What is the Scientific Method: How does it work and why is it important?

The scientific method is a systematic process involving steps like defining questions, forming hypotheses, conducting experiments, and analyzing data. It minimizes biases and enables replicable research, leading to groundbreaking discoveries like Einstein's theory of relativity, penicillin, and the structure of DNA. This ongoing approach promotes reason, evidence, and the pursuit of truth in science.

Updated on November 18, 2023

What is the Scientific Method: How does it work and why is it important?

Beginning in elementary school, we are exposed to the scientific method and taught how to put it into practice. As a tool for learning, it prepares children to think logically and use reasoning when seeking answers to questions.

Rather than jumping to conclusions, the scientific method gives us a recipe for exploring the world through observation and trial and error. We use it regularly, sometimes knowingly in academics or research, and sometimes subconsciously in our daily lives.

In this article we will refresh our memories on the particulars of the scientific method, discussing where it comes from, which elements comprise it, and how it is put into practice. Then, we will consider the importance of the scientific method, who uses it and under what circumstances.

What is the scientific method?

The scientific method is a dynamic process that involves objectively investigating questions through observation and experimentation . Applicable to all scientific disciplines, this systematic approach to answering questions is more accurately described as a flexible set of principles than as a fixed series of steps.

The following representations of the scientific method illustrate how it can be both condensed into broad categories and also expanded to reveal more and more details of the process. These graphics capture the adaptability that makes this concept universally valuable as it is relevant and accessible not only across age groups and educational levels but also within various contexts.

a graph of the scientific method

Steps in the scientific method

While the scientific method is versatile in form and function, it encompasses a collection of principles that create a logical progression to the process of problem solving:

  • Define a question : Constructing a clear and precise problem statement that identifies the main question or goal of the investigation is the first step. The wording must lend itself to experimentation by posing a question that is both testable and measurable.
  • Gather information and resources : Researching the topic in question to find out what is already known and what types of related questions others are asking is the next step in this process. This background information is vital to gaining a full understanding of the subject and in determining the best design for experiments. 
  • Form a hypothesis : Composing a concise statement that identifies specific variables and potential results, which can then be tested, is a crucial step that must be completed before any experimentation. An imperfection in the composition of a hypothesis can result in weaknesses to the entire design of an experiment.
  • Perform the experiments : Testing the hypothesis by performing replicable experiments and collecting resultant data is another fundamental step of the scientific method. By controlling some elements of an experiment while purposely manipulating others, cause and effect relationships are established.
  • Analyze the data : Interpreting the experimental process and results by recognizing trends in the data is a necessary step for comprehending its meaning and supporting the conclusions. Drawing inferences through this systematic process lends substantive evidence for either supporting or rejecting the hypothesis.
  • Report the results : Sharing the outcomes of an experiment, through an essay, presentation, graphic, or journal article, is often regarded as a final step in this process. Detailing the project's design, methods, and results not only promotes transparency and replicability but also adds to the body of knowledge for future research.
  • Retest the hypothesis : Repeating experiments to see if a hypothesis holds up in all cases is a step that is manifested through varying scenarios. Sometimes a researcher immediately checks their own work or replicates it at a future time, or another researcher will repeat the experiments to further test the hypothesis.

a chart of the scientific method

Where did the scientific method come from?

Oftentimes, ancient peoples attempted to answer questions about the unknown by:

  • Making simple observations
  • Discussing the possibilities with others deemed worthy of a debate
  • Drawing conclusions based on dominant opinions and preexisting beliefs

For example, take Greek and Roman mythology. Myths were used to explain everything from the seasons and stars to the sun and death itself.

However, as societies began to grow through advancements in agriculture and language, ancient civilizations like Egypt and Babylonia shifted to a more rational analysis for understanding the natural world. They increasingly employed empirical methods of observation and experimentation that would one day evolve into the scientific method . 

In the 4th century, Aristotle, considered the Father of Science by many, suggested these elements , which closely resemble the contemporary scientific method, as part of his approach for conducting science:

  • Study what others have written about the subject.
  • Look for the general consensus about the subject.
  • Perform a systematic study of everything even partially related to the topic.

a pyramid of the scientific method

By continuing to emphasize systematic observation and controlled experiments, scholars such as Al-Kindi and Ibn al-Haytham helped expand this concept throughout the Islamic Golden Age . 

In his 1620 treatise, Novum Organum , Sir Francis Bacon codified the scientific method, arguing not only that hypotheses must be tested through experiments but also that the results must be replicated to establish a truth. Coming at the height of the Scientific Revolution, this text made the scientific method accessible to European thinkers like Galileo and Isaac Newton who then put the method into practice.

As science modernized in the 19th century, the scientific method became more formalized, leading to significant breakthroughs in fields such as evolution and germ theory. Today, it continues to evolve, underpinning scientific progress in diverse areas like quantum mechanics, genetics, and artificial intelligence.

Why is the scientific method important?

The history of the scientific method illustrates how the concept developed out of a need to find objective answers to scientific questions by overcoming biases based on fear, religion, power, and cultural norms. This still holds true today.

By implementing this standardized approach to conducting experiments, the impacts of researchers’ personal opinions and preconceived notions are minimized. The organized manner of the scientific method prevents these and other mistakes while promoting the replicability and transparency necessary for solid scientific research.

The importance of the scientific method is best observed through its successes, for example: 

  • “ Albert Einstein stands out among modern physicists as the scientist who not only formulated a theory of revolutionary significance but also had the genius to reflect in a conscious and technical way on the scientific method he was using.” Devising a hypothesis based on the prevailing understanding of Newtonian physics eventually led Einstein to devise the theory of general relativity .
  • Howard Florey “Perhaps the most useful lesson which has come out of the work on penicillin has been the demonstration that success in this field depends on the development and coordinated use of technical methods.” After discovering a mold that prevented the growth of Staphylococcus bacteria, Dr. Alexander Flemimg designed experiments to identify and reproduce it in the lab, thus leading to the development of penicillin .
  • James D. Watson “Every time you understand something, religion becomes less likely. Only with the discovery of the double helix and the ensuing genetic revolution have we had grounds for thinking that the powers held traditionally to be the exclusive property of the gods might one day be ours. . . .” By using wire models to conceive a structure for DNA, Watson and Crick crafted a hypothesis for testing combinations of amino acids, X-ray diffraction images, and the current research in atomic physics, resulting in the discovery of DNA’s double helix structure .

Final thoughts

As the cases exemplify, the scientific method is never truly completed, but rather started and restarted. It gave these researchers a structured process that was easily replicated, modified, and built upon. 

While the scientific method may “end” in one context, it never literally ends. When a hypothesis, design, methods, and experiments are revisited, the scientific method simply picks up where it left off. Each time a researcher builds upon previous knowledge, the scientific method is restored with the pieces of past efforts.

By guiding researchers towards objective results based on transparency and reproducibility, the scientific method acts as a defense against bias, superstition, and preconceived notions. As we embrace the scientific method's enduring principles, we ensure that our quest for knowledge remains firmly rooted in reason, evidence, and the pursuit of truth.

The AJE Team

The AJE Team

See our "Privacy Policy"

PrepScholar

Choose Your Test

  • Search Blogs By Category
  • College Admissions
  • AP and IB Exams
  • GPA and Coursework

The 6 Scientific Method Steps and How to Use Them

author image

General Education

feature_microscope-1

When you’re faced with a scientific problem, solving it can seem like an impossible prospect. There are so many possible explanations for everything we see and experience—how can you possibly make sense of them all? Science has a simple answer: the scientific method.

The scientific method is a method of asking and answering questions about the world. These guiding principles give scientists a model to work through when trying to understand the world, but where did that model come from, and how does it work?

In this article, we’ll define the scientific method, discuss its long history, and cover each of the scientific method steps in detail.

What Is the Scientific Method?

At its most basic, the scientific method is a procedure for conducting scientific experiments. It’s a set model that scientists in a variety of fields can follow, going from initial observation to conclusion in a loose but concrete format.

The number of steps varies, but the process begins with an observation, progresses through an experiment, and concludes with analysis and sharing data. One of the most important pieces to the scientific method is skepticism —the goal is to find truth, not to confirm a particular thought. That requires reevaluation and repeated experimentation, as well as examining your thinking through rigorous study.

There are in fact multiple scientific methods, as the basic structure can be easily modified.  The one we typically learn about in school is the basic method, based in logic and problem solving, typically used in “hard” science fields like biology, chemistry, and physics. It may vary in other fields, such as psychology, but the basic premise of making observations, testing, and continuing to improve a theory from the results remain the same.

body_history

The History of the Scientific Method

The scientific method as we know it today is based on thousands of years of scientific study. Its development goes all the way back to ancient Mesopotamia, Greece, and India.

The Ancient World

In ancient Greece, Aristotle devised an inductive-deductive process , which weighs broad generalizations from data against conclusions reached by narrowing down possibilities from a general statement. However, he favored deductive reasoning, as it identifies causes, which he saw as more important.

Aristotle wrote a great deal about logic and many of his ideas about reasoning echo those found in the modern scientific method, such as ignoring circular evidence and limiting the number of middle terms between the beginning of an experiment and the end. Though his model isn’t the one that we use today, the reliance on logic and thorough testing are still key parts of science today.

The Middle Ages

The next big step toward the development of the modern scientific method came in the Middle Ages, particularly in the Islamic world. Ibn al-Haytham, a physicist from what we now know as Iraq, developed a method of testing, observing, and deducing for his research on vision. al-Haytham was critical of Aristotle’s lack of inductive reasoning, which played an important role in his own research.

Other scientists, including Abū Rayhān al-Bīrūnī, Ibn Sina, and Robert Grosseteste also developed models of scientific reasoning to test their own theories. Though they frequently disagreed with one another and Aristotle, those disagreements and refinements of their methods led to the scientific method we have today.

Following those major developments, particularly Grosseteste’s work, Roger Bacon developed his own cycle of observation (seeing that something occurs), hypothesis (making a guess about why that thing occurs), experimentation (testing that the thing occurs), and verification (an outside person ensuring that the result of the experiment is consistent).

After joining the Franciscan Order, Bacon was granted a special commission to write about science; typically, Friars were not allowed to write books or pamphlets. With this commission, Bacon outlined important tenets of the scientific method, including causes of error, methods of knowledge, and the differences between speculative and experimental science. He also used his own principles to investigate the causes of a rainbow, demonstrating the method’s effectiveness.

Scientific Revolution

Throughout the Renaissance, more great thinkers became involved in devising a thorough, rigorous method of scientific study. Francis Bacon brought inductive reasoning further into the method, whereas Descartes argued that the laws of the universe meant that deductive reasoning was sufficient. Galileo’s research was also inductive reasoning-heavy, as he believed that researchers could not account for every possible variable; therefore, repetition was necessary to eliminate faulty hypotheses and experiments.

All of this led to the birth of the Scientific Revolution , which took place during the sixteenth and seventeenth centuries. In 1660, a group of philosophers and physicians joined together to work on scientific advancement. After approval from England’s crown , the group became known as the Royal Society, which helped create a thriving scientific community and an early academic journal to help introduce rigorous study and peer review.

Previous generations of scientists had touched on the importance of induction and deduction, but Sir Isaac Newton proposed that both were equally important. This contribution helped establish the importance of multiple kinds of reasoning, leading to more rigorous study.

As science began to splinter into separate areas of study, it became necessary to define different methods for different fields. Karl Popper was a leader in this area—he established that science could be subject to error, sometimes intentionally. This was particularly tricky for “soft” sciences like psychology and social sciences, which require different methods. Popper’s theories furthered the divide between sciences like psychology and “hard” sciences like chemistry or physics.

Paul Feyerabend argued that Popper’s methods were too restrictive for certain fields, and followed a less restrictive method hinged on “anything goes,” as great scientists had made discoveries without the Scientific Method. Feyerabend suggested that throughout history scientists had adapted their methods as necessary, and that sometimes it would be necessary to break the rules. This approach suited social and behavioral scientists particularly well, leading to a more diverse range of models for scientists in multiple fields to use.

body_experiment-3

The Scientific Method Steps

Though different fields may have variations on the model, the basic scientific method is as follows:

#1: Make Observations 

Notice something, such as the air temperature during the winter, what happens when ice cream melts, or how your plants behave when you forget to water them.

#2: Ask a Question

Turn your observation into a question. Why is the temperature lower during the winter? Why does my ice cream melt? Why does my toast always fall butter-side down?

This step can also include doing some research. You may be able to find answers to these questions already, but you can still test them!

#3: Make a Hypothesis

A hypothesis is an educated guess of the answer to your question. Why does your toast always fall butter-side down? Maybe it’s because the butter makes that side of the bread heavier.

A good hypothesis leads to a prediction that you can test, phrased as an if/then statement. In this case, we can pick something like, “If toast is buttered, then it will hit the ground butter-first.”

#4: Experiment

Your experiment is designed to test whether your predication about what will happen is true. A good experiment will test one variable at a time —for example, we’re trying to test whether butter weighs down one side of toast, making it more likely to hit the ground first.

The unbuttered toast is our control variable. If we determine the chance that a slice of unbuttered toast, marked with a dot, will hit the ground on a particular side, we can compare those results to our buttered toast to see if there’s a correlation between the presence of butter and which way the toast falls.

If we decided not to toast the bread, that would be introducing a new question—whether or not toasting the bread has any impact on how it falls. Since that’s not part of our test, we’ll stick with determining whether the presence of butter has any impact on which side hits the ground first.

#5: Analyze Data

After our experiment, we discover that both buttered toast and unbuttered toast have a 50/50 chance of hitting the ground on the buttered or marked side when dropped from a consistent height, straight down. It looks like our hypothesis was incorrect—it’s not the butter that makes the toast hit the ground in a particular way, so it must be something else.

Since we didn’t get the desired result, it’s back to the drawing board. Our hypothesis wasn’t correct, so we’ll need to start fresh. Now that you think about it, your toast seems to hit the ground butter-first when it slides off your plate, not when you drop it from a consistent height. That can be the basis for your new experiment.

#6: Communicate Your Results

Good science needs verification. Your experiment should be replicable by other people, so you can put together a report about how you ran your experiment to see if other peoples’ findings are consistent with yours.

This may be useful for class or a science fair. Professional scientists may publish their findings in scientific journals, where other scientists can read and attempt their own versions of the same experiments. Being part of a scientific community helps your experiments be stronger because other people can see if there are flaws in your approach—such as if you tested with different kinds of bread, or sometimes used peanut butter instead of butter—that can lead you closer to a good answer.

body_toast-1

A Scientific Method Example: Falling Toast

We’ve run through a quick recap of the scientific method steps, but let’s look a little deeper by trying again to figure out why toast so often falls butter side down.

#1: Make Observations

At the end of our last experiment, where we learned that butter doesn’t actually make toast more likely to hit the ground on that side, we remembered that the times when our toast hits the ground butter side first are usually when it’s falling off a plate.

The easiest question we can ask is, “Why is that?”

We can actually search this online and find a pretty detailed answer as to why this is true. But we’re budding scientists—we want to see it in action and verify it for ourselves! After all, good science should be replicable, and we have all the tools we need to test out what’s really going on.

Why do we think that buttered toast hits the ground butter-first? We know it’s not because it’s heavier, so we can strike that out. Maybe it’s because of the shape of our plate?

That’s something we can test. We’ll phrase our hypothesis as, “If my toast slides off my plate, then it will fall butter-side down.”

Just seeing that toast falls off a plate butter-side down isn’t enough for us. We want to know why, so we’re going to take things a step further—we’ll set up a slow-motion camera to capture what happens as the toast slides off the plate.

We’ll run the test ten times, each time tilting the same plate until the toast slides off. We’ll make note of each time the butter side lands first and see what’s happening on the video so we can see what’s going on.

When we review the footage, we’ll likely notice that the bread starts to flip when it slides off the edge, changing how it falls in a way that didn’t happen when we dropped it ourselves.

That answers our question, but it’s not the complete picture —how do other plates affect how often toast hits the ground butter-first? What if the toast is already butter-side down when it falls? These are things we can test in further experiments with new hypotheses!

Now that we have results, we can share them with others who can verify our results. As mentioned above, being part of the scientific community can lead to better results. If your results were wildly different from the established thinking about buttered toast, that might be cause for reevaluation. If they’re the same, they might lead others to make new discoveries about buttered toast. At the very least, you have a cool experiment you can share with your friends!

Key Scientific Method Tips

Though science can be complex, the benefit of the scientific method is that it gives you an easy-to-follow means of thinking about why and how things happen. To use it effectively, keep these things in mind!

Don’t Worry About Proving Your Hypothesis

One of the important things to remember about the scientific method is that it’s not necessarily meant to prove your hypothesis right. It’s great if you do manage to guess the reason for something right the first time, but the ultimate goal of an experiment is to find the true reason for your observation to occur, not to prove your hypothesis right.

Good science sometimes means that you’re wrong. That’s not a bad thing—a well-designed experiment with an unanticipated result can be just as revealing, if not more, than an experiment that confirms your hypothesis.

Be Prepared to Try Again

If the data from your experiment doesn’t match your hypothesis, that’s not a bad thing. You’ve eliminated one possible explanation, which brings you one step closer to discovering the truth.

The scientific method isn’t something you’re meant to do exactly once to prove a point. It’s meant to be repeated and adapted to bring you closer to a solution. Even if you can demonstrate truth in your hypothesis, a good scientist will run an experiment again to be sure that the results are replicable. You can even tweak a successful hypothesis to test another factor, such as if we redid our buttered toast experiment to find out whether different kinds of plates affect whether or not the toast falls butter-first. The more we test our hypothesis, the stronger it becomes!

What’s Next?

Want to learn more about the scientific method? These important high school science classes will no doubt cover it in a variety of different contexts.

Test your ability to follow the scientific method using these at-home science experiments for kids !

Need some proof that science is fun? Try making slime

Looking for help with high school? Our one-on-one online tutoring services can help you study for important exams, review challenging material, or plan out big projects. Get matched with a top tutor who is an expert in the subject you're studying!

Trending Now

How to Get Into Harvard and the Ivy League

How to Get a Perfect 4.0 GPA

How to Write an Amazing College Essay

What Exactly Are Colleges Looking For?

ACT vs. SAT: Which Test Should You Take?

When should you take the SAT or ACT?

Get Your Free

PrepScholar

Find Your Target SAT Score

Free Complete Official SAT Practice Tests

How to Get a Perfect SAT Score, by an Expert Full Scorer

Score 800 on SAT Math

Score 800 on SAT Reading and Writing

How to Improve Your Low SAT Score

Score 600 on SAT Math

Score 600 on SAT Reading and Writing

Find Your Target ACT Score

Complete Official Free ACT Practice Tests

How to Get a Perfect ACT Score, by a 36 Full Scorer

Get a 36 on ACT English

Get a 36 on ACT Math

Get a 36 on ACT Reading

Get a 36 on ACT Science

How to Improve Your Low ACT Score

Get a 24 on ACT English

Get a 24 on ACT Math

Get a 24 on ACT Reading

Get a 24 on ACT Science

Stay Informed

Get the latest articles and test prep tips!

Follow us on Facebook (icon)

Melissa Brinks graduated from the University of Washington in 2014 with a Bachelor's in English with a creative writing emphasis. She has spent several years tutoring K-12 students in many subjects, including in SAT prep, to help them prepare for their college education.

Ask a Question Below

Have any questions about this article or other topics? Ask below and we'll reply!

  • A to Z Guides

What Is the Scientific Method?

scientific problem solving definition

The scientific method is a systematic way of conducting experiments or studies so that you can explore the things you observe in the world and answer questions about them. The scientific method, also known as the hypothetico-deductive method, is a series of steps that can help you accurately describe the things you observe or improve your understanding of them.

Ultimately, your goal when you use the scientific method is to:

  • Find a cause-and-effect relationship by asking a question about something you observed
  • Collect as much evidence as you can about what you observed, as this can help you explore the connection between your evidence and what you observed
  • Determine if all your evidence can be combined to answer your question in a way that makes sense

Francis Bacon and René Descartes are usually credited with formalizing the process in the 16th and 17th centuries. The two philosophers argued that research shouldn’t be guided by preset metaphysical ideas of how reality works. They supported the use of inductive reasoning to come up with hypotheses and understand new things about reality.

Scientific Method Steps

The scientific method is a step-by-step problem-solving process. These steps include:

Observe the world around you. This will help you come up with a topic you are interested in and want to learn more about. In many cases, you already have a topic in mind because you have a related question for which you couldn't find an immediate answer.

Either way, you'll start the process by finding out what people before you already know about the topic, as well as any questions that people are still asking about. You may need to look up and read books and articles from academic journals or talk to other people so that you understand as much as you possibly can about your topic. This will help you with your next step.

Ask questions. Asking questions about what you observed and learned from reading and talking to others can help you figure out what the "problem" is. Scientists try to ask questions that are both interesting and specific and can be answered with the help of a fairly easy experiment or series of experiments. Your question should have one part (called a variable) that you can change in your experiment and another variable that you can measure. Your goal is to design an experiment that is a "fair test," which is when all the conditions in the experiment are kept the same except for the one you change (called the experimental or independent variable).

Form a hypothesis and make predictions based on it.  A hypothesis is an educated guess about the relationship between two or more variables in your question. A good hypothesis lets you predict what will happen when you test it in an experiment. Another important feature of a good hypothesis is that, if the hypothesis is wrong, you should be able to show that it's wrong. This is called falsifiability. If your experiment shows that your prediction is true, then your hypothesis is supported by your data.

Test your prediction by doing an experiment or making more observations.  The way you test your prediction depends on what you are studying. The best support comes from an experiment, but in some cases, it's too hard or impossible to change the variables in an experiment. Sometimes, you may need to do descriptive research where you gather more observations instead of doing an experiment. You will carefully gather notes and measurements during your experiments or studies, and you can share them with other people interested in the same question as you. Ideally, you will also repeat your experiment a couple more times because it's possible to get a result by chance, but it's less possible to get the same result more than once by chance.

Draw a conclusion. You will analyze what you already know about your topic from your literature research and the data gathered during your experiment. This will help you decide if the conclusion you draw from your data supports or contradicts your hypothesis. If your results contradict your hypothesis, you can use this observation to form a new hypothesis and make a new prediction. This is why scientific research is ongoing and scientific knowledge is changing all the time. It's very common for scientists to get results that don't support their hypotheses. In fact, you sometimes learn more about the world when your experiments don't support your hypotheses because it leads you to ask more questions. And this time around, you already know that one possible explanation is likely wrong.

Use your results to guide your next steps (iterate). For instance, if your hypothesis is supported, you may do more experiments to confirm it. Or you could come up with a hypothesis about why it works this way and design an experiment to test that. If your hypothesis is not supported, you can come up with another hypothesis and do experiments to test it. You'll rarely get the right hypothesis in one go. Most of the time, you'll have to go back to the hypothesis stage and try again. Every attempt offers you important information that helps you improve your next round of questions, hypotheses, and predictions.

Share your results. Scientific research isn't something you can do on your own; you must work with other people to do it.   You may be able to do an experiment or a series of experiments on your own, but you can't come up with all the ideas or do all the experiments by yourself .

Scientists and researchers usually share information by publishing it in a scientific journal or by presenting it to their colleagues during meetings and scientific conferences. These journals are read and the conferences are attended by other researchers who are interested in the same questions. If there's anything wrong with your hypothesis, prediction, experiment design, or conclusion, other researchers will likely find it and point it out to you.

It can be scary, but it's a critical part of doing scientific research. You must let your research be examined by other researchers who are as interested and knowledgeable about your question as you. This process helps other researchers by pointing out hypotheses that have been proved wrong and why they are wrong. It helps you by identifying flaws in your thinking or experiment design. And if you don't share what you've learned and let other people ask questions about it, it's not helpful to your or anyone else's understanding of what happens in the world.

Scientific Method Example

Here's an everyday example of how you can apply the scientific method to understand more about your world so you can solve your problems in a helpful way.

Let's say you put slices of bread in your toaster and press the button, but nothing happens. Your toaster isn't working, but you can't afford to buy a new one right now. You might be able to rescue it from the trash can if you can figure out what's wrong with it. So, let's figure out what's wrong with your toaster.

Observation. Your toaster isn't working to toast your bread.

Ask a question. In this case, you're asking, "Why isn't my toaster working?" You could even do a bit of preliminary research by looking in the owner's manual for your toaster. The manufacturer has likely tested your toaster model under many conditions, and they may have some ideas for where to start with your hypothesis.

Form a hypothesis and make predictions based on it. Your hypothesis should be a potential explanation or answer to the question that you can test to see if it's correct. One possible explanation that we could test is that the power outlet is broken. Our prediction is that if the outlet is broken, then plugging it into a different outlet should make the toaster work again.

Test your prediction by doing an experiment or making more observations. You plug the toaster into a different outlet and try to toast your bread.

If that works, then your hypothesis is supported by your experimental data. Results that support your hypothesis don't prove it right; they simply suggest that it's a likely explanation. This uncertainty arises because, in the real world, we can't rule out the possibility of mistakes, wrong assumptions, or weird coincidences affecting the results. If the toaster doesn’t work even after plugging it into a different outlet, then your hypothesis is not supported and it's likely the wrong explanation.

Use your results to guide your next steps (iteration). If your toaster worked, you may decide to do further tests to confirm it or revise it. For example, you could plug something else that you know is working into the first outlet to see if that stops working too. That would be further confirmation that your hypothesis is correct.

If your toaster failed to toast when plugged into the second outlet, you need a new hypothesis. For example, your next hypothesis might be that the toaster has a shorted wire. You could test this hypothesis directly if you have the right equipment and training, or you could take it to a repair shop where they could test that hypothesis for you.

Share your results. For this everyday example, you probably wouldn't want to write a paper, but you could share your problem-solving efforts with your housemates or anyone you hire to repair your outlet or help you test if the toaster has a short circuit.

What the Scientific Method Is Used For

The scientific method is useful whenever you need to reason logically about your questions and gather evidence to support your problem-solving efforts. So, you can use it in everyday life to answer many of your questions; however, when most people think of the scientific method, they likely think of using it to:

Describe how nature works . It can be hard to accurately describe how nature works because it's almost impossible to account for every variable that's involved in a natural process. Researchers may not even know about many of the variables that are involved. In some cases, all you can do is make assumptions. But you can use the scientific method to logically disprove wrong assumptions by identifying flaws in the reasoning.

Do scientific research in a laboratory to develop things such as new medicines.

Develop critical thinking skills.  Using the scientific method may help you develop critical thinking in your daily life because you learn to systematically ask questions and gather evidence to find answers. Without logical reasoning, you might be more likely to have a distorted perspective or bias. Bias is the inclination we all have to favor one perspective (usually our own) over another.

The scientific method doesn't perfectly solve the problem of bias, but it does make it harder for an entire field to be biased in the same direction. That's because it's unlikely that all the people working in a field have the same biases. It also helps make the biases of individuals more obvious because if you repeatedly misinterpret information in the same way in multiple experiments or over a period, the other people working on the same question will notice. If you don't correct your bias when others point it out to you, you'll lose your credibility. Other people might then stop believing what you have to say.

Why Is the Scientific Method Important?

When you use the scientific method, your goal is to do research in a fair, unbiased, and repeatable way. The scientific method helps meet these goals because:

It's a systematic approach to problem-solving. It can help you figure out where you're going wrong in your thinking and research if you're not getting helpful answers to your questions. Helpful answers solve problems and keep you moving forward. So, a systematic approach helps you improve your problem-solving abilities if you get stuck.

It can help you solve your problems.  The scientific method helps you isolate problems by focusing on what's important. In addition, it can help you make your solutions better every time you go through the process.

It helps you eliminate (or become aware of) your personal biases.  It can help you limit the influence of your own personal, preconceived notions . A big part of the process is considering what other people already know and think about your question. It also involves sharing what you've learned and letting other people ask about your methods and conclusions. At the end of the process, even if you still think your answer is best, you have considered what other people know and think about the question.

The scientific method is a systematic way of conducting experiments or studies so that you can explore the world around you and answer questions using reason and evidence. It's a step-by-step problem-solving process that involves: (1) observation, (2) asking questions, (3) forming hypotheses and making predictions, (4) testing your hypotheses through experiments or more observations, (5) using what you learned through experiment or observation to guide further investigation, and (6) sharing your results.

Top doctors in ,

Find more top doctors on, related links.

  • Health A-Z News
  • Health A-Z Reference
  • Health A-Z Slideshows
  • Health A-Z Quizzes
  • Health A-Z Videos
  • WebMDRx Savings Card
  • Coronavirus (COVID-19)
  • Hepatitis C
  • Diabetes Warning Signs
  • Rheumatoid Arthritis
  • Morning-After Pill
  • Breast Cancer Screening
  • Psoriatic Arthritis Symptoms
  • Heart Failure
  • Multiple Myeloma
  • Types of Crohn's Disease

scientific problem solving definition

Encyclopedia Britannica

  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • Games & Quizzes
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center

flow chart of scientific method

Scientific Method Example

Illustration by J.R. Bee. ThoughtCo. 

  • Cell Biology
  • Weather & Climate
  • B.A., Biology, Emory University
  • A.S., Nursing, Chattahoochee Technical College

The scientific method is a series of steps that scientific investigators follow to answer specific questions about the natural world. Scientists use the scientific method to make observations, formulate hypotheses , and conduct scientific experiments .

A scientific inquiry starts with an observation. Then, the formulation of a question about what has been observed follows. Next, the scientist will proceed through the remaining steps of the scientific method to end at a conclusion.

The six steps of the scientific method are as follows:

Observation

The first step of the scientific method involves making an observation about something that interests you. Taking an interest in your scientific discovery is important, for example, if you are doing a science project , because you will want to work on something that holds your attention. Your observation can be of anything from plant movement to animal behavior, as long as it is something you want to know more about.​ This step is when you will come up with an idea if you are working on a science project.

Once you have made your observation, you must formulate a question about what you observed. Your question should summarize what it is you are trying to discover or accomplish in your experiment. When stating your question, be as specific as possible.​ For example, if you are doing a project on plants , you may want to know how plants interact with microbes. Your question could be: Do plant spices inhibit bacterial growth ?

The hypothesis is a key component of the scientific process. A hypothesis is an idea that is suggested as an explanation for a natural event, a particular experience, or a specific condition that can be tested through definable experimentation. It states the purpose of your experiment, the variables used, and the predicted outcome of your experiment. It is important to note that a hypothesis must be testable. That means that you should be able to test your hypothesis through experimentation .​ Your hypothesis must either be supported or falsified by your experiment. An example of a good hypothesis is: If there is a relation between listening to music and heart rate, then listening to music will cause a person's resting heart rate to either increase or decrease.

Once you have developed a hypothesis, you must design and conduct an experiment that will test it. You should develop a procedure that states clearly how you plan to conduct your experiment. It is important you include and identify a controlled variable or dependent variable in your procedure. Controls allow us to test a single variable in an experiment because they are unchanged. We can then make observations and comparisons between our controls and our independent variables (things that change in the experiment) to develop an accurate conclusion.​

The results are where you report what happened in the experiment. That includes detailing all observations and data made during your experiment. Most people find it easier to visualize the data by charting or graphing the information.​

Developing a conclusion is the final step of the scientific method. This is where you analyze the results from the experiment and reach a determination about the hypothesis. Did the experiment support or reject your hypothesis? If your hypothesis was supported, great. If not, repeat the experiment or think of ways to improve your procedure.

  • Glycolysis Steps
  • Biology Prefixes and Suffixes: chrom- or chromo-
  • Biology Prefixes and Suffixes: proto-
  • 6 Things You Should Know About Biological Evolution
  • Biology Prefixes and Suffixes: Aer- or Aero-
  • Taxonomy and Organism Classification
  • Homeostasis
  • Biology Prefixes and Suffixes: diplo-
  • The Biology Suffix -lysis
  • Biology Prefixes and Suffixes Index
  • Biology Prefixes and Suffixes: tel- or telo-
  • Parasitism: Definition and Examples
  • Biology Prefixes and Suffixes: Erythr- or Erythro-
  • Biology Prefixes and Suffixes: ana-
  • Biology Prefixes and Suffixes: phago- or phag-
  • Biology Prefixes and Suffixes: -phyll or -phyl

Lucidly exploring and applying philosophy

  • Fun Quizzes
  • Logic Course
  • Ethics Course
  • Philosophy Course

Chapter 6: Scientific Problem Solving

If you prefer a video, click this button:

Scientific Problem Solving Video

Science is a method to discover empirical truths and patterns. Roughly speaking, the scientific method consists of

1) Observing

2) Forming a hypothesis

3) Testing the hypothesis and

4) Interpreting the data to confirm or disconfirm the hypothesis.

The beauty of science is that any scientific claim can be tested if you have the proper knowledge and equipment.

You can also use the scientific method to solve everyday problems: 1) Observe and clearly define the problem, 2) Form a hypothesis, 3) Test it, and 4) Confirm the hypothesis... or disconfirm it and start over.

So, the next time you are cursing in traffic or emotionally reacting to a problem, take a few deep breaths and then use this rational and scientific approach. Slow down, observe, hypothesize, and test.

Explain how you would solve these problems using the four steps of the scientific process.

Example: The fire alarm is not working.

1) Observe/Define the problem: it does not beep when I push the button.

2) Hypothesis: it is caused by a dead battery.

3) Test: try a new battery.

4) Confirm/Disconfirm: the alarm now works. If it does not work, start over by testing another hypothesis like “it has a loose wire.”  

  • My car will not start.
  • My child is having problems reading.
  • I owe $20,000, but only make $10 an hour.
  • My boss is mean. I want him/her to stop using rude language towards me.
  • My significant other is lazy. I want him/her to help out more.

6-8. Identify three problems where you can apply the scientific method.

*Answers will vary.

Application and Value

Science is more of a process than a body of knowledge. In our daily lives, we often emotionally react and jump to quick solutions when faced with problems, but following the four steps of the scientific process can help us slow down and discover more intelligent solutions.

In your study of philosophy, you will explore deeper questions about science. For example, are there any forms of knowledge that are nonscientific? Can science tell us what we ought to do? Can logical and mathematical truths be proven in a scientific way? Does introspection give knowledge even though I cannot scientifically observe your introspective thoughts? Is science truly objective?  These are challenging questions that should help you discover the scope of science without diminishing its awesome power.

But the first step in answering these questions is knowing what science is, and this chapter clarifies its essence. Again, Science is not so much a body of knowledge as it is a method of observing, hypothesizing, and testing. This method is what all the sciences have in common.

Perhaps too science should involve falsifiability, which is a concept explored in the next chapter.

Return to Logic Home                            Next (Chapter 7, Falsifiability)

scientific problem solving definition

Click on my affiliate link above (Logic Book Image) to explore the most popular introduction to logic. If you purchase it, I recommend buying a less expensive older edition.

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Sweepstakes
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Scientific Method Steps in Psychology Research

Steps, Uses, and Key Terms

Verywell / Theresa Chiechi

How do researchers investigate psychological phenomena? They utilize a process known as the scientific method to study different aspects of how people think and behave.

When conducting research, the scientific method steps to follow are:

  • Observe what you want to investigate
  • Ask a research question and make predictions
  • Test the hypothesis and collect data
  • Examine the results and draw conclusions
  • Report and share the results 

This process not only allows scientists to investigate and understand different psychological phenomena but also provides researchers and others a way to share and discuss the results of their studies.

Generally, there are five main steps in the scientific method, although some may break down this process into six or seven steps. An additional step in the process can also include developing new research questions based on your findings.

What Is the Scientific Method?

What is the scientific method and how is it used in psychology?

The scientific method consists of five steps. It is essentially a step-by-step process that researchers can follow to determine if there is some type of relationship between two or more variables.

By knowing the steps of the scientific method, you can better understand the process researchers go through to arrive at conclusions about human behavior.

Scientific Method Steps

While research studies can vary, these are the basic steps that psychologists and scientists use when investigating human behavior.

The following are the scientific method steps:

Step 1. Make an Observation

Before a researcher can begin, they must choose a topic to study. Once an area of interest has been chosen, the researchers must then conduct a thorough review of the existing literature on the subject. This review will provide valuable information about what has already been learned about the topic and what questions remain to be answered.

A literature review might involve looking at a considerable amount of written material from both books and academic journals dating back decades.

The relevant information collected by the researcher will be presented in the introduction section of the final published study results. This background material will also help the researcher with the first major step in conducting a psychology study: formulating a hypothesis.

Step 2. Ask a Question

Once a researcher has observed something and gained some background information on the topic, the next step is to ask a question. The researcher will form a hypothesis, which is an educated guess about the relationship between two or more variables

For example, a researcher might ask a question about the relationship between sleep and academic performance: Do students who get more sleep perform better on tests at school?

In order to formulate a good hypothesis, it is important to think about different questions you might have about a particular topic.

You should also consider how you could investigate the causes. Falsifiability is an important part of any valid hypothesis. In other words, if a hypothesis was false, there needs to be a way for scientists to demonstrate that it is false.

Step 3. Test Your Hypothesis and Collect Data

Once you have a solid hypothesis, the next step of the scientific method is to put this hunch to the test by collecting data. The exact methods used to investigate a hypothesis depend on exactly what is being studied. There are two basic forms of research that a psychologist might utilize: descriptive research or experimental research.

Descriptive research is typically used when it would be difficult or even impossible to manipulate the variables in question. Examples of descriptive research include case studies, naturalistic observation , and correlation studies. Phone surveys that are often used by marketers are one example of descriptive research.

Correlational studies are quite common in psychology research. While they do not allow researchers to determine cause-and-effect, they do make it possible to spot relationships between different variables and to measure the strength of those relationships. 

Experimental research is used to explore cause-and-effect relationships between two or more variables. This type of research involves systematically manipulating an independent variable and then measuring the effect that it has on a defined dependent variable .

One of the major advantages of this method is that it allows researchers to actually determine if changes in one variable actually cause changes in another.

While psychology experiments are often quite complex, a simple experiment is fairly basic but does allow researchers to determine cause-and-effect relationships between variables. Most simple experiments use a control group (those who do not receive the treatment) and an experimental group (those who do receive the treatment).

Step 4. Examine the Results and Draw Conclusions

Once a researcher has designed the study and collected the data, it is time to examine this information and draw conclusions about what has been found.  Using statistics , researchers can summarize the data, analyze the results, and draw conclusions based on this evidence.

So how does a researcher decide what the results of a study mean? Not only can statistical analysis support (or refute) the researcher’s hypothesis; it can also be used to determine if the findings are statistically significant.

When results are said to be statistically significant, it means that it is unlikely that these results are due to chance.

Based on these observations, researchers must then determine what the results mean. In some cases, an experiment will support a hypothesis, but in other cases, it will fail to support the hypothesis.

So what happens if the results of a psychology experiment do not support the researcher's hypothesis? Does this mean that the study was worthless?

Just because the findings fail to support the hypothesis does not mean that the research is not useful or informative. In fact, such research plays an important role in helping scientists develop new questions and hypotheses to explore in the future.

After conclusions have been drawn, the next step is to share the results with the rest of the scientific community. This is an important part of the process because it contributes to the overall knowledge base and can help other scientists find new research avenues to explore.

Step 5. Report the Results

The final step in a psychology study is to report the findings. This is often done by writing up a description of the study and publishing the article in an academic or professional journal. The results of psychological studies can be seen in peer-reviewed journals such as  Psychological Bulletin , the  Journal of Social Psychology ,  Developmental Psychology , and many others.

The structure of a journal article follows a specified format that has been outlined by the  American Psychological Association (APA) . In these articles, researchers:

  • Provide a brief history and background on previous research
  • Present their hypothesis
  • Identify who participated in the study and how they were selected
  • Provide operational definitions for each variable
  • Describe the measures and procedures that were used to collect data
  • Explain how the information collected was analyzed
  • Discuss what the results mean

Why is such a detailed record of a psychological study so important? By clearly explaining the steps and procedures used throughout the study, other researchers can then replicate the results. The editorial process employed by academic and professional journals ensures that each article that is submitted undergoes a thorough peer review, which helps ensure that the study is scientifically sound.

Once published, the study becomes another piece of the existing puzzle of our knowledge base on that topic.

Before you begin exploring the scientific method steps, here's a review of some key terms and definitions that you should be familiar with:

  • Falsifiable : The variables can be measured so that if a hypothesis is false, it can be proven false
  • Hypothesis : An educated guess about the possible relationship between two or more variables
  • Variable : A factor or element that can change in observable and measurable ways
  • Operational definition : A full description of exactly how variables are defined, how they will be manipulated, and how they will be measured

Uses for the Scientific Method

The  goals of psychological studies  are to describe, explain, predict and perhaps influence mental processes or behaviors. In order to do this, psychologists utilize the scientific method to conduct psychological research. The scientific method is a set of principles and procedures that are used by researchers to develop questions, collect data, and reach conclusions.

Goals of Scientific Research in Psychology

Researchers seek not only to describe behaviors and explain why these behaviors occur; they also strive to create research that can be used to predict and even change human behavior.

Psychologists and other social scientists regularly propose explanations for human behavior. On a more informal level, people make judgments about the intentions, motivations , and actions of others on a daily basis.

While the everyday judgments we make about human behavior are subjective and anecdotal, researchers use the scientific method to study psychology in an objective and systematic way. The results of these studies are often reported in popular media, which leads many to wonder just how or why researchers arrived at the conclusions they did.

Examples of the Scientific Method

Now that you're familiar with the scientific method steps, it's useful to see how each step could work with a real-life example.

Say, for instance, that researchers set out to discover what the relationship is between psychotherapy and anxiety .

  • Step 1. Make an observation : The researchers choose to focus their study on adults ages 25 to 40 with generalized anxiety disorder.
  • Step 2. Ask a question : The question they want to answer in their study is: Do weekly psychotherapy sessions reduce symptoms in adults ages 25 to 40 with generalized anxiety disorder?
  • Step 3. Test your hypothesis : Researchers collect data on participants' anxiety symptoms . They work with therapists to create a consistent program that all participants undergo. Group 1 may attend therapy once per week, whereas group 2 does not attend therapy.
  • Step 4. Examine the results : Participants record their symptoms and any changes over a period of three months. After this period, people in group 1 report significant improvements in their anxiety symptoms, whereas those in group 2 report no significant changes.
  • Step 5. Report the results : Researchers write a report that includes their hypothesis, information on participants, variables, procedure, and conclusions drawn from the study. In this case, they say that "Weekly therapy sessions are shown to reduce anxiety symptoms in adults ages 25 to 40."

Of course, there are many details that go into planning and executing a study such as this. But this general outline gives you an idea of how an idea is formulated and tested, and how researchers arrive at results using the scientific method.

Erol A. How to conduct scientific research ? Noro Psikiyatr Ars . 2017;54(2):97-98. doi:10.5152/npa.2017.0120102

University of Minnesota. Psychologists use the scientific method to guide their research .

Shaughnessy, JJ, Zechmeister, EB, & Zechmeister, JS. Research Methods In Psychology . New York: McGraw Hill Education; 2015.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

loading

Problems: Definition, Types, and Evidence

  • Reference work entry
  • pp 2690–2693
  • Cite this reference work entry

scientific problem solving definition

  • Norbert M. Seel 2  

2239 Accesses

1 Citations

Problem solving

A distinction can be made between “task” and “problem.” Generally, a task is a well-defined piece of work that is usually imposed by another person and may be burdensome. A problem is generally considered to be a task, a situation, or person which is difficult to deal with or control due to complexity and intransparency. In everyday language, a problem is a question proposed for solution, a matter stated for examination or proof. In each case, a problem is considered to be a matter which is difficult to solve or settle, a doubtful case, or a complex task involving doubt and uncertainty.

Theoretical Background

The nature of human problem solving has been studied by psychologists over the past hundred years. Beginning with the early experimental work of the Gestalt psychologists in Germany, and continuing through the 1960s and early 1970s, research on problem solving typically operated with relatively simple laboratory problems, such as Duncker’s...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Berry, D. C., & Broadbent, D. E. (1995). Implicit learning in the control of complex systems: A reconsideration of some of the earlier claims. In P. A. Frensch & J. Funke (Eds.), Complex problem solving: The European perspective (pp. 131–150). Hillsdale: Lawrence Erlbaum.

Google Scholar  

Broadbent, D. E. (1977). Levels, hierarchies, and the locus of control. Quarterly Journal of Experimental Psychology, 29 , 181–201.

Article   Google Scholar  

Dörner, D. (1976). Problemlösen als Informationsverarbeitung . Stuttgart: Kohlhammer (Problem solving as information processing).

Dörner, D., Kreuzig, H. W., Reither, F., & Stäudel, T. (1983). Lohhausen. Vom Umgang mit Unbestimmtheit und Komplexität [Lohhausen. The concern with uncertainty and complexity] . Bern: Huber.

Dörner, D. (1989). Die Logik des Misslingens . Hamburg: Rowohlt.

Funke, J. (1992). Wissen über dynamische Systeme: Erwerb, Repräsentation und Anwendung . Berlin: Springer.

Book   Google Scholar  

Funke, J., & Frensch, P. (1995). Complex problem solving research in North America and Europe: An integrative review. Foreign Psychology, 5 , 42–47.

Jonassen, D. H. (1997). Instructional design models for well-structured and ill-structured problem-solving learning outcomes. Educational Technology Research and Development, 45 (1), 65–94.

Newell, A., & Simon, H. A. (1972). Human problem solving . Englewood Cliffs: Prentice Hall.

Newell, A., Shaw, J. C., & Simon, H. A. (1959). A general problem-solving program for a computer. Computers and Automation, 8 (7), 10–16.

Download references

Author information

Authors and affiliations.

Department of Education, University of Freiburg, Rempartstr. 11, 3. OG, Freiburg, 79098, Germany

Prof. Norbert M. Seel ( Faculty of Economics and Behavioral Sciences )

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Norbert M. Seel .

Editor information

Editors and affiliations.

Faculty of Economics and Behavioral Sciences, Department of Education, University of Freiburg, 79085, Freiburg, Germany

Norbert M. Seel

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry.

Seel, N.M. (2012). Problems: Definition, Types, and Evidence. In: Seel, N.M. (eds) Encyclopedia of the Sciences of Learning. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1428-6_914

Download citation

DOI : https://doi.org/10.1007/978-1-4419-1428-6_914

Publisher Name : Springer, Boston, MA

Print ISBN : 978-1-4419-1427-9

Online ISBN : 978-1-4419-1428-6

eBook Packages : Humanities, Social Sciences and Law Reference Module Humanities and Social Sciences Reference Module Education

Share this entry

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

IMAGES

  1. Life skills

    scientific problem solving definition

  2. the scientific method problem

    scientific problem solving definition

  3. Problem-Solving Strategies: Definition and 5 Techniques to Try

    scientific problem solving definition

  4. What is The First Step in The Marketing Research Process?

    scientific problem solving definition

  5. 39 Best Problem-Solving Examples (2024)

    scientific problem solving definition

  6. PPT

    scientific problem solving definition

VIDEO

  1. Vocabulary About Scientific Problem-Solving Preview 2, LevelG. i-Ready Answers

  2. find the area of the circle by using python -problem solving

  3. Launch of PISA Volume III

  4. AI SOLVING THE MOST COMPLEX PROBLEMS

  5. Introduction to the 7 Problem Solving Tools

  6. تهتم مدارس شروق المملكة العالمية بتطبيقات STEM التي يقوم بها الطلاب بتجربة عملية وممتعة

COMMENTS

  1. What is the Scientific Method: How does it work and why is it ...

    The scientific method is a systematic process of asking questions, forming hypotheses, conducting experiments, and analyzing data. The first step is to define a clear and testable question that guides the investigation. Learn more about the origins, principles, and applications of the scientific method.

  2. The 6 Scientific Method Steps and How to Use Them

    Learn what the scientific method is, how it evolved over time, and how to use it to solve problems. The scientific method consists of six steps: observation, question, hypothesis, experiment, analysis, and conclusion.

  3. The Scientific Method: What Is It?

    The scientific method is a systematic way of conducting experiments or studies to explore and answer questions about the world. Learn the steps of the scientific method, how to apply it to your ...

  4. Scientific method

    The scientific method is an empirical method for acquiring knowledge that involves careful observation, rigorous scepticism, and hypothesis testing. Learn about the history, philosophy, and elements of the scientific method, with examples from the discovery of DNA structure.

  5. Scientific method

    The scientific method is a technique used to construct and test hypotheses in science. It involves observing, asking questions, and seeking answers through experiments and tests. Learn how the scientific method is applied in different fields and disciplines.

  6. Steps of the Scientific Method

    Learn how to use the scientific method to explore observations and answer questions. The web page explains the six steps of the scientific method with examples, resources, and frequently asked questions.

  7. Scientific Method: Definition and Examples

    Learn the six steps of the scientific method: observation, question, hypothesis, experiment, results, and conclusion. See how scientists use this process to answer questions about the natural world.

  8. 1.2: Scientific Approach for Solving Problems

    Learn how scientists use the scientific method to make observations, form hypotheses, design experiments, and develop laws and theories. The web page explains the components and steps of the scientific method with examples and exercises.

  9. 1.3: The Scientific Method

    Learn the components and steps of the scientific method, a procedure used by scientists to make observations, form hypotheses, design experiments, and develop laws and theories. See examples of each step and how to classify statements as law, theory, experiment, hypothesis, observation, or qualitative or quantitative observation.

  10. A Guide to Using the Scientific Method in Everyday Life

    Learn how scientists use logical reasoning and empirical data to understand the natural world and how you can apply the scientific method to your own life. This article explains the history, principles, and steps of the scientific method, as well as its limitations and pitfalls.

  11. 1.3: The Science of Biology

    Learn how biologists use the scientific method to study the living world by posing questions, making hypotheses, and testing them with experiments. The scientific method is a logical, rational, problem-solving approach that involves observation, prediction, and analysis.

  12. Chapter 6: Scientific Problem Solving

    Learn how to use the scientific method to solve everyday problems by observing, hypothesizing, testing, and confirming or disconfirming. Explore the value and scope of science as a method of discovering empirical truths and patterns.

  13. The Scientific Method Steps, Uses, and Key Terms

    Learn how psychologists use the scientific method to study human behavior and test hypotheses. The scientific method consists of five steps: observe, ask, test, examine, and report.

  14. Using the Scientific Method to Solve Problems

    The processes of problem-solving and decision-making can be complicated and drawn out. In this article we look at how the scientific method, along with deductive and inductive reasoning can help simplify these processes. ... Using the Scientific Method to Solve Problems How the Scientific Method and Reasoning Can Help Simplify Processes and ...

  15. Identifying a Scientific Problem

    Learn how to identify a scientific problem, conduct an experiment, and choose the most appropriate solution. This lesson is part of a course that prepares for ISTEP+ Grade 6 Science test.

  16. 1.4: The Scientific Method- How Chemists Think

    Learn the steps and components of the scientific method, a procedure used by chemists to make observations, form hypotheses, design experiments, and develop laws and theories. See examples of how the scientific method applies to different topics and questions.

  17. Problem Solving

    Learn about the process, attributes, and dimensions of problem solving, as well as the theoretical models and research on problem typology, problem representation, problem solver, and context. Explore the challenges and opportunities of solving ill-structured, complex, and dynamic problems in various contexts.

  18. Problem Solving in Science Learning

    The traditional teaching of science problem solving involves a considerable amount of drill and practice. Research suggests that these practices do not lead to the development of expert-like problem-solving strategies and that there is little correlation between the number of problems solved (exceeding 1,000 problems in one specific study) and the development of a conceptual understanding.

  19. Problems: Definition, Types, and Evidence

    A problem is a task, situation, or person that is difficult to deal with or control due to complexity and intransparency. Learn how problems are classified, solved, and studied by psychologists and cognitive scientists.