(4):349–370. https://doi.org/10.1016/j.compedu.2004.07.010

Sendag S, Odabasi HF (2009) Effects of an online problem based learning course on content knowledge acquisition and critical thinking skills. Comput Educ 53(1):132–141. https://doi.org/10.1016/j.compedu.2009.01.008

Sison R (2008) Investigating Pair Programming in a Software Engineering Course in an Asian Setting. 2008 15th Asia-Pacific Software Engineering Conference, pp. 325–331. https://doi.org/10.1109/APSEC.2008.61

Simpson E, Courtney M (2002) Critical thinking in nursing education: literature review. Mary Courtney 8(2):89–98

Stewart L, Tierney J, Burdett S (2006) Do systematic reviews based on individual patient data offer a means of circumventing biases associated with trial publications? Publication bias in meta-analysis. John Wiley and Sons Inc, New York, pp. 261–286

Tiwari A, Lai P, So M, Yuen K (2010) A comparison of the effects of problem-based learning and lecturing on the development of students’ critical thinking. Med Educ 40(6):547–554. https://doi.org/10.1111/j.1365-2929.2006.02481.x

Wood D, Bruner JS, Ross G (2006) The role of tutoring in problem solving. J Child Psychol Psychiatry 17(2):89–100. https://doi.org/10.1111/j.1469-7610.1976.tb00381.x

Wei T, Hong S (2022) The meaning and realization of teachable critical thinking. Educ Theory Practice 10:51–57

Xu EW, Wang W, Wang QX (2022) A meta-analysis of the effectiveness of programming teaching in promoting K-12 students’ computational thinking. Educ Inf Technol. https://doi.org/10.1007/s10639-022-11445-2

Yang YC, Newby T, Bill R (2008) Facilitating interactions through structured web-based bulletin boards: a quasi-experimental study on promoting learners’ critical thinking skills. Comput Educ 50(4):1572–1585. https://doi.org/10.1016/j.compedu.2007.04.006

Yore LD, Pimm D, Tuan HL (2007) The literacy component of mathematical and scientific literacy. Int J Sci Math Educ 5(4):559–589. https://doi.org/10.1007/s10763-007-9089-4

Zhang T, Zhang S, Gao QQ, Wang JH (2022) Research on the development of learners’ critical thinking in online peer review. Audio Visual Educ Res 6:53–60. https://doi.org/10.13811/j.cnki.eer.2022.06.08

Download references

Acknowledgements

This research was supported by the graduate scientific research and innovation project of Xinjiang Uygur Autonomous Region named “Research on in-depth learning of high school information technology courses for the cultivation of computing thinking” (No. XJ2022G190) and the independent innovation fund project for doctoral students of the College of Educational Science of Xinjiang Normal University named “Research on project-based teaching of high school information technology courses from the perspective of discipline core literacy” (No. XJNUJKYA2003).

Author information

Authors and affiliations.

College of Educational Science, Xinjiang Normal University, 830017, Urumqi, Xinjiang, China

Enwei Xu, Wei Wang & Qingxia Wang

You can also search for this author in PubMed   Google Scholar

Corresponding authors

Correspondence to Enwei Xu or Wei Wang .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

Additional information.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary tables, rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Xu, E., Wang, W. & Wang, Q. The effectiveness of collaborative problem solving in promoting students’ critical thinking: A meta-analysis based on empirical literature. Humanit Soc Sci Commun 10 , 16 (2023). https://doi.org/10.1057/s41599-023-01508-1

Download citation

Received : 07 August 2022

Accepted : 04 January 2023

Published : 11 January 2023

DOI : https://doi.org/10.1057/s41599-023-01508-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Impacts of online collaborative learning on students’ intercultural communication apprehension and intercultural communicative competence.

  • Hoa Thi Hoang Chau
  • Hung Phu Bui
  • Quynh Thi Huong Dinh

Education and Information Technologies (2024)

Exploring the effects of digital technology on deep learning: a meta-analysis

Sustainable electricity generation and farm-grid utilization from photovoltaic aquaculture: a bibliometric analysis.

  • A. A. Amusa
  • M. Alhassan

International Journal of Environmental Science and Technology (2024)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

what is the connection among critical thinking decision making and problem solving

Your browser is incompatible with this site. Upgrade to a different browser like Google Chrome or Mozilla Firefox to experience this site.

Embrace the Microsoft hype! Get 50% off on Microsoft Instructor-led Training courses!

Canada

Cart ( ) Loading...

or Continue Shopping

  • Create an Account

Critical Thinking, Problem Solving & Decision Making

Improve your decision-making capabilities through critical thinking, structured reasoning, and creative problem analysis.

Learn how to be an inventive, logical decision maker by understanding the principles behind critical thinking and the tools used to consistently identify and select the best decision among multiple alternatives. In this course, you'll explore a structured way to approach and dismantle problems with a view toward optimum outcomes.

Applying the techniques of critical thinking allows you to dismantle complex problems and to understand the inputs and implications of your thought processes. By applying problem analysis and good practices you'll be able to develop positions and arrive at decisions that are logical and explicable to others. After completing the course, you'll understand why most decisions are of poor quality and be able to impose quality controls on both your decisions and the decisions of others.

what is the connection among critical thinking decision making and problem solving

Live Instructor

Experience live expert-led training in person, from your home, office or anywhere with an internet connection.

Group Training

Live expert-led training for your team or entire organization that can be customized to fit your exact needs.

Virtual Training

Who Should Attend?

This course provides an introduction to structured decision making. It is intended for any professional who is new to formal problem analysis, including: department managers, directors, supervisors, project managers, IT project managers, project coordinators, project analysts, project leaders, senior project managers, team leaders, product managers, program managers, associate project managers, stakeholders, team members, and all others responsible for resource allocations.

What You'll Learn

  •  Natural barriers to sound reasoning
  •  Bias and assumptions in problem analysis
  •  Thought processes and reasoning
  •  Analytical techniques for comparing alternative solutions
  •  Structure, standards, and ethics of critical thinking
  •  Problem analysis best practices

Hands-On Exercises

  • Evaluate the strategic thinking of others
  • Assess the reasoning of others
  • Problem solving by starting with restatement of the issues
  • Problem solving from a number of different perspectives
  • Identify decision-making factors
  • Creativity and the decision-making process
  • Structure the analytical process with a matrix
  • Evaluate decision options using probabilities
  • Compare options using paired ranking

Course Outline

1. introduction to decision making.

  • What's a Decision?
  • High Quality vs. Low Quality Decisions
  • Becoming a Better Decision-Maker

2. Barriers to Brilliant Decisions

  • Instinctive Decision-Making
  • Barriers to Sound Reasoning
  • Outlook vs. Reality

3. Critical Thinking

  • What Is Critical Thinking?
  • Structures of Thinking
  • Thinking with Standards
  • Sophistry and Intellectual Ethics

4. Problem Analysis Guidelines

  • Opening the Mind
  • 10 Best Practice Guidelines
  • Structuring Techniques
  • Putting It All Together

5. The Decision

  • Who Decides?
  • Who Should Decide?
  • Take Home Message

This course qualifies you for the following PMI® Professional Development Units (PDUs):

Classroom Live and Virtual Classroom Live

  • Leadership = 10
  • Strategic and Business Management = 4

Follow-On Courses

  • IT Project Management
  • Send as a prefilled cart

PDF

IMAGES

  1. The benefits of critical thinking for students and how to develop it

    what is the connection among critical thinking decision making and problem solving

  2. Critical Thinking Skills

    what is the connection among critical thinking decision making and problem solving

  3. Making Better Decisions through Critical Thinking

    what is the connection among critical thinking decision making and problem solving

  4. Critical Thinking Definition, Skills, and Examples

    what is the connection among critical thinking decision making and problem solving

  5. iEdge Learning Center: Critical Thinking for Decision Making

    what is the connection among critical thinking decision making and problem solving

  6. Critical Thinking and Problem Solving

    what is the connection among critical thinking decision making and problem solving

VIDEO

  1. Breaking the Bias: Understanding Confirmation Bias in Decision-Making

  2. Critical Thinking, Decision Making and Goal Setting

  3. Effective Brainstorming: Maximizing Idea Power

  4. Exploring the Importance of Philosophy for Life, with Dr. Sean Meslar

  5. 5 Effective Strategies to Improve Your Problem-Solving Skills #skills #problem @financeadvisor7

  6. Part 8: A Dilemma You Can't Ignore! 💡

COMMENTS

  1. 5.3: Using Critical Thinking Skills- Decision Making and Problem Solving

    Using Critical Thinking Skills in Problem Solving. Think of problem solving as a process with four Ps: Define the problem, generate possibilities, create a plan, and perform your plan. Step 1: Define the problem. To define a problem effectively, understand what a problem is—a mismatch between what you want and what you have.

  2. Critical Thinking and Decision-Making: What is Critical Thinking?

    Simply put, critical thinking is the act of deliberately analyzing information so that you can make better judgements and decisions. It involves using things like logic, reasoning, and creativity, to draw conclusions and generally understand things better. This may sound like a pretty broad definition, and that's because critical thinking is a ...

  3. What Are Critical Thinking Skills and Why Are They Important?

    Problem-solving: Problem-solving is perhaps the most important skill that critical thinkers can possess. The ability to solve issues and bounce back from conflict is what helps you succeed, be a leader, and effect change. One way to properly solve problems is to first recognize there's a problem that needs solving.

  4. How to build critical thinking skills for better decision-making

    Problem-solving. Critical thinking and problem-solving are two more terms that are frequently confused. After all, when you think critically, you're often doing so with the objective of solving a problem. The best way to understand how problem-solving and critical thinking differ is to think of problem-solving as much more narrow.

  5. Critical Thinking

    Critical Thinking. Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms ...

  6. Problem Solving, Critical Thinking and Decision Making

    Key Takeaways. Effective problem solving involves critical and creative thinking. The four steps to effective problem solving are the following: Define the problem. Narrow the problem. Generate solutions. Choose the solution. Brainstorming is a good method for generating creative solutions.

  7. Decision-Making and Problem-Solving: What's the Difference?

    Decision-making is the process of choosing a solution based on your judgment, situation, facts, knowledge or a combination of available data. The goal is to avoid potential difficulties. Identifying opportunity is an important part of the decision-making process. Making decisions is often a part of problem-solving.

  8. A Short Guide to the Critical Decision Making Process

    The process of critical decision-making requires a desire for the best possible knowledge or outcome, even if, as a result, personal preconceptions, beliefs or self-interests are undermined. Open-minded. Successful critical decision-makers are tolerant to divergent views, and are aware of possible bias in their thought process. Analytical.

  9. Critical Thinking, Decision Making, and Problem Solving

    The first sub-group worked through the problem in the usual way, using the three jar solution. The second sub-group were told to think more carefully about how to solve the problems. Given that instruction, the majority of students in the second sub-group moved to the more simple solution using two jars. 73.

  10. Problem Solving and Decision Making

    Problem solving and decision making are both examples of complex, higher-order thinking. Both involve the assessment of the environment, the involvement of working memory or short-term memory, reliance on long term memory, effects of knowledge, and the application of heuristics to complete a behavior. A problem can be defined as an impasse or ...

  11. PDF Critical thinking in Nursing: Decision-making and Problem-solving

    Critical thinking is an essential element in decision-making, which involves choices, and problem-solving, which requires analysis. Decision-making A free flow of ideas is essential to problem-solving and decision-making because it helps prevent preconceived ideas from controlling the process. Many decisions in healthcare are arrived at by group or

  12. Critical Thinking and Decision-Making

    The first step to making any decision is simple: Identify the problem. As an example, say you're trying to choose between two apartments. One is cheaper but farther away from work. The other is closer—and nicer!—but much more expensive. Which one would you choose? Depending on what you value, you probably have some idea.

  13. Decision-making and Problem-solving

    A 5-Step Problem-Solving Strategy. Specify the problem - a first step to solving a problem is to identify it as specifically as possible. It involves evaluating the present state and determining how it differs from the goal state. Analyze the problem - analyzing the problem involves learning as much as you can about it.

  14. The Power Of Critical Thinking: Enhancing Decision-Making And Problem

    Critical thinking enhances decision-making, problem-solving and communication abilities by fostering logical reasoning, analytical skills and an open mindset. It enables individuals to overcome ...

  15. Critical Thinking vs. Problem-Solving: What's the Difference?

    Critical thinking. This is a mode of thinking, compared to problem-solving, which is a set of solution-oriented strategies. Since critical thinking strengthens your reasoning, it makes it easier to learn new skills, including problem-solving. Working on your critical thinking can also help you understand yourself better, including your value ...

  16. Why is critical thinking important?

    We use critical thinking every day, from decision-making to problem-solving, in addition to thinking critically in an academic context! ... Problem-solving and critical thinking go hand in hand. Biology is a popular major within LAS, and graduates of the biology program often pursue careers in the medical sciences. Doctors use critical thinking ...

  17. The effectiveness of collaborative problem solving in promoting

    Collaborative problem-solving has been widely embraced in the classroom instruction of critical thinking, which is regarded as the core of curriculum reform based on key competencies in the field ...

  18. Critical Thinking, Problem Solving & Decision Making

    Evaluate the strategic thinking of others. Assess the reasoning of others. Problem solving by starting with restatement of the issues. Problem solving from a number of different perspectives. Identify decision-making factors. Creativity and the decision-making process. Structure the analytical process with a matrix.

  19. PDF CHAPTER 1 What Is Critical Thinking, Clinical Reasoning, and Clinical

    CT in nursing makes patient and caregiver safety and welfare top priorities. Critical thinking refers to purposeful, focused, informed, results-oriented thinking in any situation. The term is often used interchange-ably with clinical reasoning, clinical judgment, problem solving, and decision making.

  20. Critical Thinking, Problem Solving, & Decision Making

    Critical Thinking, Problem Solving, & Decision Making. What is the definition of critical thinking? Click the card to flip 👆. The mental process of actively and skillfully conceptualizing, applying, analyzing, synthesizing, and evaluating information to reach an answer or conclusion. Click the card to flip 👆.

  21. Critical thinking, problem solving, and decision making

    26 terms. dreadpiraterobberts. Preview. Study with Quizlet and memorize flashcards containing terms like 5 attributes of critical thinking, What is problem solving?, What is decision making? and more.

  22. Making Decisions and Solving Problems Flashcards

    decision making, problem solving, professional t high level cognitive process required in decision making and problem solving "The Critical Thinking Community" improve reasoning abilities by asking "why, what, or how" decision making. purposeful and goal directed effort that uses a systematic process to choose among options. problem solving.

  23. cor 107 chapter 1&2 Flashcards

    Study with Quizlet and memorize flashcards containing terms like describe critical thinking, clinical reasoning, and clinical judgment in your own words, based on the descriptions in this chapter, Give at least three reasons why critical thinking skills are essential for students and nurses., Identify at least four principles of the scientific method that are evident in critical thinking. and ...

  24. Decision Making, Problem Solving, Critical Thinking, and Clinical

    Terms in this set (84) Study with Quizlet and memorize flashcards containing terms like What is a complex, cognitive process often defined as choosing a particular course of action?, What is a part of decision making and is a systematic process that focuses on analyzing a difficult situation?, True or False: problem solving always includes a ...