essay on global warming effect

45,000+ students realised their study abroad dream with us. Take the first step today

Here’s your new year gift, one app for all your, study abroad needs, start your journey, track your progress, grow with the community and so much more.

essay on global warming effect

Verification Code

An OTP has been sent to your registered mobile no. Please verify

essay on global warming effect

Thanks for your comment !

Our team will review it before it's shown to our readers.

essay on global warming effect

Essay on Global Warming

dulingo

  • Updated on  
  • Apr 27, 2024

essay on global warming effect

Being able to write an essay is an integral part of mastering any language. Essays form an integral part of many academic and scholastic exams like the SAT, and UPSC amongst many others. It is a crucial evaluative part of English proficiency tests as well like IELTS, TOEFL, etc. Major essays are meant to emphasize public issues of concern that can have significant consequences on the world. To understand the concept of Global Warming and its causes and effects, we must first examine the many factors that influence the planet’s temperature and what this implies for the world’s future. Here’s an unbiased look at the essay on Global Warming and other essential related topics.

Short Essay on Global Warming and Climate Change?

Since the industrial and scientific revolutions, Earth’s resources have been gradually depleted. Furthermore, the start of the world’s population’s exponential expansion is particularly hard on the environment. Simply put, as the population’s need for consumption grows, so does the use of natural resources , as well as the waste generated by that consumption.

Climate change has been one of the most significant long-term consequences of this. Climate change is more than just the rise or fall of global temperatures; it also affects rain cycles, wind patterns, cyclone frequencies, sea levels, and other factors. It has an impact on all major life groupings on the planet.

Also Read: Essay on Yoga Day

Also Read: Speech on Yoga Day

What is Global Warming?

Global warming is the unusually rapid increase in Earth’s average surface temperature over the past century, primarily due to the greenhouse gases released by people burning fossil fuels . The greenhouse gases consist of methane, nitrous oxide, ozone, carbon dioxide, water vapour, and chlorofluorocarbons. The weather prediction has been becoming more complex with every passing year, with seasons more indistinguishable, and the general temperatures hotter.

The number of hurricanes, cyclones, droughts, floods, etc., has risen steadily since the onset of the 21st century. The supervillain behind all these changes is Global Warming. The name is quite self-explanatory; it means the rise in the temperature of the Earth.

Also Read: What is a Natural Disaster?

What are the Causes of Global Warming?

According to recent studies, many scientists believe the following are the primary four causes of global warming:

  • Deforestation 
  • Greenhouse emissions
  • Carbon emissions per capita

Extreme global warming is causing natural disasters , which can be seen all around us. One of the causes of global warming is the extreme release of greenhouse gases that become trapped on the earth’s surface, causing the temperature to rise. Similarly, volcanoes contribute to global warming by spewing excessive CO2 into the atmosphere.

The increase in population is one of the major causes of Global Warming. This increase in population also leads to increased air pollution . Automobiles emit a lot of CO2, which remains in the atmosphere. This increase in population is also causing deforestation, which contributes to global warming.

The earth’s surface emits energy into the atmosphere in the form of heat, keeping the balance with the incoming energy. Global warming depletes the ozone layer, bringing about the end of the world. There is a clear indication that increased global warming will result in the extinction of all life on Earth’s surface.

Also Read: Land, Soil, Water, Natural Vegetation, and Wildlife Resources

Solutions for Global Warming

Of course, industries and multinational conglomerates emit more carbon than the average citizen. Nonetheless, activism and community effort are the only viable ways to slow the worsening effects of global warming. Furthermore, at the state or government level, world leaders must develop concrete plans and step-by-step programmes to ensure that no further harm is done to the environment in general.

Although we are almost too late to slow the rate of global warming, finding the right solution is critical. Everyone, from individuals to governments, must work together to find a solution to Global Warming. Some of the factors to consider are pollution control, population growth, and the use of natural resources.

One very important contribution you can make is to reduce your use of plastic. Plastic is the primary cause of global warming, and recycling it takes years. Another factor to consider is deforestation, which will aid in the control of global warming. More tree planting should be encouraged to green the environment. Certain rules should also govern industrialization. Building industries in green zones that affect plants and species should be prohibited.

Also Read: Essay on Pollution

Effects of Global Warming

Global warming is a real problem that many people want to disprove to gain political advantage. However, as global citizens, we must ensure that only the truth is presented in the media.

This decade has seen a significant impact from global warming. The two most common phenomena observed are glacier retreat and arctic shrinkage. Glaciers are rapidly melting. These are clear manifestations of climate change.

Another significant effect of global warming is the rise in sea level. Flooding is occurring in low-lying areas as a result of sea-level rise. Many countries have experienced extreme weather conditions. Every year, we have unusually heavy rain, extreme heat and cold, wildfires, and other natural disasters.

Similarly, as global warming continues, marine life is being severely impacted. This is causing the extinction of marine species as well as other problems. Furthermore, changes are expected in coral reefs, which will face extinction in the coming years. These effects will intensify in the coming years, effectively halting species expansion. Furthermore, humans will eventually feel the negative effects of Global Warming.

Also Read: Concept of Sustainable Development

Sample Essays on Global Warming

Here are some sample essays on Global Warming:

Essay on Global Warming Paragraph in 100 – 150 words

Global Warming is caused by the increase of carbon dioxide levels in the earth’s atmosphere and is a result of human activities that have been causing harm to our environment for the past few centuries now. Global Warming is something that can’t be ignored and steps have to be taken to tackle the situation globally. The average temperature is constantly rising by 1.5 degrees Celsius over the last few years.

The best method to prevent future damage to the earth, cutting down more forests should be banned and Afforestation should be encouraged. Start by planting trees near your homes and offices, participate in events, and teach the importance of planting trees. It is impossible to undo the damage but it is possible to stop further harm.

Also Read: Social Forestry

Essay on Global Warming in 250 Words

Over a long period, it is observed that the temperature of the earth is increasing. This affected wildlife, animals, humans, and every living organism on earth. Glaciers have been melting, and many countries have started water shortages, flooding, and erosion and all this is because of global warming. 

No one can be blamed for global warming except for humans. Human activities such as gases released from power plants, transportation, and deforestation have increased gases such as carbon dioxide, CFCs, and other pollutants in the earth’s atmosphere.                                              The main question is how can we control the current situation and build a better world for future generations. It starts with little steps by every individual. 

Start using cloth bags made from sustainable materials for all shopping purposes, instead of using high-watt lights use energy-efficient bulbs, switch off the electricity, don’t waste water, abolish deforestation and encourage planting more trees. Shift the use of energy from petroleum or other fossil fuels to wind and solar energy. Instead of throwing out the old clothes donate them to someone so that it is recycled. 

Donate old books, don’t waste paper.  Above all, spread awareness about global warming. Every little thing a person does towards saving the earth will contribute in big or small amounts. We must learn that 1% effort is better than no effort. Pledge to take care of Mother Nature and speak up about global warming.

Also Read: Types of Water Pollution

Essay on Global Warming in 500 Words

Global warming isn’t a prediction, it is happening! A person denying it or unaware of it is in the most simple terms complicit. Do we have another planet to live on? Unfortunately, we have been bestowed with this one planet only that can sustain life yet over the years we have turned a blind eye to the plight it is in. Global warming is not an abstract concept but a global phenomenon occurring ever so slowly even at this moment. Global Warming is a phenomenon that is occurring every minute resulting in a gradual increase in the Earth’s overall climate. Brought about by greenhouse gases that trap the solar radiation in the atmosphere, global warming can change the entire map of the earth, displacing areas, flooding many countries, and destroying multiple lifeforms. Extreme weather is a direct consequence of global warming but it is not an exhaustive consequence. There are virtually limitless effects of global warming which are all harmful to life on earth. The sea level is increasing by 0.12 inches per year worldwide. This is happening because of the melting of polar ice caps because of global warming. This has increased the frequency of floods in many lowland areas and has caused damage to coral reefs. The Arctic is one of the worst-hit areas affected by global warming. Air quality has been adversely affected and the acidity of the seawater has also increased causing severe damage to marine life forms. Severe natural disasters are brought about by global warming which has had dire effects on life and property. As long as mankind produces greenhouse gases, global warming will continue to accelerate. The consequences are felt at a much smaller scale which will increase to become drastic shortly. The power to save the day lies in the hands of humans, the need is to seize the day. Energy consumption should be reduced on an individual basis. Fuel-efficient cars and other electronics should be encouraged to reduce the wastage of energy sources. This will also improve air quality and reduce the concentration of greenhouse gases in the atmosphere. Global warming is an evil that can only be defeated when fought together. It is better late than never. If we all take steps today, we will have a much brighter future tomorrow. Global warming is the bane of our existence and various policies have come up worldwide to fight it but that is not enough. The actual difference is made when we work at an individual level to fight it. Understanding its import now is crucial before it becomes an irrevocable mistake. Exterminating global warming is of utmost importance and each one of us is as responsible for it as the next.  

Also Read: Essay on Library: 100, 200 and 250 Words

Essay on Global Warming UPSC

Always hear about global warming everywhere, but do we know what it is? The evil of the worst form, global warming is a phenomenon that can affect life more fatally. Global warming refers to the increase in the earth’s temperature as a result of various human activities. The planet is gradually getting hotter and threatening the existence of lifeforms on it. Despite being relentlessly studied and researched, global warming for the majority of the population remains an abstract concept of science. It is this concept that over the years has culminated in making global warming a stark reality and not a concept covered in books. Global warming is not caused by one sole reason that can be curbed. Multifarious factors cause global warming most of which are a part of an individual’s daily existence. Burning of fuels for cooking, in vehicles, and for other conventional uses, a large amount of greenhouse gases like carbon dioxide, and methane amongst many others is produced which accelerates global warming. Rampant deforestation also results in global warming as lesser green cover results in an increased presence of carbon dioxide in the atmosphere which is a greenhouse gas.  Finding a solution to global warming is of immediate importance. Global warming is a phenomenon that has to be fought unitedly. Planting more trees can be the first step that can be taken toward warding off the severe consequences of global warming. Increasing the green cover will result in regulating the carbon cycle. There should be a shift from using nonrenewable energy to renewable energy such as wind or solar energy which causes less pollution and thereby hinder the acceleration of global warming. Reducing energy needs at an individual level and not wasting energy in any form is the most important step to be taken against global warming. The warning bells are tolling to awaken us from the deep slumber of complacency we have slipped into. Humans can fight against nature and it is high time we acknowledged that. With all our scientific progress and technological inventions, fighting off the negative effects of global warming is implausible. We have to remember that we do not inherit the earth from our ancestors but borrow it from our future generations and the responsibility lies on our shoulders to bequeath them a healthy planet for life to exist. 

Also Read: Essay on Disaster Management

Climate Change and Global Warming Essay

Global Warming and Climate Change are two sides of the same coin. Both are interrelated with each other and are two issues of major concern worldwide. Greenhouse gases released such as carbon dioxide, CFCs, and other pollutants in the earth’s atmosphere cause Global Warming which leads to climate change. Black holes have started to form in the ozone layer that protects the earth from harmful ultraviolet rays. 

Human activities have created climate change and global warming. Industrial waste and fumes are the major contributors to global warming. 

Another factor affecting is the burning of fossil fuels, deforestation and also one of the reasons for climate change.  Global warming has resulted in shrinking mountain glaciers in Antarctica, Greenland, and the Arctic and causing climate change. Switching from the use of fossil fuels to energy sources like wind and solar. 

When buying any electronic appliance buy the best quality with energy savings stars. Don’t waste water and encourage rainwater harvesting in your community. 

Also Read: Essay on Air Pollution

Tips to Write an Essay

Writing an effective essay needs skills that few people possess and even fewer know how to implement. While writing an essay can be an assiduous task that can be unnerving at times, some key pointers can be inculcated to draft a successful essay. These involve focusing on the structure of the essay, planning it out well, and emphasizing crucial details.

Mentioned below are some pointers that can help you write better structure and more thoughtful essays that will get across to your readers:

  • Prepare an outline for the essay to ensure continuity and relevance and no break in the structure of the essay
  • Decide on a thesis statement that will form the basis of your essay. It will be the point of your essay and help readers understand your contention
  • Follow the structure of an introduction, a detailed body followed by a conclusion so that the readers can comprehend the essay in a particular manner without any dissonance.
  • Make your beginning catchy and include solutions in your conclusion to make the essay insightful and lucrative to read
  • Reread before putting it out and add your flair to the essay to make it more personal and thereby unique and intriguing for readers  

Also Read: I Love My India Essay: 100 and 500+ Words in English for School Students

Ans. Both natural and man-made factors contribute to global warming. The natural one also contains methane gas, volcanic eruptions, and greenhouse gases. Deforestation, mining, livestock raising, burning fossil fuels, and other man-made causes are next.

Ans. The government and the general public can work together to stop global warming. Trees must be planted more often, and deforestation must be prohibited. Auto usage needs to be curbed, and recycling needs to be promoted.

Ans. Switching to renewable energy sources , adopting sustainable farming, transportation, and energy methods, and conserving water and other natural resources.

Relevant Blogs

For more information on such interesting topics, visit our essay writing page and follow Leverage Edu.

' src=

Digvijay Singh

Having 2+ years of experience in educational content writing, withholding a Bachelor's in Physical Education and Sports Science and a strong interest in writing educational content for students enrolled in domestic and foreign study abroad programmes. I believe in offering a distinct viewpoint to the table, to help students deal with the complexities of both domestic and foreign educational systems. Through engaging storytelling and insightful analysis, I aim to inspire my readers to embark on their educational journeys, whether abroad or at home, and to make the most of every learning opportunity that comes their way.

Leave a Reply Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Contact no. *

This was really a good essay on global warming… There has been used many unic words..and I really liked it!!!Seriously I had been looking for a essay about Global warming just like this…

Thank you for the comment!

I want to learn how to write essay writing so I joined this page.This page is very useful for everyone.

Hi, we are glad that we could help you to write essays. We have a beginner’s guide to write essays ( https://leverageedu.com/blog/essay-writing/ ) and we think this might help you.

It is not good , to have global warming in our earth .So we all have to afforestation program on all the world.

thank you so much

Very educative , helpful and it is really going to strength my English knowledge to structure my essay in future

Thank you for the comment, please follow our newsletter to get more insights on studying abroad and exams!

Global warming is the increase in 𝓽𝓱𝓮 ᴀᴠᴇʀᴀɢᴇ ᴛᴇᴍᴘᴇʀᴀᴛᴜʀᴇs ᴏғ ᴇᴀʀᴛʜ🌎 ᴀᴛᴍᴏsᴘʜᴇʀᴇ

browse success stories

Leaving already?

8 Universities with higher ROI than IITs and IIMs

Grab this one-time opportunity to download this ebook

Connect With Us

45,000+ students realised their study abroad dream with us. take the first step today..

essay on global warming effect

Resend OTP in

essay on global warming effect

Need help with?

Study abroad.

UK, Canada, US & More

IELTS, GRE, GMAT & More

Scholarship, Loans & Forex

Country Preference

New Zealand

Which English test are you planning to take?

Which academic test are you planning to take.

Not Sure yet

When are you planning to take the exam?

Already booked my exam slot

Within 2 Months

Want to learn about the test

Which Degree do you wish to pursue?

When do you want to start studying abroad.

September 2024

January 2025

What is your budget to study abroad?

essay on global warming effect

How would you describe this article ?

Please rate this article

We would like to hear more.

Essay on Global Warming – Causes and Solutions

500+ words essay on global warming.

Global Warming is a term almost everyone is familiar with. But, its meaning is still not clear to most of us. So, Global warming refers to the gradual rise in the overall temperature of the atmosphere of the Earth. There are various activities taking place which have been increasing the temperature gradually. Global warming is melting our ice glaciers rapidly. This is extremely harmful to the earth as well as humans. It is quite challenging to control global warming; however, it is not unmanageable. The first step in solving any problem is identifying the cause of the problem. Therefore, we need to first understand the causes of global warming that will help us proceed further in solving it. In this essay on Global Warming, we will see the causes and solutions of Global Warming.

essay on global warming

Causes of Global Warming

Global warming has become a grave problem which needs undivided attention. It is not happening because of a single cause but several causes. These causes are both natural as well as manmade. The natural causes include the release of greenhouses gases which are not able to escape from earth, causing the temperature to increase.

Get English Important Questions here

Further, volcanic eruptions are also responsible for global warming. That is to say, these eruptions release tons of carbon dioxide which contributes to global warming. Similarly, methane is also one big issue responsible for global warming.

essay on global warming effect

So, when one of the biggest sources of absorption of carbon dioxide will only disappear, there will be nothing left to regulate the gas. Thus, it will result in global warming. Steps must be taken immediately to stop global warming and make the earth better again.

Get the huge list of more than 500 Essay Topics and Ideas

Global Warming Solutions

As stated earlier, it might be challenging but it is not entirely impossible. Global warming can be stopped when combined efforts are put in. For that, individuals and governments, both have to take steps towards achieving it. We must begin with the reduction of greenhouse gas.

Furthermore, they need to monitor the consumption of gasoline. Switch to a hybrid car and reduce the release of carbon dioxide. Moreover, citizens can choose public transport or carpool together. Subsequently, recycling must also be encouraged.

Read Global Warming Speech here

For instance, when you go shopping, carry your own cloth bag. Another step you can take is to limit the use of electricity which will prevent the release of carbon dioxide. On the government’s part, they must regulate industrial waste and ban them from emitting harmful gases in the air. Deforestation must be stopped immediately and planting of trees must be encouraged.

In short, all of us must realize the fact that our earth is not well. It needs to treatment and we can help it heal. The present generation must take up the responsibility of stopping global warming in order to prevent the suffering of future generations. Therefore, every little step, no matter how small carries a lot of weight and is quite significant in stopping global warming.

हिंदी में ग्लोबल वार्मिंग पर निबंध यहाँ पढ़ें

FAQs on Global Warming

Q.1 List the causes of Global Warming.

A.1 There are various causes of global warming both natural and manmade. The natural one includes a greenhouse gas, volcanic eruption, methane gas and more. Next up, manmade causes are deforestation, mining, cattle rearing, fossil fuel burning and more.

Q.2 How can one stop Global Warming?

A.2 Global warming can be stopped by a joint effort by the individuals and the government. Deforestation must be banned and trees should be planted more. The use of automobiles must be limited and recycling must be encouraged.

Customize your course in 30 seconds

Which class are you in.

tutor

  • Travelling Essay
  • Picnic Essay
  • Our Country Essay
  • My Parents Essay
  • Essay on Favourite Personality
  • Essay on Memorable Day of My Life
  • Essay on Knowledge is Power
  • Essay on Gurpurab
  • Essay on My Favourite Season
  • Essay on Types of Sports

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Download the App

Google Play

Global Warming 101

Everything you wanted to know about our changing climate but were too afraid to ask.

Pedestrians use umbrellas and protective clothing for shade in Beijing, China

Temperatures in Beijing rose above 104 degrees Fahrenheit on July 6, 2023.

Jia Tianyong/China News Service/VCG via Getty Images

A headshot of Jeff Turrentine

  • Share this page block

What is global warming?

What causes global warming, how is global warming linked to extreme weather, what are the other effects of global warming, where does the united states stand in terms of global-warming contributors, is the united states doing anything to prevent global warming, is global warming too big a problem for me to help tackle.

A: Since the Industrial Revolution, the global annual temperature has increased in total by a little more than 1 degree Celsius, or about 2 degrees Fahrenheit. Between 1880—the year that accurate recordkeeping began—and 1980, it rose on average by 0.07 degrees Celsius (0.13 degrees Fahrenheit) every 10 years. Since 1981, however, the rate of increase has more than doubled: For the last 40 years, we’ve seen the global annual temperature rise by 0.18 degrees Celsius, or 0.32 degrees Fahrenheit, per decade.

The result? A planet that has never been hotter . Nine of the 10 warmest years since 1880 have occurred since 2005—and the 5 warmest years on record have all occurred since 2015. Climate change deniers have argued that there has been a “pause” or a “slowdown” in rising global temperatures, but numerous studies, including a 2018 paper published in the journal Environmental Research Letters , have disproved this claim. The impacts of global warming are already harming people around the world.

Now climate scientists have concluded that we must limit global warming to 1.5 degrees Celsius by 2040 if we are to avoid a future in which everyday life around the world is marked by its worst, most devastating effects: the extreme droughts, wildfires, floods, tropical storms, and other disasters that we refer to collectively as climate change . These effects are felt by all people in one way or another but are experienced most acutely by the underprivileged, the economically marginalized, and people of color, for whom climate change is often a key driver of poverty, displacement, hunger, and social unrest.

A: Global warming occurs when carbon dioxide (CO 2 ) and other air pollutants collect in the atmosphere and absorb sunlight and solar radiation that have bounced off the earth’s surface. Normally this radiation would escape into space, but these pollutants, which can last for years to centuries in the atmosphere, trap the heat and cause the planet to get hotter. These heat-trapping pollutants—specifically carbon dioxide, methane, nitrous oxide, water vapor, and synthetic fluorinated gases—are known as greenhouse gases, and their impact is called the greenhouse effect.

Though natural cycles and fluctuations have caused the earth’s climate to change several times over the last 800,000 years, our current era of global warming is directly attributable to human activity—specifically to our burning of fossil fuels such as coal, oil, gasoline, and natural gas, which results in the greenhouse effect. In the United States, the largest source of greenhouse gases is transportation (29 percent), followed closely by electricity production (28 percent) and industrial activity (22 percent). Learn about the natural and human causes of climate change .

Curbing dangerous climate change requires very deep cuts in emissions, as well as the use of alternatives to fossil fuels worldwide. The good news is that countries around the globe have formally committed—as part of the 2015 Paris Climate Agreement —to lower their emissions by setting new standards and crafting new policies to meet or even exceed those standards. The not-so-good news is that we’re not working fast enough. To avoid the worst impacts of climate change, scientists tell us that we need to reduce global carbon emissions by as much as 40 percent by 2030. For that to happen, the global community must take immediate, concrete steps: to decarbonize electricity generation by equitably transitioning from fossil fuel–based production to renewable energy sources like wind and solar; to electrify our cars and trucks; and to maximize energy efficiency in our buildings, appliances, and industries.

A: Scientists agree that the earth’s rising temperatures are fueling longer and hotter heat waves , more frequent droughts , heavier rainfall , and more powerful hurricanes .

In 2015, for example, scientists concluded that a lengthy drought in California—the state’s worst water shortage in 1,200 years —had been intensified by 15 to 20 percent by global warming. They also said the odds of similar droughts happening in the future had roughly doubled over the past century. And in 2016, the National Academies of Science, Engineering, and Medicine announced that we can now confidently attribute some extreme weather events, like heat waves, droughts, and heavy precipitation, directly to climate change.

The earth’s ocean temperatures are getting warmer, too—which means that tropical storms can pick up more energy. In other words, global warming has the ability to turn a category 3 storm into a more dangerous category 4 storm. In fact, scientists have found that the frequency of North Atlantic hurricanes has increased since the early 1980s, as has the number of storms that reach categories 4 and 5. The 2020 Atlantic hurricane season included a record-breaking 30 tropical storms, 6 major hurricanes, and 13 hurricanes altogether. With increased intensity come increased damage and death. The United States saw an unprecedented 22 weather and climate disasters that caused at least a billion dollars’ worth of damage in 2020, but, according to NOAA, 2017 was the costliest on record and among the deadliest as well: Taken together, that year's tropical storms (including Hurricanes Harvey, Irma, and Maria) caused nearly $300 billion in damage and led to more than 3,300 fatalities.

The impacts of global warming are being felt everywhere. Extreme heat waves have caused tens of thousands of deaths around the world in recent years. And in an alarming sign of events to come, Antarctica has lost nearly four trillion metric tons of ice since the 1990s. The rate of loss could speed up if we keep burning fossil fuels at our current pace, some experts say, causing sea levels to rise several meters in the next 50 to 150 years and wreaking havoc on coastal communities worldwide.

A: Each year scientists learn more about the consequences of global warming , and each year we also gain new evidence of its devastating impact on people and the planet. As the heat waves, droughts, and floods associated with climate change become more frequent and more intense, communities suffer and death tolls rise. If we’re unable to reduce our emissions, scientists believe that climate change could lead to the deaths of more than 250,000 people around the globe every year and force 100 million people into poverty by 2030.

Global warming is already taking a toll on the United States. And if we aren’t able to get a handle on our emissions, here’s just a smattering of what we can look forward to:

  • Disappearing glaciers, early snowmelt, and severe droughts will cause more dramatic water shortages and continue to increase the risk of wildfires in the American West.
  • Rising sea levels will lead to even more coastal flooding on the Eastern Seaboard, especially in Florida, and in other areas such as the Gulf of Mexico.
  • Forests, farms, and cities will face troublesome new pests , heat waves, heavy downpours, and increased flooding . All of these can damage or destroy agriculture and fisheries.
  • Disruption of habitats such as coral reefs and alpine meadows could drive many plant and animal species to extinction.
  • Allergies, asthma, and infectious disease outbreaks will become more common due to increased growth of pollen-producing ragweed , higher levels of air pollution , and the spread of conditions favorable to pathogens and mosquitoes.

Though everyone is affected by climate change, not everyone is affected equally. Indigenous people, people of color, and the economically marginalized are typically hit the hardest. Inequities built into our housing , health care , and labor systems make these communities more vulnerable to the worst impacts of climate change—even though these same communities have done the least to contribute to it.

A: In recent years, China has taken the lead in global-warming pollution , producing about 26 percent of all CO2 emissions. The United States comes in second. Despite making up just 4 percent of the world’s population, our nation produces a sobering 13 percent of all global CO2 emissions—nearly as much as the European Union and India (third and fourth place) combined. And America is still number one, by far, in cumulative emissions over the past 150 years. As a top contributor to global warming, the United States has an obligation to help propel the world to a cleaner, safer, and more equitable future. Our responsibility matters to other countries, and it should matter to us, too.

A: We’ve started. But in order to avoid the worsening effects of climate change, we need to do a lot more—together with other countries—to reduce our dependence on fossil fuels and transition to clean energy sources.

Under the administration of President Donald Trump (a man who falsely referred to global warming as a “hoax”), the United States withdrew from the Paris Climate Agreement, rolled back or eliminated dozens of clean air protections, and opened up federally managed lands, including culturally sacred national monuments, to fossil fuel development. Although President Biden has pledged to get the country back on track, years of inaction during and before the Trump administration—and our increased understanding of global warming’s serious impacts—mean we must accelerate our efforts to reduce greenhouse gas emissions.

Despite the lack of cooperation from the Trump administration, local and state governments made great strides during this period through efforts like the American Cities Climate Challenge and ongoing collaborations like the Regional Greenhouse Gas Initiative . Meanwhile, industry and business leaders have been working with the public sector, creating and adopting new clean-energy technologies and increasing energy efficiency in buildings, appliances, and industrial processes. 

Today the American automotive industry is finding new ways to produce cars and trucks that are more fuel efficient and is committing itself to putting more and more zero-emission electric vehicles on the road. Developers, cities, and community advocates are coming together to make sure that new affordable housing is built with efficiency in mind , reducing energy consumption and lowering electric and heating bills for residents. And renewable energy continues to surge as the costs associated with its production and distribution keep falling. In 2020 renewable energy sources such as wind and solar provided more electricity than coal for the very first time in U.S. history.

President Biden has made action on global warming a high priority. On his first day in office, he recommitted the United States to the Paris Climate Agreement, sending the world community a strong signal that we were determined to join other nations in cutting our carbon pollution to support the shared goal of preventing the average global temperature from rising more than 1.5 degrees Celsius above preindustrial levels. (Scientists say we must stay below a 2-degree increase to avoid catastrophic climate impacts.) And significantly, the president has assembled a climate team of experts and advocates who have been tasked with pursuing action both abroad and at home while furthering the cause of environmental justice and investing in nature-based solutions.

A: No! While we can’t win the fight without large-scale government action at the national level , we also can’t do it without the help of individuals who are willing to use their voices, hold government and industry leaders to account, and make changes in their daily habits.

Wondering how you can be a part of the fight against global warming? Reduce your own carbon footprint by taking a few easy steps: Make conserving energy a part of your daily routine and your decisions as a consumer. When you shop for new appliances like refrigerators, washers, and dryers, look for products with the government’s ENERGY STAR ® label; they meet a higher standard for energy efficiency than the minimum federal requirements. When you buy a car, look for one with the highest gas mileage and lowest emissions. You can also reduce your emissions by taking public transportation or carpooling when possible.

And while new federal and state standards are a step in the right direction, much more needs to be done. Voice your support of climate-friendly and climate change preparedness policies, and tell your representatives that equitably transitioning from dirty fossil fuels to clean power should be a top priority—because it’s vital to building healthy, more secure communities.

You don’t have to go it alone, either. Movements across the country are showing how climate action can build community , be led by those on the front lines of its impacts, and create a future that’s equitable and just for all .

This story was originally published on March 11, 2016 and has been updated with new information and links.

This NRDC.org story is available for online republication by news media outlets or nonprofits under these conditions: The writer(s) must be credited with a byline; you must note prominently that the story was originally published by NRDC.org and link to the original; the story cannot be edited (beyond simple things such as grammar); you can’t resell the story in any form or grant republishing rights to other outlets; you can’t republish our material wholesale or automatically—you need to select stories individually; you can’t republish the photos or graphics on our site without specific permission; you should drop us a note to let us know when you’ve used one of our stories.

Related Stories

A ship with four large white domes moves through open water

Liquefied Natural Gas 101

An infographic titled "Super-efficient Heat Pumps"

What’s the Most Energy-Efficient Water Heater?

A person stands next to their Tesla and views its charging progress in a smartphone app

What Do “Better” Batteries Look Like?

When you sign up, you’ll become a member of NRDC’s Activist Network. We will keep you informed with the latest alerts and progress reports.

  • Biology Article
  • Essay on Global Warming

Essay On Global Warming

Essay on global warming is an important topic for students to understand. The essay brings to light the plight of the environment and the repercussion of anthropogenic activities. Continue reading to discover tips and tricks for writing an engaging and interesting essay on global warming.

Essay On Global Warming in 300 Words

Global warming is a phenomenon where the earth’s average temperature rises due to increased amounts of greenhouse gases. Greenhouse gases such as carbon dioxide, methane and ozone trap the incoming radiation from the sun. This effect creates a natural “blanket”, which prevents the heat from escaping back into the atmosphere. This effect is called the greenhouse effect.

Contrary to popular belief, greenhouse gases are not inherently bad. In fact, the greenhouse effect is quite important for life on earth. Without this effect, the sun’s radiation would be reflected back into the atmosphere, freezing the surface and making life impossible. However, when greenhouse gases in excess amounts get trapped, serious repercussions begin to appear. The polar ice caps begin to melt, leading to a rise in sea levels. Furthermore, the greenhouse effect is accelerated when polar ice caps and sea ice melts. This is due to the fact the ice reflects 50% to 70% of the sun’s rays back into space, but without ice, the solar radiation gets absorbed. Seawater reflects only 6% of the sun’s radiation back into space. What’s more frightening is the fact that the poles contain large amounts of carbon dioxide trapped within the ice. If this ice melts, it will significantly contribute to global warming. 

A related scenario when this phenomenon goes out of control is the runaway-greenhouse effect. This scenario is essentially similar to an apocalypse, but it is all too real. Though this has never happened in the earth’s entire history, it is speculated to have occurred on Venus. Millions of years ago, Venus was thought to have an atmosphere similar to that of the earth. But due to the runaway greenhouse effect, surface temperatures around the planet began rising. 

If this occurs on the earth, the runaway greenhouse effect will lead to many unpleasant scenarios – temperatures will rise hot enough for oceans to evaporate. Once the oceans evaporate, the rocks will start to sublimate under heat. In order to prevent such a scenario, proper measures have to be taken to stop climate change.

More to Read: Learn How Greenhouse Effect works

Tips To Writing the Perfect Essay

Consider adopting the following strategies when writing an essay. These are proven methods of securing more marks in an exam or assignment.

  • Begin the essay with an introductory paragraph detailing the history or origin of the given topic.
  • Try to reduce the use of jargons. Use sparingly if the topic requires it.
  • Ensure that the content is presented in bulleted points wherever appropriate.
  • Insert and highlight factual data, such as dates, names and places.
  • Remember to break up the content into smaller paragraphs. 100-120 words per paragraph should suffice.
  • Always conclude the essay with a closing paragraph.

Explore more essays on biology or other related fields at BYJU’S.

BIOLOGY Related Links

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Request OTP on Voice Call

Post My Comment

essay on global warming effect

Very helpful Byju’s

this app is very useful

Sample essay on global warming

Very nice and helpful⭐️

Amazing essay

This essay is very helpful to every student Thank you Byjus! 😊😊😊

This one is so helpful and easy to understand. Thank you, Byju’s!

essay on global warming effect

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

Causes of global warming, explained

Human activity is driving climate change, including global temperature rise.

The average temperature of the Earth is rising at nearly twice the rate it was 50 years ago. This rapid warming trend cannot be explained by natural cycles alone, scientists have concluded. The only way to explain the pattern is to include the effect of greenhouse gases (GHGs) emitted by humans.

Current levels of the greenhouse gases carbon dioxide, methane, and nitrous oxide in our atmosphere are higher than at any point over the past 800,000 years , and their ability to trap heat is changing our climate in multiple ways .

IPCC conclusions

To come to a scientific conclusion on climate change and what to do about it, the United Nations in 1988 formed a group called the Intergovernmental Panel on Climate Change , or IPCC. The IPCC meets every few years to review the latest scientific findings and write a report summarizing all that is known about global warming. Each report represents a consensus, or agreement, among hundreds of leading scientists.

One of the first things the IPCC concluded is that there are several greenhouse gases responsible for warming, and humans emit them in a variety of ways. Most come from the combustion of fossil fuels in cars, buildings, factories, and power plants. The gas responsible for the most warming is carbon dioxide, or CO2. Other contributors include methane released from landfills, natural gas and petroleum industries, and agriculture (especially from the digestive systems of grazing animals); nitrous oxide from fertilizers; gases used for refrigeration and industrial processes; and the loss of forests that would otherwise store CO2.

a melting iceberg

Gaseous abilities

Different greenhouse gases have very different heat-trapping abilities. Some of them can trap more heat than an equivalent amount of CO2. A molecule of methane doesn't hang around the atmosphere as long as a molecule of carbon dioxide will, but it is at least 84 times more potent over two decades. Nitrous oxide is 264 times more powerful than CO2.

Other gases, such as chlorofluorocarbons, or CFCs—which have been banned in much of the world because they also degrade the ozone layer—have heat-trapping potential thousands of times greater than CO2. But because their emissions are much lower than CO2 , none of these gases trap as much heat in the atmosphere as CO2 does.

When those gases that humans are adding to Earth's atmosphere trap heat, it’s called the "greenhouse effect." The gases let light through but then keep much of the heat that radiates from the surface from escaping back into space, like the glass walls of a greenhouse. The more greenhouse gases in the atmosphere, the more dramatic the effect, and the more warming that happens.

Climate change continues

Despite global efforts to address climate change, including the landmark 2015 Paris climate agreement , carbon dioxide emissions from fossil fuels continue to rise, hitting record levels in 2018 .

Many people think of global warming and climate change as synonyms, but scientists prefer to use “climate change” when describing the complex shifts now affecting our planet’s weather and climate systems. Climate change encompasses not only rising average temperatures but also extreme weather events, shifting wildlife populations and and habitats, rising seas , and a range of other impacts.

Read next: Global Warming Effects

Related Topics

  • CLIMATE CHANGE
  • ENVIRONMENT AND CONSERVATION
  • AIR POLLUTION

You May Also Like

essay on global warming effect

Another weapon to fight climate change? Put carbon back where we found it

essay on global warming effect

How global warming is disrupting life on Earth

essay on global warming effect

Are there real ways to fight climate change? Yes.

essay on global warming effect

What is the ozone layer, and why does it matter?

essay on global warming effect

The U.S. ‘warming hole’—a climate anomaly explained

  • Perpetual Planet
  • Environment

History & Culture

  • History Magazine
  • History & Culture
  • Race in America
  • Mind, Body, Wonder
  • Paid Content
  • Adventures Everywhere
  • Terms of Use
  • Privacy Policy
  • Your US State Privacy Rights
  • Children's Online Privacy Policy
  • Interest-Based Ads
  • About Nielsen Measurement
  • Do Not Sell or Share My Personal Information
  • Nat Geo Home
  • Attend a Live Event
  • Book a Trip
  • Inspire Your Kids
  • Shop Nat Geo
  • Visit the D.C. Museum
  • Learn About Our Impact
  • Support Our Mission
  • Advertise With Us
  • Customer Service
  • Renew Subscription
  • Manage Your Subscription
  • Work at Nat Geo
  • Sign Up for Our Newsletters
  • Contribute to Protect the Planet

Copyright © 1996-2015 National Geographic Society Copyright © 2015-2024 National Geographic Partners, LLC. All rights reserved

ENCYCLOPEDIC ENTRY

Global warming.

The causes, effects, and complexities of global warming are important to understand so that we can fight for the health of our planet.

Earth Science, Climatology

Tennessee Power Plant

Ash spews from a coal-fueled power plant in New Johnsonville, Tennessee, United States.

Photograph by Emory Kristof/ National Geographic

Ash spews from a coal-fueled power plant in New Johnsonville, Tennessee, United States.

Global warming is the long-term warming of the planet’s overall temperature. Though this warming trend has been going on for a long time, its pace has significantly increased in the last hundred years due to the burning of fossil fuels . As the human population has increased, so has the volume of fossil fuels burned. Fossil fuels include coal, oil, and natural gas, and burning them causes what is known as the “greenhouse effect” in Earth’s atmosphere.

The greenhouse effect is when the sun’s rays penetrate the atmosphere, but when that heat is reflected off the surface cannot escape back into space. Gases produced by the burning of fossil fuels prevent the heat from leaving the atmosphere. These greenhouse gasses are carbon dioxide , chlorofluorocarbons, water vapor , methane , and nitrous oxide . The excess heat in the atmosphere has caused the average global temperature to rise overtime, otherwise known as global warming.

Global warming has presented another issue called climate change. Sometimes these phrases are used interchangeably, however, they are different. Climate change refers to changes in weather patterns and growing seasons around the world. It also refers to sea level rise caused by the expansion of warmer seas and melting ice sheets and glaciers . Global warming causes climate change, which poses a serious threat to life on Earth in the forms of widespread flooding and extreme weather. Scientists continue to study global warming and its impact on Earth.

Media Credits

The audio, illustrations, photos, and videos are credited beneath the media asset, except for promotional images, which generally link to another page that contains the media credit. The Rights Holder for media is the person or group credited.

Production Managers

Program specialists, last updated.

February 21, 2024

User Permissions

For information on user permissions, please read our Terms of Service. If you have questions about how to cite anything on our website in your project or classroom presentation, please contact your teacher. They will best know the preferred format. When you reach out to them, you will need the page title, URL, and the date you accessed the resource.

If a media asset is downloadable, a download button appears in the corner of the media viewer. If no button appears, you cannot download or save the media.

Text on this page is printable and can be used according to our Terms of Service .

Interactives

Any interactives on this page can only be played while you are visiting our website. You cannot download interactives.

Related Resources

Global Warming Definition, Causes, Effects, Impacts, Solutions_1.1

Global Warming Definition, Causes, Effects, Impacts, Solutions

Global Warming is a long-term increase in average global temperature. Read about Global Warming Definition, Causes, Effects, Impact on Climate Change & Solutions for the UPSC exam.

Global Warming

Table of Contents

What is Global Warming?

Global Warming is a long-term increase in average global temperature. It is considered a natural phenomenon, but anthropogenic activities on earth, particularly post Industrial Revolution , have led to an increase in the rate of this temperature increase. Various Reports published by the International Panel on Climate Change (IPCC) have time and again highlighted that since 1850 human activities have led to an increase of about 1 degree Celsius in average global temperature. Most of this warming has taken place in the second half of the 20th century. The fact that 5 of the hottest recorded year have occurred since 2015 can help us better understand the calamitous impact of anthropogenic activities.

Global Warming Causes

Green House Gases also known as GHGs in the atmosphere trap the solar radiations that are reflected by the earth’s surface. Under normal circumstances, most of these radiations escape into outer space. However, the release of GHGs by anthropogenic activities has increased their concentration in the atmosphere. Thus, the earth is getting hotter and hotter. 

Some of the common GHGs include carbon dioxide, methane, nitrous oxide, chlorofluorocarbons, and water vapour, among others. The global warming potential of each GHG is different. For example, methane has a 25-time warming potential than carbon dioxide. Similarly, nitrous oxide has more than 250 times the warming potential than carbon dioxide. The top  anthropogenic activities that are responsible for the release of GHGs are shown below.

Global Warming Definition, Causes, Effects, Impacts, Solutions_4.1

Global Warming and Green House Effect

Both phenomena are related to each other. Green House Gases also known as GHGs in the atmosphere trap the solar radiations that are reflected by the earth’s surface. Under normal circumstances, most of these radiations escape into outer space. However, the release of GHGs by anthropogenic activities has increased their concentration in the atmosphere. This is the primary cause of Global Warming . 

Global Warming Effects

Increase in the average temperature of the earth.

According to IPCC reports, human-induced global warming is responsible for nearly 1 degree Celsius temperature rise vis a vis pre-industrial level. Data from NASA suggest that 2016 has been the hottest year on record.

Frequency of Extreme Weather Events is Increasing

Across the globe, extreme weather events have increased in occurrence. For example, forest fires in California have become an annual event. Also, it is increasing in frequency each year. Most recently, we have recorded the phenomena of heat waves in Antarctica. The intensity of cyclones in the Bay of Bengal region has increased. Similarly, the frequency of occurrence of El Niño and La Niña has reduced from once in 8–10 years to once in 3–4 years now. More frequent episodes of floods and drought are being recorded every year across the world.

Melting of Ice

According to IPCC, there is 10% less permafrost in North Hemisphere at present compared to the 1900s. Remote sensing data suggest Arctic ice is melting fast. Experts suggest that not only will the sea level rise with the melting of glaciers, but there is also a danger of new bacteria and viruses being released into the environment which has so far been trapped in ice sheets. This may lead to outbreaks of disease and pandemics which are beyond the control of human medical sciences.

Sea Level Rise and Acidification of Ocean

A report published by WMO, suggests that the rate of sea level rise has doubled for the period between 2013 and 2021 compared to the rate for the period between 1993 and 2002. Earth scientists are suggesting that if this phenomenon continues, many human-inhabited coastal areas will be submerged into the sea in the coming decades. Also, with the concentration of carbon dioxide rising in the atmosphere, oceans are absorbing more of it. This is leading to ocean acidification. The impact of this phenomenon can be disastrous for ocean biodiversity, particularly the coral reefs. 

Adverse Impact on Terrestrial Ecosystems of the Earth

It has been recorded that many flora and fauna species are heading northwards in Northern Hemisphere. Significant changes have been observed in the migratory movements of birds across the world. Early arrival to their summer feeding and breeding grounds is quite evident. Expert biologists suggest that rising temperatures in the tropical and subtropical regions may lead to an outbreak of new diseases, which in turn may render many floral and faunal species extinct.

Social and Economic Impact

A rising number of extreme weather events will have an adverse impact on agriculture and fisheries. Rising global temperatures will have a negative impact on the productivity of human beings, particularly in tropical and subtropical regions of the earth. The impact on life and livelihoods of indigenous people across the world will be even more pronounced. 

Global Warming Solutions

Global cooperation for reduction of emissions.

It is time that the target of containing the global average temperature rise within 1.5 degrees Celsius of pre-industrial levels is taken seriously. Also, global efforts should be based on a spirit of Common But Differentiated Responsibility. This will ensure that historical injustices done to the global south are duly acknowledged, and they have an equal chance to transform themselves into developed countries. Countries must act proactively to achieve Net Zero Emission status at the earliest. 

Transition to Cleaner and Greener Forms of Energy

Thermal power plants based on coal should be made more efficient and inefficient ones should be phased off. Also, mass adoption of renewable forms of energy like solar should be promoted. Similarly, avenues for using hydrogen as energy fuel should be looked into. We must also explore the possibility of Nuclear fusion for energy generation, in addition to making nuclear fission-based energy generation safer.

Changes in Agricultural Practices and Land Use

Agriculture based on the use of nitrogenous fertilizers must be replaced with organic farming techniques. Also, methane gas released from agricultural and cattle waste must be trapped as biogas for domestic usage. Massive afforestation drives must be organized. Urban governments must make it a point to include green spaces in urban planning.

Improving Transportation System

The advent of E-vehicles is a welcome change, but we need to make the batteries used in these vehicles more efficient. Urban planners must make public transportation systems inherent as a benchmark of good urban planning. Also, urban planning should be such that it promotes more walking and cycling habits among the residents. 

Behavioural Changes

All the above discussions will have no meaning if we as individuals are not sensitive enough. We need to make reducing, reusing and recycling a mantra of our living. It should be our civic duty to save water, and wildlife and raise awareness among others. 

Solar Geoengineering

Solar geoengineering, a proposed climate intervention method, aims to counteract global warming by reflecting a portion of the sun’s rays back into space. One prominent approach involves injecting substances like sulphur dioxide into the upper atmosphere to create reflective aerosols. These particles can scatter sunlight, reducing the Earth’s temperature. However, solar geoengineering is a topic of debate, with concerns about its side effects, such as disrupted weather patterns and potential geopolitical risks. Research in this field is ongoing, but it remains a theoretical concept with limited practical implementation.

Can Solar Geoengineering Halt Global Warming?

Solar geoengineering, specifically solar radiation management (SRM), is under scrutiny as a potential method to mitigate global warming. SRM involves reflecting sunlight away from Earth, often by injecting substances like sulphur dioxide into the upper atmosphere to create reflective aerosols. However, its effectiveness remains a subject of debate, with concerns about potential side effects and ethical implications. While research in this field is ongoing, solar geoengineering is currently in a theoretical stage, with limited practical implementation.

Global Warming Conclusion

It is rightly said that “Charity begins at home.” Climate action will be more efficient if we go by this spirit. To begin with, each individual can make sure that what is happening in their house and immediate surroundings is in harmony with the environment. If this can happen, all the policies we are making at the local, national, regional and global levels will give far better results. 

Global Warming UPSC

Each year, we read about rising global temperatures. Also, catching the headlines is the news related to disasters caused by events like cyclones, forest fires, floods and drought. All these phenomena can be attributed to one single cause which is global warming. 

Global Warming is a long-term increase in average global temperature. It is considered a natural phenomenon, but anthropogenic activities on earth, particularly post-Industrial Revolution, have led to an increase in the rate of this temperature increase.

Sharing is caring!

Why is global warming a problem?

Global Warming at present rate can lead to disastrous impacts like rising sea level, out break of new diseases, extreme weather events among others.

What are 3 causes of global warming?

Human induced green house gas emission due to activities like agriculture, industrial emissions, transportation are the top 3 causes of global warming.

What are 5 effects of global warming?

Rising sea level, out break of new diseases, extreme weather events, changes in biodiversity and melting of glaciers are top 5 effects of global warming.

Why global warming is important?

Global warming at its natural rate is important to keep up the temperature of earth within the range that makes it habitable. This makes global warming important.

Can we control global warming?

Number of mitigation measures like shifting to cleaning forms of energy and transportation can be taken to control global warming.

Who help with global warming?

Global Warming is a collective challenge for entire humanity. Citizens, civil societies, governments and businesses must act in unison to address it.

Sakshi Gupta

I, Sakshi Gupta, am a content writer to empower students aiming for UPSC, PSC, and other competitive exams. My objective is to provide clear, concise, and informative content that caters to your exam preparation needs. I strive to make my content not only informative but also engaging, keeping you motivated throughout your journey!

Foreign Portfolio Investment (FPI)

Leave a comment

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

P2I Hinglish

  • UPSC Online Coaching
  • UPSC Exam 2024
  • UPSC Syllabus 2024
  • UPSC Prelims Syllabus 2024
  • UPSC Mains Syllabus 2024
  • UPSC Exam Pattern 2024
  • UPSC Age Limit 2024
  • UPSC Calendar 2024
  • UPSC Syllabus in Hindi
  • UPSC Full Form

PSIR Batch

Recent Posts

  • UPPSC Exam 2024
  • UPPSC Calendar
  • UPPSC Syllabus 2024
  • UPPSC Exam Pattern 2024
  • UPPSC Application Form 2024
  • UPPSC Eligibility Criteria 2024
  • UPPSC Admit card 2024
  • UPPSC Salary And Posts
  • UPPSC Cut Off
  • UPPSC Previous Year Paper

BPSC Exam 2024

  • BPSC 70th Notification
  • BPSC 69th Exam Analysis
  • BPSC Admit Card
  • BPSC Syllabus
  • BPSC Exam Pattern
  • BPSC Cut Off
  • BPSC Question Papers

IB ACIO Exam

  • IB ACIO Salary
  • IB ACIO Syllabus

CSIR SO ASO Exam

  • CSIR SO ASO Exam 2024
  • CSIR SO ASO Result 2024
  • CSIR SO ASO Exam Date
  • CSIR SO ASO Question Paper
  • CSIR SO ASO Answer key 2024
  • CSIR SO ASO Exam Date 2024
  • CSIR SO ASO Syllabus 2024

Study Material Categories

  • Daily The Hindu Analysis
  • Daily Practice Quiz for Prelims
  • Daily Answer Writing
  • Daily Current Affairs
  • Indian Polity
  • Environment and Ecology
  • Art and Culture
  • General Knowledge
  • Biographies

IMPORTANT EXAMS

youtube

  • Terms & Conditions
  • Return & Refund Policy
  • Privacy Policy

UN logo

Search the United Nations

  • What Is Climate Change
  • Myth Busters
  • Renewable Energy
  • Finance & Justice
  • Initiatives
  • Sustainable Development Goals
  • Paris Agreement
  • Climate Ambition Summit 2023
  • Climate Conferences
  • Press Material
  • Communications Tips

Causes and Effects of Climate Change

Fossil fuels – coal, oil and gas – are by far the largest contributor to global climate change, accounting for over 75 per cent of global greenhouse gas emissions and nearly 90 per cent of all carbon dioxide emissions.

As greenhouse gas emissions blanket the Earth, they trap the sun’s heat. This leads to global warming and climate change. The world is now warming faster than at any point in recorded history. Warmer temperatures over time are changing weather patterns and disrupting the usual balance of nature. This poses many risks to human beings and all other forms of life on Earth.

Industry and Transport

Causes of Climate Change

Generating power

Generating electricity and heat by burning fossil fuels causes a large chunk of global emissions. Most electricity is still generated by burning coal, oil, or gas, which produces carbon dioxide and nitrous oxide – powerful greenhouse gases that blanket the Earth and trap the sun’s heat. Globally, a bit more than a quarter of electricity comes from wind, solar and other renewable sources which, as opposed to fossil fuels, emit little to no greenhouse gases or pollutants into the air.

Manufacturing goods

Manufacturing and industry produce emissions, mostly from burning fossil fuels to produce energy for making things like cement, iron, steel, electronics, plastics, clothes, and other goods. Mining and other industrial processes also release gases, as does the construction industry. Machines used in the manufacturing process often run on coal, oil, or gas; and some materials, like plastics, are made from chemicals sourced from fossil fuels. The manufacturing industry is one of the largest contributors to greenhouse gas emissions worldwide.

Cutting down forests

Cutting down forests to create farms or pastures, or for other reasons, causes emissions, since trees, when they are cut, release the carbon they have been storing. Each year approximately 12 million hectares of forest are destroyed. Since forests absorb carbon dioxide, destroying them also limits nature’s ability to keep emissions out of the atmosphere. Deforestation, together with agriculture and other land use changes, is responsible for roughly a quarter of global greenhouse gas emissions.

Using transportation

Most cars, trucks, ships, and planes run on fossil fuels. That makes transportation a major contributor of greenhouse gases, especially carbon-dioxide emissions. Road vehicles account for the largest part, due to the combustion of petroleum-based products, like gasoline, in internal combustion engines. But emissions from ships and planes continue to grow. Transport accounts for nearly one quarter of global energy-related carbon-dioxide emissions. And trends point to a significant increase in energy use for transport over the coming years.

Producing food

Producing food causes emissions of carbon dioxide, methane, and other greenhouse gases in various ways, including through deforestation and clearing of land for agriculture and grazing, digestion by cows and sheep, the production and use of fertilizers and manure for growing crops, and the use of energy to run farm equipment or fishing boats, usually with fossil fuels. All this makes food production a major contributor to climate change. And greenhouse gas emissions also come from packaging and distributing food.

Powering buildings

Globally, residential and commercial buildings consume over half of all electricity. As they continue to draw on coal, oil, and natural gas for heating and cooling, they emit significant quantities of greenhouse gas emissions. Growing energy demand for heating and cooling, with rising air-conditioner ownership, as well as increased electricity consumption for lighting, appliances, and connected devices, has contributed to a rise in energy-related carbon-dioxide emissions from buildings in recent years.

Consuming too much

Your home and use of power, how you move around, what you eat and how much you throw away all contribute to greenhouse gas emissions. So does the consumption of goods such as clothing, electronics, and plastics. A large chunk of global greenhouse gas emissions are linked to private households. Our lifestyles have a profound impact on our planet. The wealthiest bear the greatest responsibility: the richest 1 per cent of the global population combined account for more greenhouse gas emissions than the poorest 50 per cent.

Based on various UN sources

Industry and Transport

Effects of Climate Change

Hotter temperatures

As greenhouse gas concentrations rise, so does the global surface temperature. The last decade, 2011-2020, is the warmest on record. Since the 1980s, each decade has been warmer than the previous one. Nearly all land areas are seeing more hot days and heat waves. Higher temperatures increase heat-related illnesses and make working outdoors more difficult. Wildfires start more easily and spread more rapidly when conditions are hotter. Temperatures in the Arctic have warmed at least twice as fast as the global average.

More severe storms

Destructive storms have become more intense and more frequent in many regions. As temperatures rise, more moisture evaporates, which exacerbates extreme rainfall and flooding, causing more destructive storms. The frequency and extent of tropical storms is also affected by the warming ocean. Cyclones, hurricanes, and typhoons feed on warm waters at the ocean surface. Such storms often destroy homes and communities, causing deaths and huge economic losses.

Increased drought

Climate change is changing water availability, making it scarcer in more regions. Global warming exacerbates water shortages in already water-stressed regions and is leading to an increased risk of agricultural droughts affecting crops, and ecological droughts increasing the vulnerability of ecosystems. Droughts can also stir destructive sand and dust storms that can move billions of tons of sand across continents. Deserts are expanding, reducing land for growing food. Many people now face the threat of not having enough water on a regular basis.

A warming, rising ocean

The ocean soaks up most of the heat from global warming. The rate at which the ocean is warming strongly increased over the past two decades, across all depths of the ocean. As the ocean warms, its volume increases since water expands as it gets warmer. Melting ice sheets also cause sea levels to rise, threatening coastal and island communities. In addition, the ocean absorbs carbon dioxide, keeping it from the atmosphere. But more carbon dioxide makes the ocean more acidic, which endangers marine life and coral reefs.

Loss of species

Climate change poses risks to the survival of species on land and in the ocean. These risks increase as temperatures climb. Exacerbated by climate change, the world is losing species at a rate 1,000 times greater than at any other time in recorded human history. One million species are at risk of becoming extinct within the next few decades. Forest fires, extreme weather, and invasive pests and diseases are among many threats related to climate change. Some species will be able to relocate and survive, but others will not.

Not enough food

Changes in the climate and increases in extreme weather events are among the reasons behind a global rise in hunger and poor nutrition. Fisheries, crops, and livestock may be destroyed or become less productive. With the ocean becoming more acidic, marine resources that feed billions of people are at risk. Changes in snow and ice cover in many Arctic regions have disrupted food supplies from herding, hunting, and fishing. Heat stress can diminish water and grasslands for grazing, causing declining crop yields and affecting livestock.

More health risks

Climate change is the single biggest health threat facing humanity. Climate impacts are already harming health, through air pollution, disease, extreme weather events, forced displacement, pressures on mental health, and increased hunger and poor nutrition in places where people cannot grow or find sufficient food. Every year, environmental factors take the lives of around 13 million people. Changing weather patterns are expanding diseases, and extreme weather events increase deaths and make it difficult for health care systems to keep up.

Poverty and displacement

Climate change increases the factors that put and keep people in poverty. Floods may sweep away urban slums, destroying homes and livelihoods. Heat can make it difficult to work in outdoor jobs. Water scarcity may affect crops. Over the past decade (2010–2019), weather-related events displaced an estimated 23.1 million people on average each year, leaving many more vulnerable to poverty. Most refugees come from countries that are most vulnerable and least ready to adapt to the impacts of climate change.

Learn more about...

Photocomposition: illustration of the Earth on fire

  • What is climate change?

Our climate 101 offers a quick take on the how and why of climate change.

Illustration of a plane turbine turning into a windmill

What is “net zero”, why is it important, and is the world on track to reach it?

Photocomposition: illustration with watering can pouring water into a plant

Initiatives for action

Read about global initiatives aimed at speeding up the pace of climate action.

Facts and figures

  • Causes and effects
  • Myth busters

Cutting emissions

  • Explaining net zero
  • High-level expert group on net zero
  • Checklists for credibility of net-zero pledges
  • Greenwashing
  • What you can do

Clean energy

  • Renewable energy – key to a safer future
  • What is renewable energy
  • Five ways to speed up the energy transition
  • Why invest in renewable energy
  • Clean energy stories
  • A just transition

Adapting to climate change

  • Climate adaptation
  • Early warnings for all
  • Youth voices

Financing climate action

  • Finance and justice
  • Loss and damage
  • $100 billion commitment
  • Why finance climate action
  • Biodiversity
  • Human Security

International cooperation

  • What are Nationally Determined Contributions
  • Acceleration Agenda
  • Climate Ambition Summit
  • Climate conferences (COPs)
  • Youth Advisory Group
  • Action initiatives
  • Secretary-General’s speeches
  • Press material
  • Fact sheets
  • Communications tips
  • CBSE Class 10th
  • CBSE Class 12th
  • UP Board 10th
  • UP Board 12th
  • Bihar Board 10th
  • Bihar Board 12th
  • Top Schools in India
  • Top Schools in Delhi
  • Top Schools in Mumbai
  • Top Schools in Chennai
  • Top Schools in Hyderabad
  • Top Schools in Kolkata
  • Top Schools in Pune
  • Top Schools in Bangalore

Products & Resources

  • JEE Main Knockout April
  • Free Sample Papers
  • Free Ebooks
  • NCERT Notes
  • NCERT Syllabus
  • NCERT Books
  • RD Sharma Solutions
  • Navodaya Vidyalaya Admission 2024-25
  • NCERT Solutions
  • NCERT Solutions for Class 12
  • NCERT Solutions for Class 11
  • NCERT solutions for Class 10
  • NCERT solutions for Class 9
  • NCERT solutions for Class 8
  • NCERT Solutions for Class 7
  • JEE Main 2024
  • MHT CET 2024
  • JEE Advanced 2024
  • BITSAT 2024
  • View All Engineering Exams
  • Colleges Accepting B.Tech Applications
  • Top Engineering Colleges in India
  • Engineering Colleges in India
  • Engineering Colleges in Tamil Nadu
  • Engineering Colleges Accepting JEE Main
  • Top IITs in India
  • Top NITs in India
  • Top IIITs in India
  • JEE Main College Predictor
  • JEE Main Rank Predictor
  • MHT CET College Predictor
  • AP EAMCET College Predictor
  • GATE College Predictor
  • KCET College Predictor
  • JEE Advanced College Predictor
  • View All College Predictors
  • JEE Advanced Cutoff
  • JEE Main Cutoff
  • MHT CET Result 2024
  • JEE Advanced Result
  • Download E-Books and Sample Papers
  • Compare Colleges
  • B.Tech College Applications
  • AP EAMCET Result 2024
  • MAH MBA CET Exam
  • View All Management Exams

Colleges & Courses

  • MBA College Admissions
  • MBA Colleges in India
  • Top IIMs Colleges in India
  • Top Online MBA Colleges in India
  • MBA Colleges Accepting XAT Score
  • BBA Colleges in India
  • XAT College Predictor 2024
  • SNAP College Predictor
  • NMAT College Predictor
  • MAT College Predictor 2024
  • CMAT College Predictor 2024
  • CAT Percentile Predictor 2024
  • CAT 2024 College Predictor
  • Top MBA Entrance Exams 2024
  • AP ICET Counselling 2024
  • GD Topics for MBA
  • CAT Exam Date 2024
  • Download Helpful Ebooks
  • List of Popular Branches
  • QnA - Get answers to your doubts
  • IIM Fees Structure
  • AIIMS Nursing
  • Top Medical Colleges in India
  • Top Medical Colleges in India accepting NEET Score
  • Medical Colleges accepting NEET
  • List of Medical Colleges in India
  • List of AIIMS Colleges In India
  • Medical Colleges in Maharashtra
  • Medical Colleges in India Accepting NEET PG
  • NEET College Predictor
  • NEET PG College Predictor
  • NEET MDS College Predictor
  • NEET Rank Predictor
  • DNB PDCET College Predictor
  • NEET Result 2024
  • NEET Asnwer Key 2024
  • NEET Cut off
  • NEET Online Preparation
  • Download Helpful E-books
  • Colleges Accepting Admissions
  • Top Law Colleges in India
  • Law College Accepting CLAT Score
  • List of Law Colleges in India
  • Top Law Colleges in Delhi
  • Top NLUs Colleges in India
  • Top Law Colleges in Chandigarh
  • Top Law Collages in Lucknow

Predictors & E-Books

  • CLAT College Predictor
  • MHCET Law ( 5 Year L.L.B) College Predictor
  • AILET College Predictor
  • Sample Papers
  • Compare Law Collages
  • Careers360 Youtube Channel
  • CLAT Syllabus 2025
  • CLAT Previous Year Question Paper
  • NID DAT Exam
  • Pearl Academy Exam

Predictors & Articles

  • NIFT College Predictor
  • UCEED College Predictor
  • NID DAT College Predictor
  • NID DAT Syllabus 2025
  • NID DAT 2025
  • Design Colleges in India
  • Top NIFT Colleges in India
  • Fashion Design Colleges in India
  • Top Interior Design Colleges in India
  • Top Graphic Designing Colleges in India
  • Fashion Design Colleges in Delhi
  • Fashion Design Colleges in Mumbai
  • Top Interior Design Colleges in Bangalore
  • NIFT Result 2024
  • NIFT Fees Structure
  • NIFT Syllabus 2025
  • Free Design E-books
  • List of Branches
  • Careers360 Youtube channel
  • IPU CET BJMC
  • JMI Mass Communication Entrance Exam
  • IIMC Entrance Exam
  • Media & Journalism colleges in Delhi
  • Media & Journalism colleges in Bangalore
  • Media & Journalism colleges in Mumbai
  • List of Media & Journalism Colleges in India
  • CA Intermediate
  • CA Foundation
  • CS Executive
  • CS Professional
  • Difference between CA and CS
  • Difference between CA and CMA
  • CA Full form
  • CMA Full form
  • CS Full form
  • CA Salary In India

Top Courses & Careers

  • Bachelor of Commerce (B.Com)
  • Master of Commerce (M.Com)
  • Company Secretary
  • Cost Accountant
  • Charted Accountant
  • Credit Manager
  • Financial Advisor
  • Top Commerce Colleges in India
  • Top Government Commerce Colleges in India
  • Top Private Commerce Colleges in India
  • Top M.Com Colleges in Mumbai
  • Top B.Com Colleges in India
  • IT Colleges in Tamil Nadu
  • IT Colleges in Uttar Pradesh
  • MCA Colleges in India
  • BCA Colleges in India

Quick Links

  • Information Technology Courses
  • Programming Courses
  • Web Development Courses
  • Data Analytics Courses
  • Big Data Analytics Courses
  • RUHS Pharmacy Admission Test
  • Top Pharmacy Colleges in India
  • Pharmacy Colleges in Pune
  • Pharmacy Colleges in Mumbai
  • Colleges Accepting GPAT Score
  • Pharmacy Colleges in Lucknow
  • List of Pharmacy Colleges in Nagpur
  • GPAT Result
  • GPAT 2024 Admit Card
  • GPAT Question Papers
  • NCHMCT JEE 2024
  • Mah BHMCT CET
  • Top Hotel Management Colleges in Delhi
  • Top Hotel Management Colleges in Hyderabad
  • Top Hotel Management Colleges in Mumbai
  • Top Hotel Management Colleges in Tamil Nadu
  • Top Hotel Management Colleges in Maharashtra
  • B.Sc Hotel Management
  • Hotel Management
  • Diploma in Hotel Management and Catering Technology

Diploma Colleges

  • Top Diploma Colleges in Maharashtra
  • UPSC IAS 2024
  • SSC CGL 2024
  • IBPS RRB 2024
  • Previous Year Sample Papers
  • Free Competition E-books
  • Sarkari Result
  • QnA- Get your doubts answered
  • UPSC Previous Year Sample Papers
  • CTET Previous Year Sample Papers
  • SBI Clerk Previous Year Sample Papers
  • NDA Previous Year Sample Papers

Upcoming Events

  • NDA Application Form 2024
  • UPSC IAS Application Form 2024
  • CDS Application Form 2024
  • CTET Admit card 2024
  • HP TET Result 2023
  • SSC GD Constable Admit Card 2024
  • UPTET Notification 2024
  • SBI Clerk Result 2024

Other Exams

  • SSC CHSL 2024
  • UP PCS 2024
  • UGC NET 2024
  • RRB NTPC 2024
  • IBPS PO 2024
  • IBPS Clerk 2024
  • IBPS SO 2024
  • Top University in USA
  • Top University in Canada
  • Top University in Ireland
  • Top Universities in UK
  • Top Universities in Australia
  • Best MBA Colleges in Abroad
  • Business Management Studies Colleges

Top Countries

  • Study in USA
  • Study in UK
  • Study in Canada
  • Study in Australia
  • Study in Ireland
  • Study in Germany
  • Study in China
  • Study in Europe

Student Visas

  • Student Visa Canada
  • Student Visa UK
  • Student Visa USA
  • Student Visa Australia
  • Student Visa Germany
  • Student Visa New Zealand
  • Student Visa Ireland
  • CUET PG 2024
  • IGNOU B.Ed Admission 2024
  • DU Admission 2024
  • UP B.Ed JEE 2024
  • LPU NEST 2024
  • IIT JAM 2024
  • IGNOU Online Admission 2024
  • Universities in India
  • Top Universities in India 2024
  • Top Colleges in India
  • Top Universities in Uttar Pradesh 2024
  • Top Universities in Bihar
  • Top Universities in Madhya Pradesh 2024
  • Top Universities in Tamil Nadu 2024
  • Central Universities in India
  • CUET DU Cut off 2024
  • IGNOU Date Sheet
  • CUET DU CSAS Portal 2024
  • CUET Response Sheet 2024
  • CUET Result 2024
  • CUET Participating Universities 2024
  • CUET Previous Year Question Paper
  • CUET Syllabus 2024 for Science Students
  • E-Books and Sample Papers
  • CUET Exam Pattern 2024
  • CUET Exam Date 2024
  • CUET Cut Off 2024
  • CUET Exam Analysis 2024
  • IGNOU Exam Form 2024
  • CUET PG Counselling 2024
  • CUET Answer Key 2024

Engineering Preparation

  • Knockout JEE Main 2024
  • Test Series JEE Main 2024
  • JEE Main 2024 Rank Booster

Medical Preparation

  • Knockout NEET 2024
  • Test Series NEET 2024
  • Rank Booster NEET 2024

Online Courses

  • JEE Main One Month Course
  • NEET One Month Course
  • IBSAT Free Mock Tests
  • IIT JEE Foundation Course
  • Knockout BITSAT 2024
  • Career Guidance Tool

Top Streams

  • IT & Software Certification Courses
  • Engineering and Architecture Certification Courses
  • Programming And Development Certification Courses
  • Business and Management Certification Courses
  • Marketing Certification Courses
  • Health and Fitness Certification Courses
  • Design Certification Courses

Specializations

  • Digital Marketing Certification Courses
  • Cyber Security Certification Courses
  • Artificial Intelligence Certification Courses
  • Business Analytics Certification Courses
  • Data Science Certification Courses
  • Cloud Computing Certification Courses
  • Machine Learning Certification Courses
  • View All Certification Courses
  • UG Degree Courses
  • PG Degree Courses
  • Short Term Courses
  • Free Courses
  • Online Degrees and Diplomas
  • Compare Courses

Top Providers

  • Coursera Courses
  • Udemy Courses
  • Edx Courses
  • Swayam Courses
  • upGrad Courses
  • Simplilearn Courses
  • Great Learning Courses

Global Warming Essay in English (Causes and Solutions) - 100, 200, 500 Words

English Icon

  • Essay on Global Warming

The planet is now undergoing changes and modernization is happening at a rapid rate. We desire development in all areas of life. In the name of expansion, an increasing number of industries are being founded. But as humanity has grown, the state of the planet's ecology has substantially deteriorated. When discussing significant environmental dangers, the phrase "Global Warming" is frequently used. The causes and consequences of global warming are still largely unknown to many people. Here are a few sample essays on global warming:

100 Words Essay on Global Warming

200 words essay on global warming, 500 words essay on global warming.

Global Warming Essay in English (Causes and Solutions) - 100, 200, 500 Words

An increase in the Earth's average global temperature is known as global warming. Global warming is mostly caused by burning more fossil fuels and the emission of hazardous pollutants into the atmosphere. Living things can suffer greatly as a result of global warming. The temperature suddenly rises in some places, while in others, it suddenly drops. The use of fossil fuels for energy is the main cause of global warming. It has been noticed that over the last ten years, the Earth's average temperature has risen by 1.5 degrees Celsius. This is cause for concern because it can harm ecosystems and lead to environmental disturbance. If we take decisive action to replace the destroyed vegetation in our forests, we can stop global warming. To slow the rate of global warming, we can also use sustainable energy sources like sun, wind, and tidal energy.

Over time, the cumulative increase in Earth's average global temperatures is referred to as global warming. It has been said that large-scale deforestation by humans for various reasons is to blame. Every year, we use a lot of fuel. It is becoming impossible to meet people's fuel needs as the human population has increased. Natural resources must be used carefully as they are limited. The ecosystem will become unbalanced if humans overuse mineral wealth like forests and waterways. Temperature increases alone are not the only sign of global warming. It also has other consequences.

Natural disasters, including storms, floods, and avalanches , are happening all over the planet. These all have a direct connection to global warming. To protect our environment we must rebuild our ecology to defend it against the negative effects of global warming. To make this globe a nicer place for the generations to come, who also appreciate this Earth in the same way we do, we must all work together. Planting trees is the fundamental action we can do to improve the condition of our world as a whole. Our main objective should be reforestation. If we commit to growing as many plants as we can during our lifetimes, the Earth will become a better place.

The gradual increase in surface climate caused by various factors is known as global warming. It poses serious risks to both the environment and humanity. Climate change effects include global warming . The main contributor to global warming is the unavoidable release of greenhouse gases. Methane and carbon dioxide are two of the main greenhouse gases. There are numerous other causes and ramifications of this warming, which endangers Earth's life.

Reasons Responsible For Global Warming

The causes of global warming are several. These problems are caused by both nature and humanity. Because of the presence of carbon dioxide in the atmosphere , the heat rays that the Earth's surface reflects become trapped there. The "greenhouse effect" is what results from this phenomenon. It is necessary to keep our world from turning into a frozen ball. Global warming results from too much carbon dioxide trapping all the heat from the Earth's surface. The primary gases that cause global warming are referred to as greenhouse gases.

The main greenhouse gases are methane, nitrous oxide, ozone, and carbon dioxide . These gases cause global warming when their concentrations are out of balance. Volcanic eruptions, solar radiation, and other natural occurrences are a few examples that contribute to global warming. People's excessive use of cars and fossil fuels also raises carbon dioxide levels. Among the most prevalent and quickly spreading issues causing global warming is deforestation. The level of carbon dioxide in the air is rising because trees are being cut down. Additional reasons contributing to global warming include the expanding population, industrialisation, pollution, etc.

How Climate Change Impacts Us

Numerous variations in the weather are brought on by global warming, including lengthier summers and fewer winters, greater temperatures, modifications to the trade winds, rain that falls throughout the year, melting polar ice caps, a weaker ozone barrier, etc. Additionally, it may result in a rise in natural disasters, including severe storms, cyclones, floods, and many others. Plants, animals, and other environmental elements are directly impacted by the harm produced by global warming. The rising sea level, swift glacier melting, and other effects of global warming are significant. As global warming worsens, marine life is negatively impacted, significantly destroying marine life and causing additional issues.

Preventing Global Warming

Finding the proper solution is crucial now more than ever since global warming has become a serious issue and is being discussed globally at international forums and conferences. It is time that the age of industrialization to be controlled and continued in a sustainable manner. Everybody, from communities to governments, needs to work together to solve the issue of global warming. Controlling pollution, population growth, and the limiting exploitation of natural resources are a few factors to consider. Using public transportation or carpooling with others will be very helpful. Therefore, recycling should also be promoted to individuals.

There are clear signs that the increase in global warming will wipe out all life on the surface of the world. Global warming is the greatest threat to humanity and cannot be disregarded. Additionally, it is difficult to manage. By participating and responding, we can help lessen its effects.

Also Read: Essay on Diwali in English for Children and Students

Applications for Admissions are open.

Aakash iACST Scholarship Test 2024

Aakash iACST Scholarship Test 2024

Get up to 90% scholarship on NEET, JEE & Foundation courses

ALLEN Digital Scholarship Admission Test (ADSAT)

ALLEN Digital Scholarship Admission Test (ADSAT)

Register FREE for ALLEN Digital Scholarship Admission Test (ADSAT)

JEE Main Important Physics formulas

JEE Main Important Physics formulas

As per latest 2024 syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters

PW JEE Coaching

PW JEE Coaching

Enrol in PW Vidyapeeth center for JEE coaching

JEE Main Important Chemistry formulas

JEE Main Important Chemistry formulas

As per latest 2024 syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters

TOEFL ® Registrations 2024

TOEFL ® Registrations 2024

Accepted by more than 11,000 universities in over 150 countries worldwide

Download Careers360 App's

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

student

Certifications

student

We Appeared in

Economic Times

Encyclopedia Britannica

  • Games & Quizzes
  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center

Global warming illustration

global warming summary

Learn about the causes and effects of global warming.

essay on global warming effect

global warming , Increase in the global average surface temperature resulting from enhancement of the greenhouse effect, primarily by air pollution . In 2007 the UN Intergovernmental Panel on Climate Change forecast that by 2100 global average surface temperatures would increase 3.2–7.2 °F (1.8–4.0 °C), depending on a range of scenarios for greenhouse gas emissions, and stated that it was now 90 percent certain that most of the warming observed over the previous half century could be attributed to greenhouse gas emissions produced by human activities (i.e., industrial processes and transportation). Many scientists predict that such an increase in temperature would cause polar ice caps and mountain glaciers to melt rapidly, significantly raising the levels of coastal waters, and would produce new patterns and extremes of drought and rainfall, seriously disrupting food production in certain regions. Other scientists maintain that such predictions are overstated. The 1992 Earth Summit and the 1997 Kyoto Protocol to the United Nations Framework Convention on Climate Change attempted to address the issue of global warming, but in both cases the efforts were hindered by conflicting national economic agendas and disputes between developed and developing nations over the cost and consequences of reducing emissions of greenhouse gases.

  • Share full article

essay on global warming effect

The Science of Climate Change Explained: Facts, Evidence and Proof

Definitive answers to the big questions.

Credit... Photo Illustration by Andrea D'Aquino

Supported by

By Julia Rosen

Ms. Rosen is a journalist with a Ph.D. in geology. Her research involved studying ice cores from Greenland and Antarctica to understand past climate changes.

  • Published April 19, 2021 Updated Nov. 6, 2021

The science of climate change is more solid and widely agreed upon than you might think. But the scope of the topic, as well as rampant disinformation, can make it hard to separate fact from fiction. Here, we’ve done our best to present you with not only the most accurate scientific information, but also an explanation of how we know it.

How do we know climate change is really happening?

  • How much agreement is there among scientists about climate change?
  • Do we really only have 150 years of climate data? How is that enough to tell us about centuries of change?
  • How do we know climate change is caused by humans?
  • Since greenhouse gases occur naturally, how do we know they’re causing Earth’s temperature to rise?
  • Why should we be worried that the planet has warmed 2°F since the 1800s?
  • Is climate change a part of the planet’s natural warming and cooling cycles?
  • How do we know global warming is not because of the sun or volcanoes?
  • How can winters and certain places be getting colder if the planet is warming?
  • Wildfires and bad weather have always happened. How do we know there’s a connection to climate change?
  • How bad are the effects of climate change going to be?
  • What will it cost to do something about climate change, versus doing nothing?

Climate change is often cast as a prediction made by complicated computer models. But the scientific basis for climate change is much broader, and models are actually only one part of it (and, for what it’s worth, they’re surprisingly accurate ).

For more than a century , scientists have understood the basic physics behind why greenhouse gases like carbon dioxide cause warming. These gases make up just a small fraction of the atmosphere but exert outsized control on Earth’s climate by trapping some of the planet’s heat before it escapes into space. This greenhouse effect is important: It’s why a planet so far from the sun has liquid water and life!

However, during the Industrial Revolution, people started burning coal and other fossil fuels to power factories, smelters and steam engines, which added more greenhouse gases to the atmosphere. Ever since, human activities have been heating the planet.

essay on global warming effect

Where it was cooler or warmer in 2020 compared with the middle of the 20th century

essay on global warming effect

Global average temperature compared with the middle of the 20th century

+0.75°C

–0.25°

essay on global warming effect

30 billion metric tons

Carbon dioxide emitted worldwide 1850-2017

Rest of world

Other developed

European Union

Developed economies

Other countries

United States

essay on global warming effect

E.U. and U.K.

essay on global warming effect

We are having trouble retrieving the article content.

Please enable JavaScript in your browser settings.

Thank you for your patience while we verify access. If you are in Reader mode please exit and  log into  your Times account, or  subscribe  for all of The Times.

Thank you for your patience while we verify access.

Already a subscriber?  Log in .

Want all of The Times?  Subscribe .

Advertisement

A cityscape view with reflections of people on windows and a dramatic cloudy sky in the background.

A problem built into our relationship with energy itself. Photo by Ferdinando Scianna/Magnum

Deep warming

Even if we ‘solve’ global warming, we face an older, slower problem. waste heat could radically alter earth’s future.

by Mark Buchanan   + BIO

The world will be transformed. By 2050, we will be driving electric cars and flying in aircraft running on synthetic fuels produced through solar and wind energy. New energy-efficient technologies, most likely harnessing artificial intelligence, will dominate nearly all human activities from farming to heavy industry. The fossil fuel industry will be in the final stages of a terminal decline. Nuclear fusion and other new energy sources may have become widespread. Perhaps our planet will even be orbited by massive solar arrays capturing cosmic energy from sunlight and generating seemingly endless energy for all our needs.

That is one possible future for humanity. It’s an optimistic view of how radical changes to energy production might help us slow or avoid the worst outcomes of global warming. In a report from 1965, scientists from the US government warned that our ongoing use of fossil fuels would cause global warming with potentially disastrous consequences for Earth’s climate. The report, one of the first government-produced documents to predict a major crisis caused by humanity’s large-scale activities, noted that the likely consequences would include higher global temperatures, the melting of the ice caps and rising sea levels. ‘Through his worldwide industrial civilisation,’ the report concluded, ‘Man is unwittingly conducting a vast geophysical experiment’ – an experiment with a highly uncertain outcome, but clear and important risks for life on Earth.

Since then, we’ve dithered and doubted and argued about what to do, but still have not managed to take serious action to reduce greenhouse gas emissions, which continue to rise. Governments around the planet have promised to phase out emissions in the coming decades and transition to ‘green energy’. But global temperatures may be rising faster than we expected: some climate scientists worry that rapid rises could create new problems and positive feedback loops that may accelerate climate destabilisation and make parts of the world uninhabitable long before a hoped-for transition is possible.

Despite this bleak vision of the future, there are reasons for optimists to hope due to progress on cleaner sources of renewable energy, especially solar power. Around 2010, solar energy generation accounted for less than 1 per cent of the electricity generated by humanity. But experts believe that, by 2027, due to falling costs, better technology and exponential growth in new installations, solar power will become the largest global energy source for producing electricity. If progress on renewables continues, we might find a way to resolve the warming problem linked to greenhouse gas emissions. By 2050, large-scale societal and ecological changes might have helped us avoid the worst consequences of our extensive use of fossil fuels.

It’s a momentous challenge. And it won’t be easy. But this story of transformation only hints at the true depth of the future problems humanity will confront in managing our energy use and its influence over our climate.

As scientists are gradually learning, even if we solve the immediate warming problem linked to the greenhouse effect, there’s another warming problem steadily growing beneath it. Let’s call it the ‘deep warming’ problem. This deeper problem also raises Earth’s surface temperature but, unlike global warming, it has nothing to do with greenhouse gases and our use of fossil fuels. It stems directly from our use of energy in all forms and our tendency to use more energy over time – a problem created by the inevitable waste heat that is generated whenever we use energy to do something. Yes, the world may well be transformed by 2050. Carbon dioxide levels may stabilise or fall thanks to advanced AI-assisted technologies that run on energy harvested from the sun and wind. And the fossil fuel industry may be taking its last breaths. But we will still face a deeper problem. That’s because ‘deep warming’ is not created by the release of greenhouse gases into the atmosphere. It’s a problem built into our relationship with energy itself.

F inding new ways to harness more energy has been a constant theme of human development. The evolution of humanity – from early modes of hunter-gathering to farming and industry – has involved large systematic increases in our per-capita energy use. The British historian and archaeologist Ian Morris estimates, in his book Foragers, Farmers, and Fossil Fuels: How Human Values Evolve (2015), that early human hunter-gatherers, living more than 10,000 years ago, ‘captured’ around 5,000 kcal per person per day by consuming food, burning fuel, making clothing, building shelter, or through other activities. Later, after we turned to farming and enlisted the energies of domesticated animals, we were able to harness as much as 30,000 kcal per day. In the late 17th century , the exploitation of coal and steam power marked another leap: by 1970, the use of fossil fuels allowed humans to consume some 230,000 kcal per person per day. (When we think about humanity writ large as ‘humans’, it’s important to acknowledge that the average person in the wealthiest nations consumes up to 100 times more energy than the average person in the poorest nations.) As the global population has risen and people have invented new energy-dependent technologies, our global energy use has continued to climb.

In many respects, this is great. We can now do more with less effort and achieve things that were unimaginable to the 17th-century inventors of steam engines, let alone to our hominin ancestors. We’ve made powerful mining machines, superfast trains, lasers for use in telecommunications and brain-imaging equipment. But these creations, while helping us, are also subtly heating the planet.

All the energy we humans use – to heat our homes, run our factories, propel our automobiles and aircraft, or to run our electronics – eventually ends up as heat in the environment. In the shorter term, most of the energy we use flows directly into the environment. It gets there through hot exhaust gases, friction between tires and roads, the noises generated by powerful engines, which spread out, dissipate, and eventually end up as heat. However, a small portion of the energy we use gets stored in physical changes, such as in new steel, plastic or concrete. It’s stored in our cities and technologies. In the longer term, as these materials break down, the energy stored inside also finds its way into the environment as heat. This is a direct consequence of the well-tested principles of thermodynamics.

Waste heat will pose a problem that is every bit as serious as global warming from greenhouse gases

In the early decades of the 21st century , this heat created by simply using energy, known as ‘waste heat’, is not so serious. It’s equivalent to roughly 2 per cent of the planetary heating imbalance caused by greenhouse gases – for now. But, with the passing of time, the problem is likely to get much more serious. That’s because humans have a historical tendency to consistently discover and produce things, creating entirely new technologies and industries in the process: domesticated animals for farming; railways and automobiles; global air travel and shipping; personal computers, the internet and mobile phones. The result of such activities is that we end up using more and more energy, despite improved energy efficiency in nearly every area of technology.

During the past two centuries at least (and likely for much longer), our yearly energy use has doubled roughly every 30 to 50 years . Our energy use seems to be growing exponentially, a trend that shows every sign of continuing. We keep finding new things to do and almost everything we invent requires more and more energy: consider the enormous energy demands of cryptocurrency mining or the accelerating energy requirements of AI.

If this historical trend continues, scientists estimate waste heat will pose a problem in roughly 150-200 years that is every bit as serious as the current problem of global warming from greenhouse gases. However, deep heating will be more pernicious as we won’t be able to avoid it by merely shifting from one kind energy to another. A profound problem will loom before us: can we set strict limits on all the energy we use? Can we reign in the seemingly inexorable expansion of our activities to avoid destroying our own environment?

Deep warming is a problem hiding beneath global warming, but one that will become prominent if and when we manage to solve the more pressing issue of greenhouse gases. It remains just out of sight, which might explain why scientists only became concerned about the ‘waste heat’ problem around 15 years ago.

O ne of the first people to describe the problem is the Harvard astrophysicist Eric Chaisson, who discussed the issue of waste heat in a paper titled ‘Long-Term Global Heating from Energy Usage’ (2008). He concluded that our technological society may be facing a fundamental limit to growth due to ‘unavoidable global heating … dictated solely by the second law of thermodynamics, a biogeophysical effect often ignored when estimating future planetary warming scenarios’. When I emailed Chaisson to learn more, he told me the history of his thinking on the problem:

It was on a night flight, Paris-Boston [circa] 2006, after a UNESCO meeting on the environment when it dawned on me that the IPCC were overlooking something. While others on the plane slept, I crunched some numbers literally on the back of an envelope … and then hoped I was wrong, that is, hoped that I was incorrect in thinking that the very act of using energy heats the air, however slightly now.

The transformation of energy into heat is among the most ubiquitous processes of physics

Chaisson drafted the idea up as a paper and sent it to an academic journal. Two anonymous reviewers were eager for it to be published. ‘A third tried his damnedest to kill it,’ Chaisson said, the reviewer claiming the findings were ‘irrelevant and distracting’. After it was finally published, the paper got some traction when it was covered by a journalist and ran as a feature story on the front page of The Boston Globe . The numbers Chaisson crunched, predictions of our mounting waste heat, were even run on a supercomputer at the US National Center for Atmospheric Research, by Mark Flanner, a professor of earth system science. Flanner, Chaisson suspected at the time, was likely ‘out to prove it wrong’. But, ‘after his machine crunched for many hours’, he saw the same results that Chaisson had written on the back of an envelope that night in the plane.

Around the same time, also in 2008, two engineers, Nick Cowern and Chihak Ahn, wrote a research paper entirely independent of Chaisson’s work, but with similar conclusions. This was how I first came across the problem. Cowern and Ahn’s study estimated the total amount of waste heat we’re currently releasing to the environment, and found that it is, right now, quite small. But, like Chaisson, they acknowledged that the problem would eventually become serious unless steps were taken to avoid it.

That’s some of the early history of thinking in this area. But these two papers, and a few other analyses since, point to the same unsettling conclusion: what I am calling ‘deep warming’ will be a big problem for humanity at some point in the not-too-distant future. The precise date is far from certain. It might be 150 years , or 400, or 800, but it’s in the relatively near future, not the distant future of, say, thousands or millions of years. This is our future.

T he transformation of energy into heat is among the most ubiquitous processes of physics. As cars drive down roads, trains roar along railways, planes cross the skies and industrial plants turn raw materials into refined products, energy gets turned into heat, which is the scientific word for energy stored in the disorganised motions of molecules at the microscopic level. As a plane flies from Paris to Boston, it burns fuel and thrusts hot gases into the air, generates lots of sound and stirs up contrails. These swirls of air give rise to swirls on smaller scales which in turn make smaller ones until the energy ultimately ends up lost in heat – the air is a little warmer than before, the molecules making it up moving about a little more vigorously. A similar process takes place when energy is used by the tiny electrical currents inside the microchips of computers, silently carrying out computations. Energy used always ends up as heat. Decades ago, research by the IBM physicist Rolf Landauer showed that a computation involving even a single computing bit will release a certain minimum amount of heat to the environment.

How this happens is described by the laws of thermodynamics, which were described in the mid-19th century by scientists including Sadi Carnot in France and Rudolf Clausius in Germany. Two key ‘laws’ summarise its main principles.

The first law of thermodynamics simply states that the total quantity of energy never changes but is conserved. Energy, in other words, never disappears, but only changes form. The energy initially stored in an aircraft’s fuel, for example, can be changed into the energetic motion of the plane. Turn on an electric heater, and energy initially held in electric currents gets turned into heat, which spreads into the air, walls and fabric of your house. The total energy remains the same, but it markedly changes form.

We’re generating waste heat all the time with everything we do

The second law of thermodynamics, equally important, is more subtle and states that, in natural processes, the transformation of energy always moves from more organised and useful forms to less organised and less useful forms. For an aircraft, the energy initially concentrated in jet fuel ends up dissipated in stirred-up winds, sounds and heat spread over vast areas of the atmosphere in a largely invisible way. It’s the same with the electric heater: the organised useful energy in the electric currents gets dissipated and spread into the low-grade warmth of the walls, then leaks into the outside air. Although the amount of energy remains the same, it gradually turns into less organised, less usable forms. The end point of the energy process produces waste heat. And we’re generating it all the time with everything we do.

Data on world energy consumption shows that, collectively, all humans on Earth are currently using about 170,000 terawatt-hours (TWh), which is a lot of energy in absolute terms – a terawatt-hour is the total energy consumed in one hour by any process using energy at a rate of 1 trillion watts. This huge number isn’t surprising, as it represents all the energy being used every day by the billions of cars and homes around the world, as well as by industry, farming, construction, air traffic and so on. But, in the early 21st century , the warming from this energy is still much less than the planetary heating due to greenhouse gases.

Concentrations of greenhouse gases such as CO 2 and methane are quite small, and only make a fractional difference to how much of the Sun’s energy gets trapped in the atmosphere, rather than making it back out to space. Even so, this fractional difference has a huge effect because the stream of energy arriving from the Sun to Earth is so large. Current estimates of this greenhouse energy imbalance come to around 0.87 W per square meter, which translates into a total energy figure about 50 times larger than our waste heat. That’s reassuring. But as Cowern and Ahn wrote in their 2008 paper, things aren’t likely to stay this way over time because our energy usage keeps rising. Unless, that is, we can find some radical way to break the trend of using ever more energy.

O ne common objection to the idea of the deep warming is to claim that the problem won’t really arise. ‘Don’t worry,’ someone might say, ‘with efficient technology, we’re going to find ways to stop using more energy; though we’ll end up doing more things in the future, we’ll use less energy.’ This may sound plausible at first, because we are indeed getting more efficient at using energy in most areas of technology. Our cars, appliances and laptops are all doing more with less energy. If efficiency keeps improving, perhaps we can learn to run these things with almost no energy at all? Not likely, because there are limits to energy efficiency.

Over the past few decades, the efficiency of heating in homes – including oil and gas furnaces, and boilers used to heat water – has increased from less than 50 per cent to well above 90 per cent of what is theoretically possible. That’s good news, but there’s not much more efficiency to be realised in basic heating. The efficiency of lighting has also vastly improved, with modern LED lighting turning something like 70 per cent of the applied electrical energy into light. We will gain some efficiencies as older lighting gets completely replaced by LEDs, but there’s not a lot of room left for future efficiency improvements. Similar efficiency limits arise in the growing or cooking of food; in the manufacturing of cars, bikes and electronic devices; in transportation, as we’re taken from place to place; in the running of search engines, translation software, GPT-4 or other large-language models.

Even if we made significant improvements in the efficiencies of these technologies, we will only have bought a little time. These changes won’t delay by much the date when deep warming becomes a problem we must reckon with.

Optimising efficiencies is just a temporary reprieve, not a radical change in our human future

As a thought experiment, suppose we could immediately improve the energy efficiency of everything we do by a factor of 10 – a fantastically optimistic proposal. That is, imagine the energy output of humans on Earth has been reduced 10 times , from 170,000 TWh to 17,000 TWh . If our energy use keeps expanding, doubling every 30-50 years or so (as it has for centuries), then a 10-fold increase in waste heat will happen in just over three doubling times, which is about 130 years : 17,000 TWh doubles to 34,000 TWh , which doubles to 68,000 TWh , which doubles to 136,000 TWh , and so on. All those improvements in energy efficiency would quickly evaporate. The date when deep warming hits would recede by 130 years or so, but not much more. Optimising efficiencies is just a temporary reprieve, not a radical change in our human future.

Improvements in energy efficiency can also have an inverse effect on our overall energy use. It’s easy to think that if we make a technology more efficient, we’ll then use less energy through the technology. But economists are deeply aware of a paradoxical effect known as ‘rebound’, whereby improved energy efficiency, by making the use of a technology cheaper, actually leads to more widespread use of that technology – and more energy use too. The classic example, as noted by the British economist William Stanley Jevons in his book The Coal Question (1865), is the invention of the steam engine. This new technology could extract energy from burning coal more efficiently, but it also made possible so many new applications that the use of coal increased. A recent study by economists suggests that, across the economy, such rebound effects might easily swallow at least 50 per cent of any efficiency gains in energy use. Something similar has already happened with LED lights, for which people have found thousands of new uses.

If gains in efficiency won’t buy us lots of time, how about other factors, such as a reduction of the global population? Scientists generally believe that the current human population of more than 8 billion people is well beyond the limits of our finite planet, especially if a large fraction of this population aspires to the resource-intensive lifestyles of wealthy nations. Some estimates suggest that a more sustainable population might be more like 2 billion , which could reduce energy use significantly, potentially by a factor of three or four. However, this isn’t a real solution: again, as with the example of improved energy efficiency, a one-time reduction of our energy consumption by a factor of three will quickly be swallowed up by an inexorable rise in energy use. If Earth’s population were suddenly reduced to 2 billion – about a quarter of the current population – our energy gains would initially be enormous. But those gains would be erased in two doubling times, or roughly 60-100 years , as our energy demands would grow fourfold.

S o, why aren’t more people talking about this? The deep warming problem is starting to get more attention. It was recently mentioned on Twitter by the German climate scientist Stefan Rahmstorf, who cautioned that nuclear fusion, despite excitement over recent advances, won’t arrive in time to save us from our waste heat, and might make the problem worse. By providing another cheap source of energy, fusion energy could accelerate both the growth of our energy use and the reckoning of deep warming. A student of Rahmstorf’s, Peter Steiglechner, wrote his master’s thesis on the problem in 2018. Recognition of deep warming and its long-term implications for humanity is spreading. But what can we do about the problem?

Avoiding or delaying deep warming will involve slowing the rise of our waste heat, which means restricting the amount of energy we use and also choosing energy sources that exacerbate the problem as little as possible. Unlike the energy from fossil fuels or nuclear power, which add to our waste energy burden, renewable energy sources intercept energy that is already on its way to Earth, rather than producing additional waste heat. In this sense, the deep warming problem is another reason to pursue renewable energy sources such as solar or wind rather than alternatives such as nuclear fusion, fission or even geothermal power. If we derive energy from any of these sources, we’re unleashing new flows of energy into the Earth system without making a compensating reduction. As a result, all such sources will add to the waste heat problem. However, if renewable sources of energy are deployed correctly, they need not add to our deposition of waste heat in the environment. By using this energy, we produce no more waste heat than would have been created by sunlight in the first place.

Take the example of wind energy. Sunlight first stirs winds into motion by heating parts of the planet unequally, causing vast cells of convection. As wind churns through the atmosphere, blows through trees and over mountains and waves, most of its energy gets turned into heat, ending up in the microscopic motions of molecules. If we harvest some of this wind energy through turbines, it will also be turned into heat in the form of stored energy. But, crucially, no more heat is generated than if there had been no turbines to capture the wind.

The same can hold true for solar energy. In an array of solar cells, if each cell only collects the sunlight falling on it – which would ordinarily have been absorbed by Earth’s surface – then the cells don’t alter how much waste heat gets produced as they generate energy. The light that would have warmed Earth’s surface instead goes into the solar cells, gets used by people for some purpose, and then later ends up as heat. In this way we reduce the amount of heat being absorbed by Earth by precisely the same amount as the energy we are extracting for human use. We are not adding to overall planetary heating. This keeps the waste energy burden unchanged, at least in the relatively near future, even if we go on extracting and using ever larger amounts of energy.

Covering deserts in dark panels would absorb a lot more energy than the desert floor

Chaisson summarised the problem quite clearly in 2008:

I’m now of the opinion … that any energy that’s dug up on Earth – including all fossil fuels of course, but also nuclear and ground-sourced geothermal – will inevitably produce waste heat as a byproduct of humankind’s use of energy. The only exception to that is energy arriving from beyond Earth, this is energy here and now and not dug up, namely the many solar energies (plural) caused by the Sun’s rays landing here daily … The need to avoid waste heat is indeed the single, strongest, scientific argument to embrace solar energies of all types.

But not just any method of gathering solar energy will avoid the deep warming problem. Doing so requires careful engineering. For example, covering deserts with solar panels would add to planetary heating because deserts reflect a lot of incident light back out to space, so it is never absorbed by Earth (and therefore doesn’t produce waste heat). Covering deserts in dark panels would absorb a lot more energy than the desert floor and would heat the planet further.

We’ll also face serious problems in the long run if our energy appetite keeps increasing. Futurists dream of technologies deployed in space where huge panels would absorb sunlight that would otherwise have passed by Earth and never entered our atmosphere. Ultimately, they believe, this energy could be beamed down to Earth. Like nuclear energy, such technologies would add an additional energy source to the planet without any compensating removal of heating from the sunlight currently striking our planet’s surface. Any effort to produce more energy than is normally available from sunlight at Earth’s surface will only make our heating problems worse.

D eep warming is simply a consequence of the laws of physics and our inquisitive nature. It seems to be in our nature to constantly learn and develop new things, changing our environment in the process. For thousands of years, we have harvested and exploited ever greater quantities of energy in this pursuit, and we appear poised to continue along this path with the rapidly expanding use of renewable energy sources – and perhaps even more novel sources such as nuclear fusion. But this path cannot proceed indefinitely without consequences.

The logic that more energy equals more warming sets up a profound dilemma for our future. The laws of physics and the habits ingrained in us from our long evolutionary history are steering us toward trouble. We may have a technological fix for greenhouse gas warming – just shift from fossil fuels to cleaner energy sources – but there is no technical trick to get us out of the deep warming problem. That won’t stop some scientists from trying.

Perhaps, believing that humanity is incapable of reducing its energy usage, we’ll adopt a fantastic scheme to cool the planet, such as planetary-scale refrigeration or using artificially engineered tornadoes to transport heat from Earth’s surface to the upper atmosphere where it can be radiated away to space. As far-fetched as such approaches sound, scientists have given some serious thought to these and other equally bizarre ideas, which seem wholly in the realm of science fiction. They’re schemes that will likely make the problem worse not better.

We will need to transform the human story. It must become a story of doing less, not more

I see several possibilities for how we might ultimately respond. As with greenhouse gas warming, there will probably be an initial period of disbelief, denial and inaction, as we continue with unconstrained technological advance and growing energy use. Our planet will continue warming. Sooner or later, however, such warming will lead to serious disruptions of the Earth environment and its ecosystems. We won’t be able to ignore this for long, and it may provide a natural counterbalance to our energy use, as our technical and social capacity to generate and use ever more energy will be eroded. We may eventually come to some uncomfortable balance in which we just scrabble out a life on a hot, compromised planet because we lack the moral and organisational ability to restrict our energy use enough to maintain a sound environment.

An alternative would require a radical break with our past: using less energy. Finding a way to use less energy would represent a truly fundamental rupture with all of human history, something entirely novel. A rupture of this magnitude won’t come easily. However, if we could learn to view restrictions on our energy use as a non-negotiable element of life on Earth, we may still be able to do many of the things that make us essentially human: learning, discovering, inventing, creating. In this scenario, any helpful new technology that comes into use and begins using lots of energy would require a balancing reduction in energy use elsewhere. In such a way, we might go on with the future being perpetually new, and possibly better.

None of this is easily achieved and will likely mirror our current struggles to come to agreements on greenhouse gas heating. There will be vicious squabbles, arguments and profound polarisation, quite possibly major wars. Humanity will never have faced a challenge of this magnitude, and we won’t face up to it quickly or easily, I expect. But we must. Planetary heating is in our future – the very near future and further out as well. Many people will find this conclusion surprisingly hard to swallow, perhaps because it implies fundamental restrictions on our future here on Earth: we can’t go on forever using more and more energy, and, at the same time, expecting the planet’s climate to remain stable.

The world will likely be transformed by 2050. And, sometime after that, we will need to transform the human story. The narrative arc of humanity must become a tale of continuing innovation and learning, but also one of careful management. It must become a story, in energy terms, of doing less, not more. There’s no technology for entirely escaping waste heat, only techniques.

This is important to remember as we face up to the extremely urgent challenge of heating linked to fossil-fuel use and greenhouse gases. Global warming is just the beginning of our problems. It’s a testing ground to see if we can manage an intelligent and coordinated response. If we can handle this challenge, we might be better prepared, more capable and resilient as a species to tackle an even harder one.

Black and white photograph depicts a flood with rising water levels in a residential area. Strong currents and waves are visible, and houses in the background are partially submerged. Floodwater covers much of the landscape, with a lone tree and partial wooden structure in the foreground.

The disruption nexus

Moments of crisis, such as our own, are great opportunities for historic change, but only under highly specific conditions

Roman Krznaric

Image of M87 galaxy showing a bright yellowish central core with a jet of blue plasma extending outward into space. The background is filled with faint stars and a hazy, brownish hue

History of science

His radiant formula

Stephen Hawking’s greatest legacy – a simple little equation now 50 years old – revealed a shocking aspect of black holes

Roger Highfield

Close-up image of a jumping spider showing its detailed features, including multiple eyes, hairy legs, and fangs. The spider is facing forward with a white background.

What is intelligent life?

Our human minds hold us back from truly understanding the many brilliant ways that other creatures solve their problems

Abigail Desmond & Michael Haslam

Mist-covered city skyline with a calm, reflective body of water in the foreground under a grey sky.

Pleasure and pain

Eulogy for silence

Tinnitus is like a constant scream inside my head, depriving me of what I formerly treasured: the moments of serene quiet

Diego Ramírez Martín del Campo

A close-up of an orange and black butterfly perched on a leaf with a soft, pastel-coloured background.

History of ideas

Chaos and cause

Can a butterfly’s wings trigger a distant hurricane? The answer depends on the perspective you take: physics or human agency

Erik Van Aken

X-ray image of a single flower with visible petals, stem, and internal structures on a black background.

Philosophy of mind

Do plants have minds?

In the 1840s, the iconoclastic scientist Gustav Fechner made an inspired case for taking seriously the interior lives of plants

Rachael Petersen

What are the effects of global warming?

The effects of global warming will be far-reaching and often devastating, scientists have warned.

A woman looks at wildfires tearing through a forest in the region of Chefchaouen in northern Morocco on Aug. 15, 2021. One of the effects of global warming will be more heat waves in some areas, a risk factor for wildfires.

  • Temperature extremes
  • Extreme weather

Sea levels and ocean acidification

Plants and animals, social effects.

  • Further reading

Additional resources

Bibliography.

The effects of global warming can be seen and felt across the planet. Global warming , the gradual heating of Earth's surface, oceans and atmosphere, is caused by human activity, primarily the burning of fossil fuels that pump carbon dioxide (CO2), methane and other greenhouse gases into the atmosphere.

Already, the consequences of global warming are measurable and visible.

"We can observe this happening in real time in many places," Josef Werne, a professor of geology and environmental science at the University of Pittsburgh, told Live Science. "Ice is melting in both polar ice caps and mountain glaciers. Lakes around the world, including Lake Superior, are warming rapidly — in some cases faster than the surrounding environment. Animals are changing migration patterns and plants are changing the dates of activity," such as trees budding their leaves earlier in the spring and dropping them later in the fall.

Here is an in-depth look at the ongoing effects of global warming.

Global warming increases average temperatures and temperature extremes

A graph of 2022 year-to-date anomalies compared to the ten warmest years on record

One of the most immediate and obvious consequences of global warming is the increase in temperatures around the world. The average global temperature has increased by about 1.4 degrees Fahrenheit (0.8 degrees Celsius) over the past 100 years, according to the National Oceanic and Atmospheric Administration (NOAA).

Since record keeping began in 1895, the hottest year on record worldwide was 2016, according to NOAA and NASA data . That year Earth's surface temperature was 1.78 degrees F (0.99 degrees C) warmer than the average across the entire 20th century. Before 2016, 2015 was the warmest year on record, globally. And before 2015? Yep, 2014. In fact, all 10 of the warmest years on record have occurred since 2005, which tied with 2013 as the 10th-warmest year on record, according to NOAA’s Global Climate Report 2021 . Rounding out the top 6 hottest years on record across the globe are (in order of hottest to not as hot): 2020, 2019, 2015, 2017 and 2021.

For the contiguous United States and Alaska, 2016 was the second-warmest year on record and the 20th consecutive year that the annual average surface temperature exceeded the 122-year average since record keeping began, according to NOAA . Shattered heat records in the U.S. are increasingly becoming the norm: June 2021, for example, saw the warmest temperatures on record for that month for 15.2%of the contiguous U.S. That's the largest extent of record warm temperatures ever recorded in the country, according to the National Centers for Environmental Information .

Global warming increases extreme weather events

Hurricane Ian, a Category 4 storm, reaches Florida, Sept. 26, 2022, as seen from the International Space Station.

As global average temperatures warm, weather patterns are changing. An immediate consequence of global warming is extreme weather. 

These extremes come in a lot of different flavors. Paradoxically, one effect of climate change can be colder-than-normal winters in some areas.

Changes in climate can cause the polar jet stream — the boundary between the cold North Pole air and the warm equatorial air — to migrate south, bringing with it cold, Arctic air. This is why some states can have a sudden cold snap or colder-than-normal winter, even during the long-term trend of global warming, Werne explained.

Werne received his doctorate in Geological Sciences at Northwestern University in 2000 with an emphasis in Biogeochemistry. He was a postdoctoral research scientist at the Royal Netherlands Institute for Sea Research from 2000 to 2002 and on the faculty of the Large Lakes Observatory and Department of Chemistry and Biochemistry (assistant/associate professor) at the University of Minnesota Duluth, before joining the department in 2012. Werne spent a year in Perth, Australia, as a visiting senior fellow at the Institute for Advanced Studies of the University of Western Australia, as well as a visiting scientist in the Western Australia Organic and Isotope Geochemistry Centre at Curtin University.

"Climate is, by definition, the long-term average of weather, over many years. One cold (or warm) year or season has little to do with overall climate. It is when those cold (or warm) years become more and more regular that we start to recognize it as a change in climate rather than simply an anomalous year of weather," he said. Global warming is also changing other extreme weather. According to the Geophysical Fluid Dynamics Laboratory of NOAA , hurricanes are likely to become more intense, on average, in a warming world. Most computer models suggest that hurricane frequency will stay about the same (or even decrease), but those storms that do form will have the capacity to drop more rain due to the fact that warmer air holds more moisture.

"And even if they become less frequent globally, hurricanes could still become more frequent in some particular areas," said atmospheric scientist Adam Sobel, author of " Storm Surge: Hurricane Sandy, Our Changing Climate, and Extreme Weather of the Past and Future " (HarperWave, 2014). "Additionally, scientists are confident that hurricanes will become more intense due to climate change." This is because hurricanes get their energy from the temperature difference between the warm tropical ocean and the cold upper atmosphere. Global warming increases that temperature difference. "Since the most damage by far comes from the most intense hurricanes — such as typhoon Haiyan in the Philippines in 2013 — this means that hurricanes could become overall more destructive," said Sobel, a Columbia University professor in the departments of Earth and Environmental Sciences, and Applied Physics and Applied Mathematics. (Hurricanes are called typhoons in the western North Pacific, and they're called cyclones in the South Pacific and Indian oceans.) What's more, hurricanes of the future will be hitting shorelines that are already prone to flooding due to the sea-level rise caused by climate change. This means that any given storm will likely cause more damage than it would have in a world without global warming.

Lightning strikes light up the sky in Montevideo, Uruguay on Feb. 20, 2022.

Lightning is another weather feature that is being affected by global warming. According to a 2014 study , a 50% increase in the number of lightning strikes within the United States is expected by 2100 if global temperatures continue to rise. The researchers of the study found a 12% increase in lightning activity for every 1.8 degree F (1 degree C) of warming in the atmosphere. NOAA established the U.S. Climate Extremes Index (CEI) in 1996 to track extreme weather events. The number of extreme weather events that are among the most unusual in the historical record, according to the CEI, has been rising over the last four decades. Scientists project that extreme weather events, such as heat waves, droughts , blizzards and rainstorms will continue to occur more often and with greater intensity due to global warming, according to Climate Central . Climate models forecast that global warming will cause climate patterns worldwide to experience significant changes. These changes will likely include major shifts in wind patterns, annual precipitation and seasonal temperatures variations. These impacts vary by location and geography. For example, according to the U.S. Environmental Protection Agency (EPA) , the eastern United States has been trending wetter over time, while the West – and particularly the Southwest – have become increasingly dry. Because high levels of greenhouse gases are likely to remain in the atmosphere for many years, these changes are expected to last for several decades or longer, according to the EPA.

Global warming melts ice

In this aerial view, icebergs and meltwater are seen in front of the retreating Russell Glacier on Sept. 8, 2021 near Kangerlussuaq, Greenland.

One of the primary manifestations of climate change so far is melt. North America, Europe and Asia have all seen a trend toward less snow cover between 1960 and 2015, according to 2016 research published in the journal Current Climate Change Reports. According to the National Snow and Ice Data Center, there is now 10% less permafrost , or permanently frozen ground, in the Northern Hemisphere than there was in the early 1900s. The thawing of permafrost can cause landslides and other sudden land collapses . It can also release long-buried microbes, as in a 2016 case when a cache of buried reindeer carcasses thawed and caused an outbreak of anthrax . One of the most dramatic effects of global warming is the reduction in Arctic sea ice. Sea ice hit record-low extents in both the fall and winter of 2015 and 2016, meaning that at the time when the ice is supposed to be at its peak, it was lagging. The melt means there is less thick sea ice that persists for multiple years. That means less heat is reflected back into the atmosphere by the shiny surface of the ice and more is absorbed by the comparatively darker ocean, creating a feedback loop that causes even more melt, according to NASA's Operation IceBridge . Glacial retreat, too, is an obvious effect of global warming. Only 25 glaciers bigger than 25 acres are now found in Montana's Glacier National Park, where about 150 glaciers were once found, according to the U.S. Geological Survey. A similar trend is seen in glacial areas worldwide. According to a 2016 study in the journal Nature Geoscience, there is a 99% likelihood that this rapid retreat is due to human-caused climate change. Some glaciers retreated up to 15 times as much as they would have without global warming, those researchers found.

view of major bleaching on the coral reefs of the Society Islands on May 9, 2019 in Moorea, French Polynesia

In general, as ice melts, sea levels rise. According to a 2021 report by the World Meteorological Organization , the pace of sea level rise doubled from 0.08 inches (2.1 millimeters) per year between 1993 and 2002 to 0.17 inches (4.4 mm) per year between 2013 and 2021. 

Melting polar ice in the Arctic and Antarctic regions, coupled with melting ice sheets and glaciers across Greenland, North America, South America, Europe and Asia, are expected to raise sea levels significantly. Global sea levels have risen about 8 inches since 1870, according to the EPA, and the rate of increase is expected to accelerate in the coming years. If current trends continue, many coastal areas, where roughly half of the Earth's human population lives, will be inundated.

Researchers project that by 2100, average sea levels will be 2.3 feet (.7 meters) higher in New York City, 2.9 feet (0.88 m) higher at Hampton Roads, Virginia, and 3.5 feet (1.06 m) higher at Galveston, Texas, the EPA reports. According to an IPCC report , if greenhouse gas emissions remain unchecked, global sea levels could rise by as much as 3 feet (0.9 meters) by 2100. That estimate is an increase from the estimated 0.9 to 2.7 feet (0.3 to 0.8 meters) that was predicted in the 2007 IPCC report for future sea-level rise.

Sea level isn't the only thing changing for the oceans due to global warming. As levels of CO2 increase, the oceans absorb some of that gas, which increases the acidity of seawater. Werne explains it this way: "When you dissolved CO2 in water, you get carbonic acid. This is the same exact thing that happens in cans of soda. When you pop the top on a can of Dr Pepper, the pH is 2 — quite acidic."  

Since the Industrial Revolution began in the early 1700s, the acidity of the oceans has increased about 25 percent, according to the EPA. "This is a problem in the oceans, in large part, because many marine organisms make shells out of calcium carbonate (think corals, oysters), and their shells dissolve in acid solution," said Werne. "So as we add more and more CO2 to the ocean, it gets more and more acidic, dissolving more and more shells of sea creatures. It goes without saying that this is not good for their health."

If current ocean acidification trends continue, coral reefs are expected to become increasingly rare in areas where they are now common, including most U.S. waters, the EPA reports. In 2016 and 2017, portions of the Great Barrier Reef in Australia were hit with bleaching , a phenomenon in which coral eject their symbiotic algae. Bleaching is a sign of stress from too-warm waters, unbalanced pH or pollution ; coral can recover from bleaching, but back-to-back episodes make recovery less likely.

Caribou running through shallow water, Arctic National Wildlife Refuge, Alaska, USA

The effects of global warming on Earth's ecosystems are expected to be significant and widespread. Many species of plants and animals are already moving their range northward or to higher altitudes as a result of warming temperatures, according to a report from the National Academy of Sciences.

"They are not just moving north, they are moving from the equator toward the poles. They are quite simply following the range of comfortable temperatures, which is migrating to the poles as the global average temperature warms," Werne said. Ultimately, he said, this becomes a problem when the rate of climate change velocity (how fast a region changes put into a spatial term) is faster than the rate that many organisms can migrate. Because of this, many animals may not be able to compete in the new climate regime and may go extinct.

Additionally, migratory birds and insects are now arriving in their summer feeding and nesting grounds several days or weeks earlier than they did in the 20th century, according to the EPA.

Warmer temperatures will also expand the range of many disease-causing pathogens that were once confined to tropical and subtropical areas, killing off plant and animal species that formerly were protected from disease.

In addition, animals that live in the polar regions are facing an existential threat. In the Arctic, the decline in sea ice and changes in ice melt threaten particularly ice-dependent species, such as narwhals ( Monodon monoceros ), polar bears ( Ursus maritimus ) and walruses ( Odobenus rosmarus ), the World Wildlife Fund (WWF) noted. Animals in the Antarctic also face serious challenges — in Oct. 2022 the U.S. Fish and Wildlife Service declared emperor penguins (Aptenodytes forsteri) as endangered due to the threat of climate change. 

A 2020 study published in the journal Proceedings of the National Academy of Sciences suggested that 1 in every 3 species of plant and animal are at risk of extinction by 2070 due to climate change.

A farmer inspects a field cracked due to drought on August 26, 2022 in Neijiang, Sichuan Province of China

As dramatic as the effects of climate change are expected to be on the natural world, the projected changes to human society may be even more devastating.

Agricultural systems will likely be dealt a crippling blow. Though growing seasons in some areas will expand, the combined impacts of drought, severe weather, lack of accumulated snowmelt, greater number and diversity of pests, lower groundwater tables and a loss of arable land could cause severe crop failures and livestock shortages worldwide.

North Carolina State University also notes that carbon dioxide is affecting plant growth. Though CO2 can increase the growth of plants, the plants may become less nutritious.

This loss of food security may, in turn, create havoc in international food markets and could spark famines, food riots, political instability and civil unrest worldwide, according to a number of analyses from sources as diverse as the U.S Department of Defense, the Center for American Progress and the Woodrow Wilson International Center for Scholars.

In addition to less nutritious food, the effect of global warming on human health is also expected to be serious. The American Medical Association has reported an increase in mosquito-borne diseases like malaria and dengue fever, as well as a rise in cases of chronic conditions like asthma, most likely as a direct result of global warming. The 2016 outbreak of Zika virus , a mosquito-borne illness, highlighted the dangers of climate change. The disease causes devastating birth defects in fetuses when pregnant women are infected, and climate change could make higher-latitude areas habitable for the mosquitoes that spread the disease, experts said. Longer, hotter summers could also lead to the spread of tick-borne illnesses .

Further reading on the impacts of global warming

Many governments and agencies keep up-to-date information on climate change research and statistics online. The most comprehensive and in-depth global reports are produced by the Intergovernmental Panel on Climate Change (IPCC), which released its Sixth Assessment Report on the science of climate change in 2021.

— 8 ominous climate milestones reached in 2021

— Ignoring climate change will lead to 'untold suffering,' scientist panel warns

— Earth's lower atmosphere is expanding due to climate change

For a historical look at the effects of climate change on Earth (and how modern warming compares), read Peter Brannen's " The Ends of the Earth: Volcanic Apocalypses, Lethal Oceans, and Our Quest to Understand Earth’s Past Mass Extinctions " (Ecco, 2017).

For more on the potential impacts of climate change in urban environments, the freely available book chapter Climate Change and its Impacts in the book " Climate Change Resilience in the Urban Environment " (IOP Publishing, 2017) covers the challenges that lay ahead for human populations.

Finally, for a psychological deep-dive on why all of this bad news is hard to take in, try " Don't Even Think About It: Why Our Brains Are Wired to Ignore Climate Change " (Bloomsbury USA, 2015) by climate activist and communicator George Marshall.

  • This NASA page includes a series of visualizations that illustrate how some of Earth's key climate indicators —  sea ice, sea level, global temperature and carbon dioxide — are changing over time.
  • This NOAA sea-level rise learning module includes educational videos, background for teachers, learning objectives and more.
  • ClimateBrief has gathered 10 of the best climate change videos on YouTube. 
  • EPA: Climate Change: Basic Information  
  • NASA: Global Climate Change
  • NOAA: Climate News and Data

Sign up for the Live Science daily newsletter now

Get the world’s most fascinating discoveries delivered straight to your inbox.

Gulf Stream's fate to be decided by climate 'tug-of-war'

Is Earth really getting too hot for people to survive?

'1st of its kind': NASA spots unusually light-colored boulder on Mars that may reveal clues of the planet's past

Most Popular

  • 2 Y chromosome is evolving faster than the X, primate study reveals
  • 3 Ming dynasty shipwrecks hide a treasure trove of artifacts in the South China Sea, excavation reveals
  • 4 Gulf Stream's fate to be decided by climate 'tug-of-war'
  • 5 Earth's rotating inner core is starting to slow down — and it could alter the length of our days
  • 2 Is Earth really getting too hot for people to survive?
  • 3 Tuberculosis triggered giant, crusty wart to sprout on man's hand
  • 4 Newly deciphered papyrus describes 'miracle' performed by 5-year-old Jesus
  • 5 Long-lost Assyrian military camp devastated by 'the angel of the Lord' finally found, scientist claims

essay on global warming effect

Examples

Paragraph on the Effects of Global Warming

Ai generator.

essay on global warming effect

In a somber paragraph, the effects of global warming, spurred by climate change , loom large. Deforestation compounds this crisis, releasing carbon dioxide into the atmosphere and disrupting ecosystems. Paragraph Rising temperatures fuel extreme weather events, imperiling lives and livelihoods. Urgent action is imperative to mitigate these consequences and safeguard the planet for future generations.

Checkout → Free Paragraph Writer Tool

Short Paragraph on the Effects of Global Warming

Global warming has far-reaching effects on the environment and human life. Rising temperatures lead to more frequent and severe weather events, such as hurricanes, droughts, and heatwaves. Melting polar ice caps and glaciers contribute to rising sea levels, threatening coastal communities. Additionally, global warming disrupts ecosystems, endangering wildlife and biodiversity.

Medium Paragraph on the Effects of Global Warming

The effects of global warming are increasingly evident and alarming, impacting the environment, human health, and economies. As global temperatures rise, we experience more frequent and intense weather events, including hurricanes, droughts, and heatwaves. Melting polar ice caps and glaciers contribute to rising sea levels, which threaten coastal communities and increase the risk of flooding. Furthermore, global warming disrupts ecosystems, leading to habitat loss and endangering wildlife. The shifting climate also affects agriculture, reducing crop yields and exacerbating food insecurity. Human health is impacted through increased heat-related illnesses and the spread of diseases. Addressing global warming requires urgent action to reduce greenhouse gas emissions and mitigate its devastating effects.

Long Paragraph on the Effects of Global Warming

The effects of global warming are profound and multifaceted, posing significant challenges to the environment, human health, and global economies. One of the most noticeable impacts is the increase in frequency and intensity of extreme weather events, such as hurricanes, droughts, heatwaves, and heavy rainfall. These events cause widespread damage to infrastructure, disrupt communities, and result in substantial economic losses. The melting of polar ice caps and glaciers due to rising temperatures leads to rising sea levels, which threaten coastal cities and small island nations with increased flooding and erosion. Additionally, global warming disrupts natural ecosystems, causing shifts in habitat ranges and endangering species that cannot adapt quickly enough. Coral reefs, which are vital to marine biodiversity, are particularly vulnerable to ocean warming and acidification. Agricultural productivity is also affected, as changing weather patterns and increased temperatures reduce crop yields and lead to food shortages. Human health suffers from the spread of vector-borne diseases, heat-related illnesses, and respiratory issues due to increased air pollution. Furthermore, global warming exacerbates social inequalities, as vulnerable populations bear the brunt of its impacts. Addressing these challenges requires concerted global efforts to reduce greenhouse gas emissions, implement sustainable practices, and develop adaptive strategies to mitigate the far-reaching effects of global warming.

Tone-wise Paragraph Examples on the Effects of Global Warming

Formal tone.

The effects of global warming are extensive and multifaceted, significantly impacting the environment, human health, and global economies. Rising temperatures contribute to the increased frequency and intensity of extreme weather events, such as hurricanes, droughts, and heatwaves, causing widespread damage and economic losses. Melting polar ice caps and glaciers lead to rising sea levels, threatening coastal communities with flooding and erosion. Additionally, global warming disrupts ecosystems, endangering species and altering habitats. Agricultural productivity is affected by changing weather patterns, leading to food shortages. Human health is compromised by the spread of diseases and heat-related illnesses. Addressing these issues necessitates urgent, coordinated global action to reduce greenhouse gas emissions and develop adaptive strategies.

Informal Tone

Global warming is having some pretty serious effects on our planet and our lives. We’re seeing more intense weather events like hurricanes and heatwaves, and the melting ice caps are causing sea levels to rise, which threatens coastal areas. Wildlife and ecosystems are also being disrupted, and crops are suffering from changing weather patterns. Plus, our health is at risk from heat-related illnesses and spreading diseases. We need to act quickly to cut down on greenhouse gas emissions and tackle these problems.

Persuasive Tone

Consider the urgent and wide-ranging effects of global warming on our planet. Rising temperatures lead to more extreme weather events like hurricanes and droughts, causing significant damage and economic loss. Melting ice caps result in rising sea levels, threatening coastal communities. Wildlife and ecosystems are disrupted, and agriculture suffers, leading to food shortages. Our health is also at risk from heat-related illnesses and spreading diseases. We must take immediate action to reduce greenhouse gas emissions and implement sustainable practices to mitigate these impacts and protect our future.

Reflective Tone

Reflecting on the effects of global warming, it becomes clear how deeply it impacts our world. The increase in extreme weather events, melting ice caps, and rising sea levels highlight the environmental challenges we face. Wildlife and ecosystems are under threat, and agriculture is struggling with changing weather patterns. Human health is also affected by heat-related illnesses and the spread of diseases. Addressing global warming requires us to rethink our actions and prioritize sustainable practices to protect our planet and future generations.

Inspirational Tone

Embrace the challenge of combating the effects of global warming to protect our planet for future generations. Global warming leads to extreme weather events, melting ice caps, and rising sea levels, threatening our environment and communities. Wildlife and ecosystems are disrupted, and agriculture faces new challenges. Our health is also at risk. Let us come together to reduce greenhouse gas emissions, adopt sustainable practices, and inspire others to take action. By working collectively, we can mitigate these impacts and ensure a healthier, more sustainable world for all.

Optimistic Tone

The effects of global warming are significant, but we have the power to make a difference. Rising temperatures cause extreme weather, melting ice caps, and rising sea levels, but by reducing greenhouse gas emissions, we can mitigate these impacts. Wildlife and ecosystems can recover, and sustainable agricultural practices can adapt to changing weather patterns. Our health can improve with cleaner air and better preparedness for heat-related illnesses. Together, we can create a more sustainable future and protect our planet.

Urgent Tone

The effects of global warming demand immediate attention and action. Rising temperatures lead to more frequent and severe weather events, such as hurricanes, droughts, and heatwaves, causing extensive damage and economic loss. Melting ice caps result in rising sea levels, threatening coastal communities. Wildlife and ecosystems are under threat, and agriculture suffers, leading to food shortages. Human health is at risk from heat-related illnesses and spreading diseases. We must act now to reduce greenhouse gas emissions and implement sustainable practices to combat these urgent issues and safeguard our future.

Word Count-wise Effects of Global Warming Paragraph Examples

The effects of global warming are increasingly evident and alarming, impacting how we communicate, access information, and entertain ourselves. Platforms such as Facebook, Twitter, and Instagram enable us to stay connected with friends and family, no matter the distance. They provide a space for sharing experiences, photos, and updates, fostering a sense of community. Social media also serves as a powerful tool for news dissemination, allowing users to stay informed about global events in real time. Moreover, it offers various forms of entertainment, from funny videos to engaging content creators.

The effects of global warming are profound and multifaceted, posing significant challenges to the environment, human health, and global economies. One of the most noticeable impacts is the increase in frequency and intensity of extreme weather events, such as hurricanes, droughts, heatwaves, and heavy rainfall. These events cause widespread damage to infrastructure, disrupt communities, and result in substantial economic losses. The melting of polar ice caps and glaciers due to rising temperatures leads to rising sea levels, which threaten coastal cities and small island nations with increased flooding and erosion. Additionally, global warming disrupts natural ecosystems, causing shifts in habitat ranges and endangering species that cannot adapt quickly enough.

The effects of global warming are profound and multifaceted, posing significant challenges to the environment, human health, and global economies. One of the most noticeable impacts is the increase in frequency and intensity of extreme weather events, such as hurricanes, droughts, heatwaves, and heavy rainfall. These events cause widespread damage to infrastructure, disrupt communities, and result in substantial economic losses. The melting of polar ice caps and glaciers due to rising temperatures leads to rising sea levels, which threaten coastal cities and small island nations with increased flooding and erosion. Additionally, global warming disrupts natural ecosystems, causing shifts in habitat ranges and endangering species that cannot adapt quickly enough. Coral reefs, which are vital to marine biodiversity, are particularly vulnerable to ocean warming and acidification.

The effects of global warming are profound and multifaceted, posing significant challenges to the environment, human health, and global economies. One of the most noticeable impacts is the increase in frequency and intensity of extreme weather events, such as hurricanes, droughts, heatwaves, and heavy rainfall. These events cause widespread damage to infrastructure, disrupt communities, and result in substantial economic losses. The melting of polar ice caps and glaciers due to rising temperatures leads to rising sea levels, which threaten coastal cities and small island nations with increased flooding and erosion. Additionally, global warming disrupts natural ecosystems, causing shifts in habitat ranges and endangering species that cannot adapt quickly enough. Coral reefs, which are vital to marine biodiversity, are particularly vulnerable to ocean warming and acidification. Agricultural productivity is also affected, as changing weather patterns and increased temperatures reduce crop yields and lead to food shortages. Human health suffers from the spread of vector-borne diseases, heat-related illnesses, and respiratory issues due to increased air pollution.

Twitter

Text prompt

  • Instructive
  • Professional

10 Examples of Public speaking

20 Examples of Gas lighting

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 04 June 2024

Global groundwater warming due to climate change

  • Susanne A. Benz   ORCID: orcid.org/0000-0002-6092-5713 1 , 2 ,
  • Dylan J. Irvine   ORCID: orcid.org/0000-0002-3543-6221 3 ,
  • Gabriel C. Rau 4 ,
  • Peter Bayer   ORCID: orcid.org/0000-0003-4884-5873 5 ,
  • Kathrin Menberg 6 ,
  • Philipp Blum 6 ,
  • Rob C. Jamieson 1 ,
  • Christian Griebler 7 &
  • Barret L. Kurylyk   ORCID: orcid.org/0000-0002-8244-3838 1  

Nature Geoscience volume  17 ,  pages 545–551 ( 2024 ) Cite this article

10k Accesses

1 Citations

491 Altmetric

Metrics details

  • Climate-change impacts
  • Projection and prediction

Aquifers contain the largest store of unfrozen freshwater, making groundwater critical for life on Earth. Surprisingly little is known about how groundwater responds to surface warming across spatial and temporal scales. Focusing on diffusive heat transport, we simulate current and projected groundwater temperatures at the global scale. We show that groundwater at the depth of the water table (excluding permafrost regions) is conservatively projected to warm on average by 2.1 °C between 2000 and 2100 under a medium emissions pathway. However, regional shallow groundwater warming patterns vary substantially due to spatial variability in climate change and water table depth. The lowest rates are projected in mountain regions such as the Andes or the Rocky Mountains. We illustrate that increasing groundwater temperatures influences stream thermal regimes, groundwater-dependent ecosystems, aquatic biogeochemical processes, groundwater quality and the geothermal potential. Results indicate that by 2100 following a medium emissions pathway, between 77 million and 188 million people are projected to live in areas where groundwater exceeds the highest threshold for drinking water temperatures set by any country.

Similar content being viewed by others

essay on global warming effect

Evapotranspiration depletes groundwater under warming over the contiguous United States

essay on global warming effect

Recent and projected precipitation and temperature changes in the Grand Canyon area with implications for groundwater resources

essay on global warming effect

Global peak water limit of future groundwater withdrawals

Earth’s climatic system warms holistically in response to the radiative imbalance from increased concentrations of greenhouse gases 1 . While the ocean absorbs most of this additional heat 2 , the terrestrial subsurface and groundwater also function as a heat sink. With a stable climate, seasonal temperature variation penetrates to a depth of 10–20 m, below which temperatures generally increase with depth in accordance with the geothermal gradient 3 . However, present-day borehole temperature–depth profiles frequently show an inversion (that is, temperature decreasing with depth) for up to 100 m due to recent, decadal surface warming 4 . Deviations from steady-state subsurface temperatures in deep boreholes (for example, >300 m) have been used to evaluate terrestrial heat storage and to estimate past, pre-observational surface temperature changes at a global scale 5 . Previous multi-continental synthesis studies on subsurface warming provide critical information on climate dynamics, but impacts on groundwater resources and associated implications are commonly ignored.

With the advent of the Gravity Recovery and Climate Experiment (GRACE) satellites, global datasets and global hydrological models, there is an emerging body of global-scale groundwater research 6 , 7 , 8 , 9 . However, global-scale groundwater studies so far have focused on resource quantity (for example, levels, recharge rates and gravity signals), whereas global-scale research into groundwater quality, including temperature, is rare. Furthermore, prominent syntheses of the relationship between anthropogenic climate change and groundwater (for example, refs. 10 , 11 ) concentrate on quantity leaving quality aspects unexplored 12 . Water temperature, sometimes known as the ‘master environmental variable’ (ref. 13 ), is an understudied groundwater quality parameter in the context of climate change.

Whereas global studies of river and lake warming have been conducted 14 , 15 , there are no global assessments of climate change impacts on groundwater temperatures (GWTs). This is despite the high importance of groundwater, which represents the largest global reservoir of unfrozen freshwater 16 , providing at least part of the water supply for half the world 17 and close to half of the global irrigation demand 18 . It also sustains terrestrial and aquatic ecosystems 19 , particularly in the face of climate change 10 . Given the role of temperature as an overarching water quality variable and observational evidence of groundwater warming in different countries in response to recent climate change 4 , 20 , 21 , the potential impact of climate warming on groundwater temperatures at a global scale remains a critical knowledge gap.

Groundwater temperature influences a suite of biogeochemical processes that alter groundwater quality 22 . For example, an increase in temperatures reduces gas solubility and raises metabolism of organisms, with an increased rate of oxygen consumption and a shift in redox conditions 23 . Because many aquifers already possess low oxygen concentrations, a small change in temperature could trigger a shift from an oxic to a hypoxic or even an anoxic regime 24 , 25 . This switch can in turn facilitate the mobilization of redox-sensitive constituents such as arsenic, manganese and phosphorus 26 , 27 . Increases in soluble phosphorus in groundwater discharging to surface water can trigger harmful algal blooms 28 , and elevated arsenic and manganese contents in potable water supplies pose direct risks to human health 29 . Groundwater warming will also cause a shift in groundwater community composition with a challenge to biodiversity and the risk of an impaired cycling of carbon and nutrients 24 , 25 . Shallow soil and groundwater warming may also cause temperatures in water distribution networks to cross critical thresholds, with potential health implications such as the growth of pathogens such as Legionella spp. 30 .

Diffusive discharge of thermally stable groundwater to surface water bodies modulates their temporal thermal regimes 30 . Also, focused groundwater inflows can create cold-water plumes that provide thermal refuge for stressed aquatic species 31 , including many prize cold-water fish. Accordingly, groundwater warming will increase ambient water temperatures in surface water bodies and the temperatures of groundwater-sourced thermal refuges. Spring ecosystems will also be affected. For example, crenobionts (true spring water species) have a very narrow temperature optimum and tolerance; hence, warming groundwater near the mouths of springs will lead to changes in their reproduction cycles, food web interactions and finally a loss of sensitive species 32 .

Groundwater warming can also have positive effects as the accumulated thermal energy can be recycled through shallow, low-carbon geothermal energy systems 33 . Whereas studies typically focus on recycling the waste heat from anthropogenic sources, particularly from subsurface urban heat islands 34 , the subsurface heat accumulating due to climate change also has the potential to sustainably satisfy local heating demands 35 . However, increased warming will make cooling systems less efficient 36 .

Here we develop and apply a global-scale heat-transport model (thermal diffusion) to quantify groundwater temperatures in space and time and their response to recent and projected climate change (Fig. 1a,b ). Our objective is to reveal the potential magnitude and long-term implications of ongoing shallow groundwater warming and to identify ‘hotspots’ of concern. The model utilizes standard climate projections to drive global groundwater warming down to 100 m below ground surface but with a focus on temperatures at the depth of the water table. We discuss (1) where aquifer warming will influence the viability of shallow geothermal heat recycling in the shallow subsurface (Fig. 1c ), (2) given how it impacts microbial activity and groundwater chemistry, where groundwater temperature may cross key thresholds set by drinking water standards (Fig. 1d ) and (3) where discharge of warmed groundwater will have the most pronounced impact on river temperatures and aquatic ecosystems (Fig. 1e ). Our model is global, and its resolution limits detailed capture of small-scale processes, producing conservative results based on tested hydraulic and thermal assumptions, including realistic advection from basin-scale recharge. More localized processes may lead to higher groundwater temperatures in areas with increased downward flow (for example, river-based recharge) or elevated surface temperatures (for example, urban heat islands) (Supplementary Note 1 provides details).

figure 1

a – e , Increases in surface air and ground surface temperatures ( a ) drive increases in groundwater temperatures ( b ) that, in turn, impact the geothermal potential for shallow geothermal energy systems ( c ), groundwater chemistry and microbiology, which in turn impacts water quality ( d ) and groundwater-dependent ecosystems ( e ). Figure created with images from the UMCES IAN Media Library under a Creative Commons license CC BY-SA 4.0 .

Groundwater temperatures

We use gridded data to calculate transient subsurface temperature–depth profiles across the globe ( Methods ). Besides past and current temperatures, we present potential (modest mitigation) and worst-case (no mitigation) projections to 2100 based on the Shared Socioeconomic Pathway (SSP) 2–4.5 or SSP 5–8.5 climate scenarios of phase 6 the Coupled Model Intercomparison Project (CMIP6) (ref. 37 ). Results can be accessed and visually explored using an interactive Google Earth Engine app available at https://susanneabenz.users.earthengine.app/view/subsurface-temperature-profiles . Figure 2a–c displays maps of mean GWT at the depth of the water table and at 5 and 30 m below ground surface for 2020.

figure 2

a – c , Map of modelled mean annual temperatures at the depth of the water table ( a ), at 5 m below ground surface ( b ) and at 30 m below ground surface ( c ) in 2020. d , Comparison of modelled and observed groundwater temperatures. Blue markers are (multi-) annual mean temperatures observed between 2000 and 2015 at an unspecified depth against modelled temperatures of the same time period at 30 m depth. Grey markers are temperatures of a single point in time versus modelled temperatures of the same time and depth. A histogram of the errors (observed minus modelled temperatures) is shown in the upper left corner. e , Modelled temperature–depth profiles showing mean annual temperatures and the seasonal envelope for the locations displayed in a . Please note that we use bulk thermal properties, and the water table depth is thus not an input parameter into our model.

Comparison with measured data demonstrates a good accuracy of the model given the global scale with a root mean square error of 1.4 °C and a coefficient of determination of 0.75 (Fig. 2d ). An in-depth discussion on model reliability, uncertainty and limitations is given in Supplementary Note 2 .

The median GWT at the water table in 2020 was 21.0 °C (5.6 °C, 29.3 °C; 10th, 90th percentile; Fig. 2a ). In comparison, using the same ECMWF re-analysis (ERA-5) data product, air temperatures in 2020 were lower at 17.6 °C (1.4 °C, 27.0 °C). This thermal offset is attributable to various processes and conditions including snow pack insulation in colder climates 38 and increased temperatures with depth following the geothermal gradient.

Simulated temperature–depth profiles are displayed at six example locations in Fig. 2e , including their seasonal envelope. Supplementary Note 3 provides a discussion of seasonality. Whereas all locations show an inversion of the temperature–depth profile, the depth at which this thermal gradient ‘inflection point’ (ref. 4 ) is reached varies greatly based on the rate and duration of recent climate change. At the example location in Mexico, temperatures begin to increase with depth (as expected based on the local geothermal gradient) from approximately 10 m downwards, whereas at the example location in Brazil, the inflection point reaches a depth of 45 m (Fig. 2c ). Globally, it has reached 15 (<1, 40) m (Extended Data Fig. 1a ). Heat advection from vertical groundwater flow may also influence the depth of the inflection point 4 , but only heat diffusion is considered in our model as this is the dominant heat-transport mechanism at the modelled spatial scale ( Methods ).

To better assess the impact of recent climate change on groundwater temperatures at the water table depth, we compare annual mean GWTs from 2000 and 2020. Over this 20-year period, GWTs increased on average by 0.3 (0.0, 0.8) °C (Fig. 3a ). We do not find any distinct large-scale patterns. However, some of the highest temperature increases occur in parts of Russia (for example, > + 1. 5 ∘ C north of Novosibirsk), while parts of Canada experienced cooling (for example, < −0. 5 °C in Saskatoon) between the two years. Both regions have shallow water tables, with GWTs tightly coupled to seasonal surface temperature variations and short-term intra-annual changes, rather than just the long-term surface temperature signals. As such, one hot summer can drastically alter the modelled GWT difference between 2000 and 2020. The influence of weather conditions for a given year is also notable in the depth profiles for six selected locations (Fig. 3d ). Noticeable variations occur in the upper 5 m of mean temperature range profiles with temperature changes of 1.1 °C at the location in Australia, compared with 0.5 °C at the location in Nigeria. These effects of intra-annual and short-term interannual variations in weather are attenuated at greater depths (for example, 30 m). Long-term (climate change) effects penetrate deeper, although groundwater warming may be less pronounced with depth due to the time lag between surface and subsurface temperature signals (Fig. 3c ).

figure 3

a – d , Recent (2000 to 2020) changes. e – h , Projected (2000–2100) changes. a , e , Map of the change in annual mean temperature at the depth of the water table. The line in the legend indicates 0 °C. b , c , f , g , Temperature change 5 m below the land surface ( b , f ) and 30 m below the land surface ( c , g ). d , h , Change in temperatures between 2000 and 2020 ( d ) and difference between 2000 and 2100 ( h ) as depth profiles for selected locations (symbols in a and e ). Lines in h indicate median projections, whereas 25th to 75th percentiles (pct.) are presented as shading.

Over the entire century (between 2000 and 2100), groundwater warming is also projected to increase; globally averaged GWTs at the water table (at its current level) increase by 2.1 (0.8, 3.0) °C following SSP 2–4.5 median projections (Fig. 3e–g ; Extended Data Fig. 2 for 25th (1.7 (0.6, 2.5) °C) and 75th percentile (2.6 (1.0, 3.6) °C) projections) and by 3.5 (1.0, 5.5) °C following SSP 5–8.5 median projections (Extended Data Figs. 3a–d and 4 ; 25th percentile projections 3.0 (0.8, 5.8) °C; 25th percentile projections 4.6 (1.3, 7.1) °C).

We observe a clear signal of climate change by studying the depth down to which the temperature profile is reversed and temperatures are decreasing outside of seasonal effects. In 2100 the geothermal gradient inflection point is projected to reach 45 (9, 90) m on average following SSP 2–4.5 median projections (40 (6, 90) m for 25th percentile and 45 (15, 80) m for 75th percentile projections) or 60 (40, 100) m following SSP 5–8.5 median projections (60 (35, >100) m for 25th percentile and 60 (45, >100) m for 75th percentile projections; Extended Data Figs. 1b,c and 5 ).

Accumulated energy

The overall increase in GWT can be quantified as accumulated energy ( Methods ). By 2020, a net energy amount of 14 × 10 21  J has already been absorbed by the terrestrial subsurface (Fig. 4a ; 119 (45, 202) MJ m −2 ) since the beginning of the industrial revolution. In comparison, 436 × 10 21  J or about 25 times more has been absorbed by the oceans over a similar time period 39 . A review of Earth’s energy imbalance identifies a total heat gain of 358 × 10 21  J for the time period 1971–2018 only, attributing about 6% of that to land areas including permafrost regions (21 × 10 21  J, that is, a similar magnitude as our estimate) 40 . In a similar range is the 23.8 × 10 21  J that was stored in the continental landmass since 1960 following a recent study; 90% is from heat storage 41 .

figure 4

a – c , Current status in 2020. d – f , Projected status in 2100 under SSP 2–4.5. a , d , Accumulated heat from the surface to 100 m depth. The line in the legend indicates 0 MJ m −2 . b , e , Map showing locations where maximum monthly GWTs at the thermal gradient inflection point (coldest depth) are above guidelines for drinking water temperatures (DWTs) 43 . c , f , GWT changes between 2000 and 2020 ( c ) and between 2000 and 2100 ( f ) at stream sites with a groundwater signature 49 . The line in the legend indicates 0 °C.

We project that by 2100 accumulated subsurface energy will be 41 × 10 21  J following SSP 2–4.5 median projections (343 (251, 463) MJ m −2 ; Fig. 4d ), 30 × 10 21  J following 25th percentile projections (255 (162, 361) MJ m −2 ) and 50 × 10 21  J following 75th percentile projections (424 (324, 560) MJ m −2 ; Extended Data Fig. 6 ). Under SSP 5–8.5 we get 62 × 10 21  J for the median projections (518 (384, 689) MJ m −2 ; Extended Data Fig. 3e ), 49 × 10 21  J for the 25th percentile projections (412 (285, 564) MJ m −2 ) and 77 × 10 21  J for the 75th percentile projections (644 (493, 844) MJ m −2 ; Extended Data Fig. 7 ). This accumulated heat can be extracted from the subsurface through wells in productive aquifers, but in lower-permeability zones and the unsaturated zone, less-efficient borehole heat exchangers would be necessary 33 . Hence, we assessed the energy accumulated in the saturated zone only (below the current water table) in Extended Data Fig. 8 —on average, there is 68 (13, 133) MJ m −2 of heat in the global subsurface saturated zone in 2020.

By comparing the accumulated aquifer thermal energy in the United States (about 45 MJ m −2 ) with local residential heating demands (about 35,000 MJ per household in 2015 following the US Energy Information Administration 2015 Energy Consumption Survey), we find that, if recycled, the energy accumulated below an average home (250 m 2 for the floor area in new single-family houses following the 2015 ‘Characteristics of new housing’ report, US Department of Commerce) in 2020 would fulfil about four months of heating demands. However, by 2100, global heat storage in the saturated zone is projected to increase to 233 (75, 363) MJ m −2 following SSP 2–4.5 and 352 (105, 536) MJ m −2 following SSP 5–8.5 median projections (Extended Data Figs. 8 and 9 for 25th and 75th percentile projections). With heating demands projected to decline due to higher temperatures and improved building insulation, recycling this subsurface heat will therefore become more feasible and is a carbon-reduced heat source that will benefit from climate change 35 . Conversely, cooling systems that rely on geothermal sources will be less efficient.

Implications for drinking water quality

Whereas groundwater warming offers benefits for geothermal heating systems, the accumulated heat also threatens water quality. In many developing countries or in poor and rural areas within developed countries, groundwater may be consumed directly without treatment or storage. It may also indirectly impact temperatures of drinking water within pipes 42 . In these regions in particular, the changes in water chemistry or microbiology that are associated with groundwater warming have to be carefully considered.

According to the World Health Organization, only 18 of 125 countries have temperature guidelines for drinking water 43 . These temperature guidelines, which are often aesthetic guidelines, range from 15 °C to 34 °C, with a median of 25 °C. Figure 4b shows where annual maximum groundwater temperatures at the geothermal gradient inflection point, that is, the most conservative depth as it is the coldest point in the temperature–depth profile, are above these thresholds in 2020. At this time, more than 29 million people live in areas where our modelled maximum GWT exceeded 34 °C. If water is extracted at the depth of the water table, this increases to close to 31 million (Extended Data Fig. 10 ). Following SSP 2–4.5 median projections by 2100, these numbers will increase to 77 million to 188 million depending on the depth of extraction (72 to 101 for 25th percentile projection; 86 to 395 for 75th percentile projections; Fig. 4d and Extended Data Figs. 5 and 9 ). Following SSP 5–8.5 median projections, 59 million to 588 million people will live in areas where maximum GWTs exceed the highest thresholds for drinking water temperatures (54 to 314 for 25th percentile projection; 66 to 1,078 for 75th percentile projections; Extended Data Figs. 3f , 6 and 9 ). Due to the different population distributions, SSP 5–8.5 projects fewer people at risk than SSP 2–4.5 for the lower estimates.

Implications for groundwater-dependent ecosystems

The ecosystems most dependent on groundwater are those in the aquifers themselves. A temperature increase may threaten groundwater biodiversity and ecosystem services 44 , 45 . Also, the increased metabolic rates of microbes caused by warming will accelerate the cycling of organic and inorganic matter, additionally fuelled by the increasing importance of dissolved organic carbon to the subsurface 46 . Combined with decreasing groundwater recharge as projected for many North African, southern European and Latin American countries 47 , this may transform oxic subsurface environments into anoxic 24 .

Groundwater warming also threatens many riverine groundwater-dependent ecosystems and the industries (for example, fisheries) that they support 48 . To capitalize on past continental-scale research related to groundwater, river temperature and ecosystems, we compare our modelled spatial patterns of groundwater warming in the conterminous United States to a recent distributed analysis of 1,729 stream sites 49 . The amplitude and phase of seasonal temperature signals in these surface water bodies were used to reveal the thermal influence and source depth of groundwater discharge to these streams, with about 40% classified as groundwater dominated. Our results show that GWT at the water table for the groundwater-dominated stream sites increased by 0.1 (0.0, 0.4) °C between 2000 and 2020 and 1.3 (0.3, 2.6) °C and 1.9 (0.4, 4.5) °C between 2000 and 2100 following SSP 2–4.5 and SSP 5–8.5 median projections, respectively (Fig. 4c,f and Extended Data Fig. 3g ). Twenty-fifth percentile projections reveal 0.7 (−0.1, 1.5) °C and 1.0 (0.0, 2.9) °C and 75th percentile projections 2.0 (0.5, 4.0) °C and 2.9 (0.6, 6.7) °C between 2000 and 2100 following SSP 2–4.5 and SSP 5–8.5, respectively (Extended Data Figs. 6 and 7 ).

The warming groundwater will inevitably raise the ambient temperature of surface water systems thermally influenced by groundwater discharge. Furthermore, such groundwater warming will even more strongly impact the thermal regimes of groundwater-fed thermal refuges (for example, at the outlets of springs or groundwater-dominated tributaries flowing into rivers) and cause them to more regularly cross critical temperature thresholds for resident species seeking relief from thermal stress. Given the connection between aquifer thermal regimes and river sediment temperatures 50 , groundwater warming also threatens the thermal suitability of benthic ecosystems and spawning areas for fish 51 , posing a major risk to fisheries and other dependent industries.

Summary and model application

In summary, global climate change is leading to increased atmospheric and surface water temperatures, both of which have already been assessed across spatial scales ranging from local to global. Here we contribute to the global analyses of environmental temperature change and of groundwater resources through the presentation of projected groundwater temperature change to 2100 at a global scale. Our analyses are based on reasonable hydraulic and thermal assumptions providing conservative estimates and allow for both the hindcasting and forecasting of groundwater temperatures. Future groundwater temperature forecasts are based on both SSP 2–4.5 and 5–8.5 climate scenarios. We provide global temperature maps at the depth of the water table, 5 and 30 m below land surface, and these highlight that places with shallow water tables and/or high rates of atmospheric warming will experience the highest groundwater warming rates globally. Importantly, given the vertical dimension of the subsurface, groundwater warming is inherently a three-dimensional (3D) phenomenon with increased lagging of warming with depth, making aquifer warming dynamics distinct from the warming of shallow or well-mixed surface water bodies.

To facilitate more detailed future analyses, the temperature maps are included in a Google Earth Engine app at https://susanneabenz.users.earthengine.app/view/subsurface-temperature-profiles . The gridded GWT output could be integrated with global river temperature models 52 to more holistically understand future warming in aquifers and connected rivers. Whereas the warming of Earth’s groundwater poses some opportunities for geothermal energy production, it increasingly threatens ecosystems and the industries depending on them, and it will degrade drinking water quality, primarily in less-developed regions.

Diffusive heat transport

We hindcast monthly subsurface temperatures (and therefore also groundwater temperatures (GWTs) based on the assumption of local equilibrium) from the surface to a depth of 100 m for the years 2000 to 2020. We also force our model with future projections following SSP 2–4.5 and SSP 5–8.5 up to the year 2100. Subsurface temperatures in the shallow crust are generally controlled by one-dimensional (1D) (vertical) diffusive heat transport. Heat advection due to water flow plays a lesser and often inconsequential role in controlling subsurface temperatures 54 , 55 , 56 , particularly at larger spatial scales that average out focused groundwater flows in faults and fractures and groundwater exchange with surface water bodies. We adopt our 1D diffusion-dominated approach rather than a 3D numerical model of coupled groundwater flow and heat transfer as there are presently neither the parameterization data nor the computing power to enable such a coupled, 3D water and thermal transport model at a global scale. Also, whereas the influence of heat advection on steady-state or transient, subsurface temperature–depth profiles can be detected with precise temperature loggers and yields valuable insight into vertical groundwater fluxes when heat is used as a groundwater tracer 57 , the rate of shallow groundwater warming is often not thought to be strongly influenced by typical basin-average, vertical groundwater flux rates. Accordingly, heat advection has been ignored in some past local-scale groundwater warming studies (for example, ref. 58 ). However, to further investigate the thermal effects of multi-dimensional flow, we run a suite of scenarios and find that advection only exerts a minor influence on groundwater warming rates for typical groundwater flow conditions (Supplementary Note 1 ), enabling us to employ our approach.

Appropriate initial conditions can be far more important for reliable simulation of temperature–depth profiles than the inclusion of heat advection 59 . To ensure our initial conditions are not influenced by any preceding climate change, we initiate our model in 1880 when the industrial revolution had not yet increased atmospheric greenhouse gasses and the climate was relatively stable. As default initial setting, we define a temperature–depth profile that increases linearly with depth z from the surface T S in accordance with the geothermal gradient a : T ( z ) =  T S  +  a z (ref. 55 ). In permafrost regions, warming above critical thresholds requires latent heat to thaw ground in addition to the sensible heat to raise the temperature. As we do not include latent heat effects, model results are not presented for permafrost regions 60 .

We use the following analytical solution to the transient 1D heat diffusion equation for a semi-infinite homogeneous medium subject to a series of n step changes in surface temperature 55 :

where j is a step change counter (counting by month), t is time, T S ( t ) is the time series of the ground surface temperature, D is the thermal diffusivity and erfc is the complementary error function. This equation is often used in an inverse manner to reconstruct pre-observational ground surface temperature history from observed, deep temperature–depth profiles, demonstrating its utility for investigating the response of subsurface thermal regimes to surface warming.

We run our model in Google Earth Engine (GEE) 61 , and the results are presented in the form of a Google Earth Engine app openly accessible at https://susanneabenz.users.earthengine.app/view/subsurface-temperature-profiles . The application presents zoomable maps of annual mean, maximum and minimum GWT at different depths and seasonal variability (maximum minus minimum) for selected years and climate scenarios. All datasets were created at a native 5 km resolution at Earth’s surface. However, Google Earth Engine automatically rescales images shown on the map based on the zoom level of the user. Charts that represent temperatures at a given location at a 5 km scale are created by clicking on the map and can be exported in CSV, SVQ or PNG file formats. For all analyses showing annual mean data at the water table depth, we first calculate monthly temperatures at the associated monthly groundwater level before averaging the results.

Ground surface temperatures

We use two distinct ground surface temperature time series: (1) one for the analysis of current (2020) temperatures based primarily on the ERA-5 data 62 and (2) one for the analysis of projected changes based on CMIP6 data 37 . On the basis of available computational power and data, we are not able to utilize monthly temperatures for the entire time period between the years 1880 and 2100. Instead, we present monthly temperatures from 1981 onwards and annual mean temperatures for 1880. The threshold 1981 is selected as ERA-5 data were available in Google Earth Engine from this point on when developing the model.

As these data are input into the analytical step function model (equation ( 1 )), we supplement them with mean temperatures of the early 1980s (that is, three-year mean 1981 to 1984) to reduce artefacts of the sudden onset of seasonal signals in our data. An example of the ground surface temperature time series is shown in Supplementary Fig. 11 .

For the analysis of current GWT, we use monthly mean soil temperature at 0–7 cm depth for the years 1981 to 2022 based on the ERA-5-Land monthly average reanalysis product 62 to form the ground surface temperature boundary condition for equation ( 1 ). These data have a native resolution of 9 km at the surface and are available through the GEE data catalogue. We also used annual ground temperature anomalies of 1880 of the top layer following the Goddard Institute for Space Studies (GISS) atmospheric model E 63 . This dataset gives the temperature difference between 1880 and 1980 in a horizontal resolution of 4° × 5° (approximately 444 km × 555 km at the equator) and can be extracted from https://data.giss.nasa.gov/modelE/transient/Rc_ij.1.11.html . To obtain absolute temperatures of 1880, we subtract the anomalies from three-year mean temperatures (1981 to 1984) of the ERA-5 data.

Future projections of ground surface temperatures are based on monthly soil temperatures closest to the surface for scenarios SSP 2–4.5 and SSP 5–8.5 from the CMIP6 programme available from 2015 to 2100. Model selection and methodology follow previous work 64 , but were updated to CMIP6 based on availability. In total we use nine models: BCC-CSM2-MR, CanESM5, GFDL-ESM4, GISS-E2-1-G, HadGEM3-GC31-LL, IPSL-CM6A-LR, MIROC6, MPI-ESM1-2-LR, NorESM2-MM. Where available, we used data from the variant label r1i1p1f1; however, for GISS-E2-1-G and HadGEM3-GC31-LL, these were not available, and we had to use r1i1p1f2 or r1i1p1f3 instead. Furthermore NorESM2-MM was missing data for January 2015; thus, we replaced them with data from December 2014 from the historic scenario. Data were collected from the World Climate Research Programme at https://esgf-node.llnl.gov/search/cmip6/ . In addition, monthly data of the historic scenario were prepared for January 1981 to December 2014 and the annual mean data for 1880. To account for the difference between the CMIP6 models and ERA-5 reanalysis, we adjust the CMIP6 outputs based on mean temperatures \(\overline{T}\) from ERA-5 between 1981 and 2014 (that is, the overlap between ERA-5 and the CMIP6 historic scenario) for each of the CMIP6 models separately as follows:

Temperatures are determined for each model before being presented as the median and the 25th and 75th percentiles.

Thermal diffusivity

For our analysis we use the ground thermal diffusivity D :

where λ (W m −1  °C −1 ) is the bulk thermal conductivity and C V (J m −3  °C −1 ) is the bulk volumetric heat capacity. Ground thermal conductivity and volumetric heat capacity for various water saturation values are derived following previous examples 35 , 65 . This method links λ and C V values for different soil and/or rock types following the VDI 4640 guidelines 66 to a global map of soil and/or rock type. This map is based on grain size information of the unconsolidated sediment map database (GUM) 67 . Where there is no available sediment class, we link to soil type in GUM. When this is also not available, we rely on the global lithological map database (GLiM) 68 . All required datasets were uploaded to Google Earth Engine in their native resolution. For assigned values, refer to Supplementary Table 1 .

We acknowledge that the distribution of subsurface thermal properties is heterogeneous. However, specific heat capacity and thermal conductivity for rocks are both well constrained to within less than half an order of magnitude 69 , 70 compared with the many orders of magnitude for hydraulic conductivity 71 . We also note that water saturation can change the individual thermal properties and have accordingly run our model for six example locations with three different diffusivity values: (1) a dry soil, (2) a moist soil (default) and (3) a water saturated soil (Supplementary Fig. 12 ). The influence of water saturation on thermal diffusivity can be complex as both the heat capacity and thermal conductivity increase with water content (equation ( 3 )). Overall, for locations with unconsolidated material in the shallow subsurface, groundwater warming rates increase with water saturation. However, the effect is nonlinear and the overall impact of water saturation on the thermal diffusivity is negligible for relative saturation values between 0.5 and 1 (ref. 72 ). A map of the diffusivity utilized here is given in Supplementary Fig. 13a .

Geothermal gradient

When advection is absent, the geothermal gradient a (°C m −1 ; equation ( 1 )) is the rate of temperature change with depth due to the geothermal heat flow Q (W m −2 ) and thermal conductivity λ (W m −1  °C −1 ):

with global values for λ derived as described earlier, and the mean heat flow Q available as a global 2° equal area grid (about 222 km at the equator) 73 . Due to their resolution, these data do not incorporate fractures and major faults, and we thus are not able to estimate groundwater temperatures at these locations properly. The grid was uploaded to GEE in its native resolution for analysis (Supplementary Fig. 13b ).

Water table depth

Much of our analysis and interpretation focuses on the future projection of temperatures at the water table depth. We therefore use the results of a previously published global groundwater model 74 , 75 with a 30 sec grid (about 1 km at the equator) to obtain the mean water table depth for 2004 to 2014. These data are available as monthly averages that we uploaded to GEE in their native resolution. In temperate climates, the model underestimates the observed water table depth by 1.5 m, and we therefore set the minimum water table depth to 1.5 m as was done in a previous study 35 . Still, whereas the global-scale hydro(geo)logical model of Fan et al. 74 , 75 can reveal large-scale patterns, it is of limited use for small-scale analysis and must be used with caution. Hence we run additional information for best- and worst-case scenarios where we add or subtract 10 m to the depth of the water table (Supplementary Note 4 ).

To calculate mean annual GWTs at the water table, temperatures for each month were determined at the corresponding water table depth by setting z in equation ( 1 ) to this depth. Future changes of water table elevation are challenging to predict, and we therefore base our analysis on the assumption that future water table elevations are unchanging. If we assume that the water table will rise, then warming would be more extreme; should the water table lower, warming as projected here is overestimated. A more detailed discussion, modelling water table changes of ± 10 m, can be found in Supplementary Note 4 . However, we note that a modelled temperature–depth profile (equation ( 1 )) is not impacted by the choice of the water table depth, and thus the results at 10 and 30 m are independent of the water table model.

Model evaluation

To assess the performance of our GWT calculations, we use two datasets of measured GWT or borehole temperatures. First, we compare our data to (multi-)annual mean shallow GWTs introduced in Benz et al. 35 . These data comprise more than 8,000 individual locations, primarily in Europe, where GWTs were measured at least twice between 2000 and 2015 at less than 60 m depth. Measurements are filtered based on their seasonal radius, a measure describing if a well was observed uniformly over the seasons and mean temperatures are therefore free of seasonal bias 76 . Second, we compare our data to temperature–depth profiles from the Borehole Temperatures and Climate Reconstruction Database at https://geothermal.earth.lsa.umich.edu/core.html . For these data, an exact date and depth of measurement are known. We filter the database based on time of measurement and depth of the first measurement, using only data taken after the year 2000 and starting at less than 30 m depth, resulting in 72 borehole measurements. To evaluate the model, we compare it to the observed groundwater temperatures described above. We compare the shallow (multi-)annual mean temperatures to mean temperatures at 30 m depth (the middle between 0 m and 60 m, the maximum depth of the observations) between 2000 and 2015. For the dataset of one-time borehole temperature–depth profiles, we compare the shallowest data points to temperatures from our model at the same depth (rounded to the nearest metre), month and year.

Example locations

We use six locations distributed over all latitudes as examples in many of our figures, with locations in Australia (longitude 149.12°, latitude −35.28°), Brazil (−47.92°, −15.77°), China (116.39°, 39.90°), Mexico (−99.12°, 19.46°), Norway (10.74°, 59.91°) and Nigeria (7.49°, 9.05°). For convenience, each point is at the location of the capital city. However, as our model is not able to adequately describe the impact of urban heat on measured groundwater temperatures, groundwater at these locations is expected to be warmer, potentially by several degrees. Our focus is on the rate of warming in response to climate change.

Depth of the geothermal gradient ‘inflection point’

To find the depth d i down to which annual mean temperature–depth profiles T ( z ) are inverted (that is, decrease with depth as opposed to increase following the geothermal gradient 4 ), we find the maximum depth where T ( d i ) >  T ( d i +1 ). Given our computational resources, we test this at a resolution of 1-m steps for the first 10 m, then in 5-m steps down to 50 m depth and lastly in 10-m steps down to the maximal depth of 100 m.

To quantify shallow subsurface accumulated energy I (J m −2 ), we compare mean annual temperature–depth profiles down to 100 m depth to the initial conditions T ( z ) =  T S ( t  = 1,880) +  a z by solving the following integral in 1-m steps:

This analysis utilizes annual mean subsurface temperatures \(\overline{T}(z)\) for 2020 or 2100 for the current and projected analyses, respectively. The volumetric heat capacity C V ( z ) of the unsaturated zone (for z above the water table) and the saturated zone (for z below the water table) uses discrete values given in Supplementary Table 1 .

Drinking water temperature thresholds

To assess the impact of groundwater warming on drinking water resources, we compare annual maximum groundwater temperatures to thresholds for drinking water temperatures summarized by the World Health Organization 43 . We do so for temperatures at the depth of the thermal gradient inflection point, the coldest point in the temperature profile and thus a best-case scenario, and for the depth of the water table to capture the 6% to 20% of wells that are no more than 5 m deeper than the water table 77 . To quantify populations at risk of exceeding the threshold, we compare the resulting maps with population counts. For temperatures in 2022, we use the 2015 United Nations-adjusted population density from the Population of World Version 4.11 Model 78 . For future scenarios, we rely on the global population projection grids for 2100 from the SSPs 79 , 80 . These data are available through the socioeconomic data and applications centre.

Impact on surface water bodies

Temperatures in surface water bodies are strongly influenced by atmospheric heat fluxes, but groundwater discharge and other processes can decouple temperatures in the atmosphere and water column. In the United States, 1,729 stream sites have been analysed by Hare et al. 49 to determine the dominance of groundwater discharge and to ascertain the relative depth (shallow or deep) of the associated aquifers. We use these sites to extract changes in mean annual groundwater temperature at the depth of the water table from our results to assess the impact of groundwater warming on these surface water bodies.

Data availability

Raster files (5 km resolution, in the GeoTIFF format) and tables (.CSV) used to create all figures of this study are made available at the Scholars Portal Dataverse at https://doi.org/10.5683/SP3/GE4VEQ (ref. 81 ). An online tool to facilitate exploration of our groundwater temperature model is available at https://susanneabenz.users.earthengine.app/view/subsurface-temperature-profiles .

Code availability

All codes used are also available at the Scholars Portal Dataverse under https://doi.org/10.5683/SP3/GE4VEQ (ref. 81 ). This includes codes written with Jupyter Notebook (Python) and Google Earth Engine (Javascript and GoogleColab/Python) and a detailed description of the process (readme.txt).

Meinshausen, M. et al. Historical greenhouse gas concentrations for climate modelling (CMIP6). Geosci. Model Dev. 10 , 2057–2116 (2017).

CAS   Google Scholar  

Arias, P. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 33–144 (Cambridge Univ. Press, 2021).

Kurylyk, B. L. & Irvine, D. J. Heat: an overlooked tool in the practicing hydrogeologist’s toolbox. Groundwater 57 , 517–524 (2019).

Bense, V. F. & Kurylyk, B. L. Tracking the subsurface signal of decadal climate warming to quantify vertical groundwater flow rates. Geophys. Res. Lett. https://doi.org/10.1002/2017gl076015 (2017).

Smerdon, J. E. & Pollack, H. N. Reconstructing earth’s surface temperature over the past 2000 years: the science behind the headlines. WIREs Climate Change 7 , 746–771 (2016).

Google Scholar  

Döll, P. & Fiedler, K. Global-scale modeling of groundwater recharge. Hydrol. Earth Syst. Sci. 12 , 863–885 (2008).

Famiglietti, J. S. The global groundwater crisis. Nat. Clim. Change 4 , 945–948 (2014).

Wada, Y. et al. Global depletion of groundwater resources. Geophys. Res. Lett. https://doi.org/10.1029/2010gl044571 (2010).

Gleeson, T., Befus, K. M., Jasechko, S., Luijendijk, E. & Cardenas, M. B. The global volume and distribution of modern groundwater. Nat. Geosci. 9 , 161–167 (2015).

Taylor, R. G. et al. Ground water and climate change. Nat. Clim. Change 3 , 322–329 (2012).

Green, T. R. et al. Beneath the surface of global change: impacts of climate change on groundwater. J. Hydrol. 405 , 532–560 (2011).

Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557 , 651–659 (2018).

Hannah, D. M. & Garner, G. River water temperature in the United Kingdom. Prog. Phys. Geogr. 39 , 68–92 (2015).

Bosmans, J. et al. FutureStreams, a global dataset of future streamflow and water temperature. Sci. Data https://doi.org/10.1038/s41597-022-01410-6 (2022).

O’Reilly, C. M. et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. https://doi.org/10.1002/2015gl066235 (2015).

Ferguson, G. et al. Crustal groundwater volumes greater than previously thought. Geophys. Res. Lett. https://doi.org/10.1029/2021gl093549 (2021).

Zektser, I. S. & Everett, L. G. Groundwater Resources of the World and Their Use (UNESCO, 2004).

Siebert, S. et al. Groundwater use for irrigation—a global inventory. Hydrol. Earth Syst. Sci. 14 , 1863–1880 (2010).

de Graaf, I. E. M., Gleeson, T., van Beek, L. P. H. R., Sutanudjaja, E. H. & Bierkens, M. F. P. Environmental flow limits to global groundwater pumping. Nature 574 , 90–94 (2019).

Chen, C.-H. et al. in Groundwater and Subsurface Environments (ed. Taniguchi, M.) 185–199 (Springer, 2011).

Benz, S. A., Bayer, P., Winkler, G. & Blum, P. Recent trends of groundwater temperatures in Austria. Hydrol. Earth Syst. Sci. 22 , 3143–3154 (2018).

Riedel, T. Temperature-associated changes in groundwater quality. J. Hydrol. 572 , 206–212 (2019).

Cogswell, C. & Heiss, J. W. Climate and seasonal temperature controls on biogeochemical transformations in unconfined coastal aquifers. J. Geophys. Res. https://doi.org/10.1029/2021jg006605 (2021).

Griebler, C. et al. Potential impacts of geothermal energy use and storage of heat on groundwater quality, biodiversity, and ecosystem processes. Environ. Earth Sci. https://doi.org/10.1007/s12665-016-6207-z (2016).

Retter, A., Karwautz, C. & Griebler, C. Groundwater microbial communities in times of climate change. Curr. Issues Mol. Biol. 41 , 509–538 (2021).

Bonte, M. et al. Impacts of shallow geothermal energy production on redox processes and microbial communities. Environ. Sci. Technol. 47 , 14476–14484 (2013).

Bonte, M., van Breukelen, B. M. & Stuyfzand, P. J. Temperature-induced impacts on groundwater quality and arsenic mobility in anoxic aquifer sediments used for both drinking water and shallow geothermal energy production. Water Res. 47 , 5088–5100 (2013).

Brookfield, A. E. et al. Predicting algal blooms: are we overlooking groundwater? Sci. Total Environ. 769 , 144442 (2021).

Bondu, R., Cloutier, V. & Rosa, E. Occurrence of geogenic contaminants in private wells from a crystalline bedrock aquifer in western Quebec, Canada: geochemical sources and health risks. J. Hydrol. 559 , 627–637 (2018).

Agudelo-Vera, C. et al. Drinking water temperature around the globe: understanding, policies, challenges and opportunities. Water 12 , 1049 (2020).

Mejia, F. H. et al. Closing the gap between science and management of cold-water refuges in rivers and streams. Glob. Chang. Biol. 29 , 5482–5508 (2023).

Jyväsjärvi, J. et al. Climate-induced warming imposes a threat to north European spring ecosystems. Glob. Chang. Biol. 21 , 4561–4569 (2015).

Stauffer, F., Bayer, P., Blum, P., Molina Giraldo, N. & Kinzelbach, W. Thermal Use of Shallow Groundwater (CRC Press, 2013).

Epting, J., Müller, M. H., Genske, D. & Huggenberger, P. Relating groundwater heat-potential to city-scale heat-demand: a theoretical consideration for urban groundwater resource management. Appl. Energy 228 , 1499–1505 (2018).

Benz, S. A., Menberg, K., Bayer, P. & Kurylyk, B. L. Shallow subsurface heat recycling is a sustainable global space heating alternative. Nat. Commun. https://doi.org/10.1038/s41467-022-31624-6 (2022).

Schüppler, S., Fleuchaus, P. & Blum, P. Techno-economic and environmental analysis of an aquifer thermal energy storage (ATES) in germany. Geotherm. Energy https://doi.org/10.1186/s40517-019-0127-6 (2019).

Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9 , 1937–1958 (2016).

Zhang, T. Influence of the seasonal snow cover on the ground thermal regime: an overview. Rev. Geophys. 43 , RG4002 (2005).

Zanna, L., Khatiwala, S., Gregory, J. M., Ison, J. & Heimbach, P. Global reconstruction of historical ocean heat storage and transport. Proc. Natl Acad. Sci. USA 116 , 1126–1131 (2019).

von Schuckmann, K. et al. Heat stored in the earth system: where does the energy go? Earth Syst. Sci. Data 12 , 2013–2041 (2020).

Cuesta-Valero, F. J. et al. Continental heat storage: contributions from the ground, inland waters, and permafrost thawing. Earth Syst. Dyn. 14 , 609–627 (2023).

Nissler, E. et al. Heat transport from atmosphere through the subsurface to drinking-water supply pipes. Vadose Zone J. 22 , 270–286 (2023).

A Global Overview of National Regulations and Standards for Drinking-Water Quality 2nd edn (WHO, 2021); https://apps.who.int/iris/handle/10665/350981

Griebler, C. & Avramov, M. Groundwater ecosystem services: a review. Freshw. Sci. 34 , 355–367 (2015).

Mammola, S. et al. Scientists’ warning on the conservation of subterranean ecosystems. BioScience 69 , 641–650 (2019).

McDonough, L. K. et al. Changes in global groundwater organic carbon driven by climate change and urbanization. Nat. Commun. https://doi.org/10.1038/s41467-020-14946-1 (2020).

Atawneh, D. A., Cartwright, N. & Bertone, E. Climate change and its impact on the projected values of groundwater recharge: a review. J. Hydrol. 601 , 126602 (2021).

Meisner, J. D., Rosenfeld, J. S. & Regier, H. A. The role of groundwater in the impact of climate warming on stream salmonines. Fisheries 13 , 2–8 (1988).

Hare, D. K., Helton, A. M., Johnson, Z. C., Lane, J. W. & Briggs, M. A. Continental-scale analysis of shallow and deep groundwater contributions to streams. Nat. Commun. 12 , 1450 (2021).

Caissie, D., Kurylyk, B. L., St-Hilaire, A., El-Jabi, N. & MacQuarrie, K. T. Streambed temperature dynamics and corresponding heat fluxes in small streams experiencing seasonal ice cover. J. Hydrol. 519 , 1441–1452 (2014).

Wondzell, S. M. The role of the hyporheic zone across stream networks. Hydrol. Process. 25 , 3525–3532 (2011).

Liu, S. et al. Global river water warming due to climate change and anthropogenic heat emission. Glob. Planet. Change 193 , 103289 (2020).

Tissen, C., Benz, S. A., Menberg, K., Bayer, P. & Blum, P. Groundwater temperature anomalies in central Europe. Environ. Res. Lett. 14 , 104012 (2019).

Bodri, L. & Cermak, V. Borehole Climatology (Elsevier, 2007).

Carslaw, H. S. & Jaeger, J. C. Conduction of Heat in Solids (Oxford Univ. Press, 1986).

Turcotte, D. L. & Schubert, G. Geodynamics (Cambridge Univ. Press, 2014).

Kurylyk, B. L., Irvine, D. J. & Bense, V. F. Theory, tools, and multidisciplinary applications for tracing groundwater fluxes from temperature profiles. WIREs Water https://doi.org/10.1002/wat2.1329 (2018).

Taylor, C. A. & Stefan, H. G. Shallow groundwater temperature response to climate change and urbanization. J. Hydrol. 375 , 601–612 (2009).

Bense, V. F., Kurylyk, B. L., van Daal, J., van der Ploeg, M. J. & Carey, S. K. Interpreting repeated temperature-depth profiles for groundwater flow. Water Resour. Res. 53 , 8639–8647 (2017).

Brown, J., Ferrians, O., Heginbottom, J. A. & Melnikov, E. Circum-Arctic map of permafrost and ground-ice conditions, version 2. NSIDC https://nsidc.org/data/GGD318/versions/2 (2002).

Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202 , 18–27 (2017).

ERA5-Land monthly averaged data from 2001 to present. Copernicus Climate Data Store https://cds.climate.copernicus.eu/doi/10.24381/cds.68d2bb30 (2019).

Hansen, J. et al. Climate simulations for 1880–2003 with GISS modelE. Clim. Dyn. 29 , 661–696 (2007).

Soong, J. L., Phillips, C. L., Ledna, C., Koven, C. D. & Torn, M. S. CMIP5 models predict rapid and deep soil warming over the 21st century. J. Geophys. Res. https://doi.org/10.1029/2019jg005266 (2020).

Huscroft, J., Gleeson, T., Hartmann, J. & Börker, J. Compiling and mapping global permeability of the unconsolidated and consolidated earth: GLobal HYdrogeology MaPS 2.0 (GLHYMPS 2.0). Geophys. Res. Lett. 45 , 1897–1904 (2018).

VDI 4640—Thermal Use of the Underground (VDI-Gesellschaft Energie und Umwelt, 2010).

Börker, J., Hartmann, J., Amann, T. & Romero-Mujalli, G. Terrestrial sediments of the earth: development of a global unconsolidated sediments map database (GUM). Geochem. Geophys. Geosyst. 19 , 997–1024 (2018).

Hartmann, J. & Moosdorf, N. The new global lithological map database GLiM: a representation of rock properties at the earth surface. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2012gc004370 (2012).

Clauser, C. in Thermal Storage and Transport Properties of Rocks, I: Heat Capacity and Latent Heat (ed. Gupta, H. K.) 1423–1431 (Springer, 2011).

Clauser, C. in Thermal Storage and Transport Properties of Rocks, II: Thermal Conductivity and Diffusivity (ed. Gupta, H. K.) 1431–1448 (Springer, 2011).

Rau, G. C., Andersen, M. S., McCallum, A. M., Roshan, H. & Acworth, R. I. Heat as a tracer to quantify water flow in near-surface sediments. Earth Sci. Rev. 129 , 40–58 (2014).

Halloran, L. J., Rau, G. C. & Andersen, M. S. Heat as a tracer to quantify processes and properties in the vadose zone: a review. Earth Sci. Rev. 159 , 358–373 (2016).

Davies, J. H. Global map of solid earth surface heat flow. Geochem. Geophys. Geosyst. 14 , 4608–4622 (2013).

Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339 , 940–943 (2013).

Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114 , 10572–10577 (2017).

Benz, S. A., Bayer, P. & Blum, P. Global patterns of shallow groundwater temperatures. Environ. Res. Lett. 12 , 034005 (2017).

Jasechko, S. & Perrone, D. Global groundwater wells at risk of running dry. Science 372 , 418–421 (2021).

Gridded population of the world, version 4 (GPWv4): population density adjusted to match 2015 revision UN WPP country totals, revision 11. CIESIN https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-adjusted-to-2015-unwpp-country-totals-rev11 (2018).

Gao, J. Global 1-km downscaled population base year and projection grids based on the shared socioeconomic pathways, revision 01. CIESIN https://doi.org/10.7927/q7z9-9r69 (2020).

Gao, J. Downscaling Global Spatial Population Projections from 1/8-Degree to 1-km Grid Cells (NCAR/UCAR, 2017); https://opensky.ucar.edu/islandora/object/technotes:553

Benz, S. Global groundwater warming due to climate change. Borealis https://doi.org/10.5683/SP3/GE4VEQ (2024).

Download references

Acknowledgements

S.A.B. was supported through a Banting postdoctoral fellowship, administered by the government of Canada, and since October 2022 as a Freigeist fellow of the Volkswagen Foundation. B.L.K. was supported through the Canada Research Chairs programme. K.M. was supported by the Margarete von Wrangell programme of the Ministry of Science, Research and the Arts Baden-Württemberg (MWK). We thank C. Tissen for sharing data she collected in her study on groundwater temperature anomalies in Europe 53 and the many other people and agencies collecting groundwater temperature data and making them available through (publicly accessible) databases. Without these data, successful validation of our method would not have been possible.

Open access funding provided by Karlsruher Institut für Technologie (KIT).

Author information

Authors and affiliations.

Centre for Water Resources Studies and Department of Civil and Resource Engineering, Dalhousie University, Halifax, Nova Scotia, Canada

Susanne A. Benz, Rob C. Jamieson & Barret L. Kurylyk

Institute of Photogrammetry and Remote Sensing, Karlsruhe Institute of Technology, Karlsruhe, Germany

Susanne A. Benz

Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina, Northern Territory, Australia

Dylan J. Irvine

School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, Australia

Gabriel C. Rau

Department of Applied Geology, Martin Luther University Halle-Wittenberg, Halle, Germany

Peter Bayer

Institute of Applied Geosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany

Kathrin Menberg & Philipp Blum

Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria

Christian Griebler

You can also search for this author in PubMed   Google Scholar

Contributions

S.A.B., B.L.K. and D.J.I. designed the study. S.A.B., B.L.K., D.J.I., G.C.R., P. Blum, K.M. and P. Bayer developed the methodology. S.A.B. prepared all data and code for analysis and designed figures. D.J.I. designed Fig. 1 . D.J.I. and G.C.R. designed, performed and led the discussion of the analysis in Supplementary Note 1 . S.A.B., B.L.K., D.J.I. and G.C.R. wrote the manuscript. All authors interpreted results and edited the manuscript together.

Corresponding authors

Correspondence to Susanne A. Benz or Barret L. Kurylyk .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Peer review

Peer review information.

Nature Geoscience thanks Maria Klepikova and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Thomas Richardson, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended data fig. 1 depth to the inflection point..

Shown is the depth down to which we can trace the impact of climate change in form of inverted temperature-depth profiles, that is temperature is decreasing with depth and not increasing with depth as expected based on the geothermal gradient. a and b , The depth to the geothermal inflection point in 2020 and 2100 following SSP 2-4.5. c , The depth to the geothermal inflection point in 2100 following SSP 5-8.5.

Extended Data Fig. 2 Change in groundwater temperatures following SSP 2-4.5, 25th and 75th percentile projections.

a – f , Map of the change in annual mean temperature between 2000 and 2100 following SSP 2-4.5 at the depth of the water table (under consideration of its seasonal variation). Temperatures in 2000 are based on the historic CMIP6 scenario. The line in the legend indicates 0 ∘ C. b and e , Annual mean groundwater temperature 5 m below the surface. c and f , Annual mean groundwater temperature 30 m below the surface. a – c , Annual mean groundwater temperature 25th percentile projected changes. d – f , Annual mean groundwater temperature 75th percentile projected changes.

Extended Data Fig. 3 Change in groundwater temperatures between 2000 and 2100 and implications following SSP 5-8.5.

a , Map of the change in annual mean temperature between 2000 and 2100 following SSP 5-8.5 (median projections) at the depth of the water table (under consideration of its seasonal variation). Temperatures in 2000 are based on the historic CMIP6 scenario. The line in the legend indicates 0 ∘ C. b , temperature change 5 m below the surface, and c , 30 m below the surface. d , Change in temperatures between 2000 and 2100 as depth profiles for selected locations. Lines indicate median projections whereas 25th to 75th percentile are presented as shading. e , Accumulated heat down to 100 m depth. The line in the legend indicates 0 MJ per m 2 . f , Map showing locations where maximum monthly GWTs at the thermal gradient inflection point (that is coldest depth) in 2100 are above guidelines for drinking water temperatures (DWTs). g , GWT changes between 2000 and 2100 at stream sites with a groundwater signature.

Extended Data Fig. 4 Change in groundwater temperatures following SSP5-8.5, 25th and 75th percentile projections.

a and d , Map of the change in annual mean temperature between 2000 and 2100 following SSP5-8.5 at the depth of the water table (under consideration of its seasonal variation). Temperatures in 2000 are based on the historic CMIP6 scenario. The line in the legend indicates 0 ∘ C. b and e , Annual mean groundwater temperature 5 m below the surface. c and f , Annual mean groundwater temperature 30 m below the surface. a to c , Annual mean groundwater temperature 25th percentile projected changes. d to f , Annual mean groundwater temperature 75th percentile projected changes.

Extended Data Fig. 5 Depth to the inflection point for 25th and 75th SSP projections.

The depth down to which we can trace the impact of climate change in form of inverted temperature-depth profiles, that is temperature is decreasing with depth and not increasing with depth as expected based on the geothermal gradient. a and b , The inflection point for SSP2-4.5 in 2100 based on 25th percentile or 75th percentile projections, respecively. c and d , The inflection point for SSP5-8.5 in 20100 based on 25th percentile or rather 75th percentile projections.

Extended Data Fig. 6 Implication of groundwater warming for SSP 2-4.5 25th and 75th percentile projections.

a and d , Accumulated heat down to 100 m depth for SSP 2-4.5 25th and 75th percentile projections, respectively. The line in the legend indicates 0 MJ per m 2 . b and e , Locations where maximum monthly GWTs at the thermal gradient inflection point (that is coldest depth) in 2100 are above guidelines for drinking water temperatures (DWTs) for SSP 2-4.5 25th and 75th percentile projections, respectively. c and f , GWT changes between 2000 and 2100 at stream sites with a groundwater signature for SSP 2-4.5 25th and 75th percentile projections, respectively.

Extended Data Fig. 7 Implication of groundwater warming for SSP 5-8.5 25th and 75th percentile projections.

a and d , Accumulated heat down to 100 m depth for SSP 5-8.5 25th and 75th percentile projections, respectively. The line in the legend indicates 0 MJ per m 2 . b and e , Locations where maximum monthly GWTs at the thermal gradient inflection point (that is coldest depth) in 2100 are above guidelines for drinking water temperatures (DWTs) for SSP 5-8.5 25th and 75th percentile projections, respectively. c and f , GWT changes between 2000 and 2100 at stream sites with a groundwater signature for SSP 5-8.5 25th and 75th percentile projections, respectively.

Extended Data Fig. 8 Accumulated heat in the saturated zone (that is, below the water table) down to 100 m depth.

a , Accumulated heat in the saturated zone in 2020. b and c , Accumulated heat in the saturated zone in 2100 following median projections of SSP2-4.5 and SSP5-8.5, respectively.

Extended Data Fig. 9 Accumulated heat in the saturated zone (defined as below the water table down to 100 m depth) and maximum temperatures (based on monthly GWTs) at the depth of the geothermal inflection point showing exceedence of guideline thresholds for drinking water temperatures (DWTs) for 25th and 75th percentile SSP projections.

a and b , Accumulated heat in the saturated zone for SSP 2-4.5 25th and 75th percentile projections, respectively. c and d , Locations where maximum temperatures exceed guideline thresholds for drinking water temperatures (DWTs) for SSP 2-4.5 25th and 75th percentile projections, respectively. e and f , Accumulated heat in the saturated zone for SSP 5-8.5 25th and 75th percentile projections, respectively. g and h , Locations where maximum temperatures exceed guideline thresholds for DWTs for SSP 5-8.5 25th and 75th percentile projections, respectively.

Extended Data Fig. 10 Locations where maximum monthly GWTs at the depth of the water table exceed guideline thresholds for drinking water temperatures (DWTs).

a , Maximum monthly GWTs at the depth of the water table in 2020. b and c , Maximum monthly GWTs at the depth of the water table in 2100 following median projections of SSP2-4.5 and SSP5-8.5, respectively.

Supplementary information

Supplementary information.

Supplementary Notes 1–4, Figs. 1–17 and Tables 1–5.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Benz, S.A., Irvine, D.J., Rau, G.C. et al. Global groundwater warming due to climate change. Nat. Geosci. 17 , 545–551 (2024). https://doi.org/10.1038/s41561-024-01453-x

Download citation

Received : 31 May 2023

Accepted : 12 April 2024

Published : 04 June 2024

Issue Date : June 2024

DOI : https://doi.org/10.1038/s41561-024-01453-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Groundwater warming.

  • Maria Klepikova

Nature Geoscience (2024)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

essay on global warming effect

IMAGES

  1. Essay on Global Warming with Samples (150

    essay on global warming effect

  2. Persuasive Essay Sample: Global Warming

    essay on global warming effect

  3. Issue of Global Warming Argumentative Essay on Samploon.com

    essay on global warming effect

  4. Essay on Global Warming with Samples (150 & 200 words)

    essay on global warming effect

  5. Write A Short Essay On Global Warming

    essay on global warming effect

  6. Problem of Global Warming Argumentative Essay on Samploon.com

    essay on global warming effect

VIDEO

  1. Essay on Global Warming., 100-150 Words

  2. Essay on Global Warming

  3. #essay ‘Global warming’ for 7th class

  4. Global warming # essay # global warming #🥰

  5. CSS Essay Outline On Global Warming

  6. essay on global warming

COMMENTS

  1. Global warming

    Modern global warming is the result of an increase in magnitude of the so-called greenhouse effect, a warming of Earth's surface and lower atmosphere caused by the presence of water vapour, carbon dioxide, methane, nitrous oxides, and other greenhouse gases. In 2014 the IPCC first reported that concentrations of carbon dioxide, methane, and ...

  2. Essay on Effects of Global Warming for Students

    500+ Words Essay on Effects of Global Warming. Global warming refers to climate change that causes an increase in the average of Earth's temperature. Natural events and human influences are believed to be top contributions towards the increase in average temperatures. Global warming is a rise in the surface and atmospheric temperature of the ...

  3. Essay on Global Warming with Samples (150, 250, 500 Words

    These effects will intensify in the coming years, effectively halting species expansion. Furthermore, humans will eventually feel the negative effects of Global Warming. Also Read: Concept of Sustainable Development. Sample Essays on Global Warming. Here are some sample essays on Global Warming: Essay on Global Warming Paragraph in 100 - 150 ...

  4. What are the effects of global warming?

    What are the effects of global warming? One of the most concerning impacts of global warming is the effect warmer temperatures will have on Earth's polar regions and mountain glaciers. The Arctic ...

  5. Global Warming Essay: Causes, Effects, and Prevention

    A. One degree in temperature change may not seem like a lot, but that amount of global warming can cause major crises, displacing millions of people and causing billions of dollars in damage. B. It is a known fact that fossil fuel burning, particularly coal, is the biggest culprit of global warming (MacMillan, 2016).

  6. Essay on Global Warming

    Q.1 List the causes of Global Warming. A.1 There are various causes of global warming both natural and manmade. The natural one includes a greenhouse gas, volcanic eruption, methane gas and more. Next up, manmade causes are deforestation, mining, cattle rearing, fossil fuel burning and more.

  7. Causes and Effects of Climate Change

    Fossil fuels - coal, oil and gas - are by far the largest contributor to global climate change, accounting for over 75 per cent of global greenhouse gas emissions and nearly 90 per cent ...

  8. Global Warming Essay

    A rise in global temperatures can lead to additional changes in the environment, such as rising sea levels. Since an increase in the temperature causes the glaciers and icebergs to melt at a rapid pace, it causes the sea levels to rise. On the Weather: Global Warming causes intense heat waves by significantly increasing the temperature which ...

  9. Effects of Global Warming Essay in English

    This has caused increased flooding, drought, and extreme weather events. In addition, global warming has also caused a loss of biodiversity, as some species are unable to adapt to the changing climate. Global warming has become an increasingly important environmental issue in recent years. The effects of global warming are far-reaching and can ...

  10. Humans are causing global warming

    Today's climate change is driven by human activities. Scientists know that the warming climate is caused by human activities because: They understand how heat-trapping gases like carbon dioxide work in the atmosphere. They know why those gases are increasing in the atmosphere. They have ruled out other possible explanations.

  11. What is global warming, facts and information

    The "greenhouse effect" is the warming that happens when certain gases in Earth's atmosphere trap heat. These gases let in light but keep heat from escaping, like the glass walls of a greenhouse ...

  12. Global Warming 101

    A: Global warming occurs when carbon dioxide (CO 2) and other air pollutants collect in the atmosphere and absorb sunlight and solar radiation that have bounced off the earth's surface. Normally ...

  13. Essay On Global Warming

    Essay On Global Warming in 300 Words. Global warming is a phenomenon where the earth's average temperature rises due to increased amounts of greenhouse gases. Greenhouse gases such as carbon dioxide, methane and ozone trap the incoming radiation from the sun. This effect creates a natural "blanket", which prevents the heat from escaping ...

  14. Causes of global warming, facts and information

    Many people think of global warming and climate change as synonyms, ... Read next: Global Warming Effects. Introducing Nat Geo Kids Book Bundle! Ages 7-12. GET OR GIVE NAT GEO KIDS.

  15. Global Warming

    Global warming is the long-term warming of the planet's overall temperature. Though this warming trend has been going on for a long time, its pace has significantly increased in the last hundred years due to the burning of fossil fuels.As the human population has increased, so has the volume of . fossil fuels burned.. Fossil fuels include coal, oil, and natural gas, and burning them causes ...

  16. Global Warming Definition, Causes, Effects, Impacts, Solutions

    Global Warming is a long-term increase in average global temperature. It is considered a natural phenomenon, but anthropogenic activities on earth, particularly post Industrial Revolution, have led to an increase in the rate of this temperature increase. Various Reports published by the International Panel on Climate Change (IPCC) have time and ...

  17. Causes and Effects of Climate Change

    A warming, rising ocean The ocean soaks up most of the heat from global warming. The rate at which the ocean is warming strongly increased over the past two decades, across all depths of the ocean.

  18. Global Warming Essay in English (Causes and Solutions)

    500 Words Essay On Global Warming. The gradual increase in surface climate caused by various factors is known as global warming. It poses serious risks to both the environment and humanity. Climate change effects include global warming. The main contributor to global warming is the unavoidable release of greenhouse gases.

  19. Causes and effects of global warming

    global warming, Increase in the global average surface temperature resulting from enhancement of the greenhouse effect, primarily by air pollution.In 2007 the UN Intergovernmental Panel on Climate Change forecast that by 2100 global average surface temperatures would increase 3.2-7.2 °F (1.8-4.0 °C), depending on a range of scenarios for greenhouse gas emissions, and stated that it was ...

  20. The Science of Climate Change Explained: Facts, Evidence and Proof

    Average global temperatures have increased by 2.2 degrees Fahrenheit, or 1.2 degrees Celsius, since 1880, with the greatest changes happening in the late 20th century. Land areas have warmed more ...

  21. There's a deeper problem hiding beneath global warming

    Deep warming is a problem hiding beneath global warming, but one that will become prominent if and when we manage to solve the more pressing issue of greenhouse gases. It remains just out of sight, which might explain why scientists only became concerned about the 'waste heat' problem around 15 years ago.

  22. Causes, Effects and Solutions to Global Warming

    Another cause of global warming is greenhouse gases. Greenhouse gases are carbon monoxide and sulphur dioxide it trap the solar heats rays and prevent it from escaping from the surface of the earth. This has cause the temperature of the earth increase. Volcanic eruptions are another issue that causes global warming.

  23. What are the effects of global warming?

    The effects of global warming can be seen and felt across the planet. Global warming, the gradual heating of Earth's surface, oceans and atmosphere, is caused by human activity, primarily the ...

  24. Global Warming Cause and Effect Essay

    Global Warming Cause and Effect Essay. It is believed people's careless use of fossil fuels are responsible for causing Global warming. Environmentalists say people do not realize the serious effects of their own actions. They continue to waste resources and pollute the air despite all the evidence pointing to the effects of such behavior.

  25. Paragraph on the Effects of Global Warming

    In a somber paragraph, the effects of global warming, spurred by climate change, loom large. Deforestation compounds this crisis, releasing carbon dioxide into the atmosphere and disrupting ecosystems. Paragraph Rising temperatures fuel extreme weather events, imperiling lives and livelihoods. Urgent action is imperative to mitigate these consequences and safeguard the planet for future ...

  26. Global groundwater warming due to climate change

    a-d, Recent (2000 to 2020) changes.e-h, Projected (2000-2100) changes.a,e, Map of the change in annual mean temperature at the depth of the water table.The line in the legend indicates 0 °C.