• PRO Courses Guides New Tech Help Pro Expert Videos About wikiHow Pro Upgrade Sign In
  • EDIT Edit this Article
  • EXPLORE Tech Help Pro About Us Random Article Quizzes Request a New Article Community Dashboard This Or That Game Popular Categories Arts and Entertainment Artwork Books Movies Computers and Electronics Computers Phone Skills Technology Hacks Health Men's Health Mental Health Women's Health Relationships Dating Love Relationship Issues Hobbies and Crafts Crafts Drawing Games Education & Communication Communication Skills Personal Development Studying Personal Care and Style Fashion Hair Care Personal Hygiene Youth Personal Care School Stuff Dating All Categories Arts and Entertainment Finance and Business Home and Garden Relationship Quizzes Cars & Other Vehicles Food and Entertaining Personal Care and Style Sports and Fitness Computers and Electronics Health Pets and Animals Travel Education & Communication Hobbies and Crafts Philosophy and Religion Work World Family Life Holidays and Traditions Relationships Youth
  • Browse Articles
  • Learn Something New
  • Quizzes Hot
  • This Or That Game New
  • Train Your Brain
  • Explore More
  • Support wikiHow
  • About wikiHow
  • Log in / Sign up
  • Education and Communications
  • College University and Postgraduate
  • Academic Writing
  • Research Papers

How to Write and Publish Your Research in a Journal

Last Updated: February 26, 2024 Fact Checked

Choosing a Journal

Writing the research paper, editing & revising your paper, submitting your paper, navigating the peer review process, research paper help.

This article was co-authored by Matthew Snipp, PhD and by wikiHow staff writer, Cheyenne Main . C. Matthew Snipp is the Burnet C. and Mildred Finley Wohlford Professor of Humanities and Sciences in the Department of Sociology at Stanford University. He is also the Director for the Institute for Research in the Social Science’s Secure Data Center. He has been a Research Fellow at the U.S. Bureau of the Census and a Fellow at the Center for Advanced Study in the Behavioral Sciences. He has published 3 books and over 70 articles and book chapters on demography, economic development, poverty and unemployment. He is also currently serving on the National Institute of Child Health and Development’s Population Science Subcommittee. He holds a Ph.D. in Sociology from the University of Wisconsin—Madison. There are 13 references cited in this article, which can be found at the bottom of the page. This article has been fact-checked, ensuring the accuracy of any cited facts and confirming the authority of its sources. This article has been viewed 697,662 times.

Publishing a research paper in a peer-reviewed journal allows you to network with other scholars, get your name and work into circulation, and further refine your ideas and research. Before submitting your paper, make sure it reflects all the work you’ve done and have several people read over it and make comments. Keep reading to learn how you can choose a journal, prepare your work for publication, submit it, and revise it after you get a response back.

Things You Should Know

  • Create a list of journals you’d like to publish your work in and choose one that best aligns with your topic and your desired audience.
  • Prepare your manuscript using the journal’s requirements and ask at least 2 professors or supervisors to review your paper.
  • Write a cover letter that “sells” your manuscript, says how your research adds to your field and explains why you chose the specific journal you’re submitting to.

Step 1 Create a list of journals you’d like to publish your work in.

  • Ask your professors or supervisors for well-respected journals that they’ve had good experiences publishing with and that they read regularly.
  • Many journals also only accept specific formats, so by choosing a journal before you start, you can write your article to their specifications and increase your chances of being accepted.
  • If you’ve already written a paper you’d like to publish, consider whether your research directly relates to a hot topic or area of research in the journals you’re looking into.

Step 2 Look at each journal’s audience, exposure, policies, and procedures.

  • Review the journal’s peer review policies and submission process to see if you’re comfortable creating or adjusting your work according to their standards.
  • Open-access journals can increase your readership because anyone can access them.

Step 1 Craft an effective introduction with a thesis statement.

  • Scientific research papers: Instead of a “thesis,” you might write a “research objective” instead. This is where you state the purpose of your research.
  • “This paper explores how George Washington’s experiences as a young officer may have shaped his views during difficult circumstances as a commanding officer.”
  • “This paper contends that George Washington’s experiences as a young officer on the 1750s Pennsylvania frontier directly impacted his relationship with his Continental Army troops during the harsh winter at Valley Forge.”

Step 2 Write the literature review and the body of your paper.

  • Scientific research papers: Include a “materials and methods” section with the step-by-step process you followed and the materials you used. [5] X Research source
  • Read other research papers in your field to see how they’re written. Their format, writing style, subject matter, and vocabulary can help guide your own paper. [6] X Research source

Step 3 Write your conclusion that ties back to your thesis or research objective.

  • If you’re writing about George Washington’s experiences as a young officer, you might emphasize how this research changes our perspective of the first president of the U.S.
  • Link this section to your thesis or research objective.
  • If you’re writing a paper about ADHD, you might discuss other applications for your research.

Step 4 Write an abstract that describes what your paper is about.

  • Scientific research papers: You might include your research and/or analytical methods, your main findings or results, and the significance or implications of your research.
  • Try to get as many people as you can to read over your abstract and provide feedback before you submit your paper to a journal.

Step 1 Prepare your manuscript according to the journal’s requirements.

  • They might also provide templates to help you structure your manuscript according to their specific guidelines. [11] X Research source

Step 2 Ask 2 colleagues to review your paper and revise it with their notes.

  • Not all journal reviewers will be experts on your specific topic, so a non-expert “outsider’s perspective” can be valuable.

Step 1 Check your sources for plagiarism and identify 5 to 6 keywords.

  • If you have a paper on the purification of wastewater with fungi, you might use both the words “fungi” and “mushrooms.”
  • Use software like iThenticate, Turnitin, or PlagScan to check for similarities between the submitted article and published material available online. [15] X Research source

Step 2 Write a cover letter explaining why you chose their journal.

  • Header: Address the editor who will be reviewing your manuscript by their name, include the date of submission, and the journal you are submitting to.
  • First paragraph: Include the title of your manuscript, the type of paper it is (like review, research, or case study), and the research question you wanted to answer and why.
  • Second paragraph: Explain what was done in your research, your main findings, and why they are significant to your field.
  • Third paragraph: Explain why the journal’s readers would be interested in your work and why your results are important to your field.
  • Conclusion: State the author(s) and any journal requirements that your work complies with (like ethical standards”).
  • “We confirm that this manuscript has not been published elsewhere and is not under consideration by another journal.”
  • “All authors have approved the manuscript and agree with its submission to [insert the name of the target journal].”

Step 3 Submit your article according to the journal’s submission guidelines.

  • Submit your article to only one journal at a time.
  • When submitting online, use your university email account. This connects you with a scholarly institution, which can add credibility to your work.

Step 1 Try not to panic when you get the journal’s initial response.

  • Accept: Only minor adjustments are needed, based on the provided feedback by the reviewers. A first submission will rarely be accepted without any changes needed.
  • Revise and Resubmit: Changes are needed before publication can be considered, but the journal is still very interested in your work.
  • Reject and Resubmit: Extensive revisions are needed. Your work may not be acceptable for this journal, but they might also accept it if significant changes are made.
  • Reject: The paper isn’t and won’t be suitable for this publication, but that doesn’t mean it might not work for another journal.

Step 2 Revise your paper based on the reviewers’ feedback.

  • Try organizing the reviewer comments by how easy it is to address them. That way, you can break your revisions down into more manageable parts.
  • If you disagree with a comment made by a reviewer, try to provide an evidence-based explanation when you resubmit your paper.

Step 3 Resubmit to the same journal or choose another from your list.

  • If you’re resubmitting your paper to the same journal, include a point-by-point response paper that talks about how you addressed all of the reviewers’ comments in your revision. [22] X Research source
  • If you’re not sure which journal to submit to next, you might be able to ask the journal editor which publications they recommend.

publishing my research paper

Expert Q&A

You might also like.

Develop a Questionnaire for Research

  • If reviewers suspect that your submitted manuscript plagiarizes another work, they may refer to a Committee on Publication Ethics (COPE) flowchart to see how to move forward. [23] X Research source Thanks Helpful 0 Not Helpful 0

publishing my research paper

  • ↑ https://www.wiley.com/en-us/network/publishing/research-publishing/choosing-a-journal/6-steps-to-choosing-the-right-journal-for-your-research-infographic
  • ↑ https://link.springer.com/article/10.1007/s13187-020-01751-z
  • ↑ https://libguides.unomaha.edu/c.php?g=100510&p=651627
  • ↑ http://www.canberra.edu.au/library/start-your-research/research_help/publishing-research
  • ↑ https://writingcenter.fas.harvard.edu/conclusions
  • ↑ https://writing.wisc.edu/handbook/assignments/writing-an-abstract-for-your-research-paper/
  • ↑ https://www.springer.com/gp/authors-editors/book-authors-editors/your-publication-journey/manuscript-preparation
  • ↑ https://apus.libanswers.com/writing/faq/2391
  • ↑ https://academicguides.waldenu.edu/library/keyword/search-strategy
  • ↑ https://ifis.libguides.com/journal-publishing-guide/submitting-your-paper
  • ↑ https://www.springer.com/kr/authors-editors/authorandreviewertutorials/submitting-to-a-journal-and-peer-review/cover-letters/10285574
  • ↑ http://www.apa.org/monitor/sep02/publish.aspx
  • ↑ Matthew Snipp, PhD. Research Fellow, U.S. Bureau of the Census. Expert Interview. 26 March 2020.

About This Article

Matthew Snipp, PhD

To publish a research paper, ask a colleague or professor to review your paper and give you feedback. Once you've revised your work, familiarize yourself with different academic journals so that you can choose the publication that best suits your paper. Make sure to look at the "Author's Guide" so you can format your paper according to the guidelines for that publication. Then, submit your paper and don't get discouraged if it is not accepted right away. You may need to revise your paper and try again. To learn about the different responses you might get from journals, see our reviewer's explanation below. Did this summary help you? Yes No

  • Send fan mail to authors

Reader Success Stories

RAMDEV GOHIL

RAMDEV GOHIL

Oct 16, 2017

Did this article help you?

publishing my research paper

David Okandeji

Oct 23, 2019

Revati Joshi

Revati Joshi

Feb 13, 2017

Shahzad Khan

Shahzad Khan

Jul 1, 2017

Oma Wright

Apr 7, 2017

Am I a Narcissist or an Empath Quiz

Featured Articles

Invest in Yourself

Trending Articles

How to Set Boundaries with Texting

Watch Articles

Fold Boxer Briefs

  • Terms of Use
  • Privacy Policy
  • Do Not Sell or Share My Info
  • Not Selling Info

Get all the best how-tos!

Sign up for wikiHow's weekly email newsletter

  • Privacy Policy

Buy Me a Coffee

Research Method

Home » How to Publish a Research Paper – Step by Step Guide

How to Publish a Research Paper – Step by Step Guide

Table of Contents

How to Publish a Research Paper

Publishing a research paper is an important step for researchers to disseminate their findings to a wider audience and contribute to the advancement of knowledge in their field. Whether you are a graduate student, a postdoctoral fellow, or an established researcher, publishing a paper requires careful planning, rigorous research, and clear writing. In this process, you will need to identify a research question , conduct a thorough literature review , design a methodology, analyze data, and draw conclusions. Additionally, you will need to consider the appropriate journals or conferences to submit your work to and adhere to their guidelines for formatting and submission. In this article, we will discuss some ways to publish your Research Paper.

How to Publish a Research Paper

To Publish a Research Paper follow the guide below:

  • Conduct original research : Conduct thorough research on a specific topic or problem. Collect data, analyze it, and draw conclusions based on your findings.
  • Write the paper : Write a detailed paper describing your research. It should include an abstract, introduction, literature review, methodology, results, discussion, and conclusion.
  • Choose a suitable journal or conference : Look for a journal or conference that specializes in your research area. You can check their submission guidelines to ensure your paper meets their requirements.
  • Prepare your submission: Follow the guidelines and prepare your submission, including the paper, abstract, cover letter, and any other required documents.
  • Submit the paper: Submit your paper online through the journal or conference website. Make sure you meet the submission deadline.
  • Peer-review process : Your paper will be reviewed by experts in the field who will provide feedback on the quality of your research, methodology, and conclusions.
  • Revisions : Based on the feedback you receive, revise your paper and resubmit it.
  • Acceptance : Once your paper is accepted, you will receive a notification from the journal or conference. You may need to make final revisions before the paper is published.
  • Publication : Your paper will be published online or in print. You can also promote your work through social media or other channels to increase its visibility.

How to Choose Journal for Research Paper Publication

Here are some steps to follow to help you select an appropriate journal:

  • Identify your research topic and audience : Your research topic and intended audience should guide your choice of journal. Identify the key journals in your field of research and read the scope and aim of the journal to determine if your paper is a good fit.
  • Analyze the journal’s impact and reputation : Check the impact factor and ranking of the journal, as well as its acceptance rate and citation frequency. A high-impact journal can give your paper more visibility and credibility.
  • Consider the journal’s publication policies : Look for the journal’s publication policies such as the word count limit, formatting requirements, open access options, and submission fees. Make sure that you can comply with the requirements and that the journal is in line with your publication goals.
  • Look at recent publications : Review recent issues of the journal to evaluate whether your paper would fit in with the journal’s current content and style.
  • Seek advice from colleagues and mentors: Ask for recommendations and suggestions from your colleagues and mentors in your field, especially those who have experience publishing in the same or similar journals.
  • Be prepared to make changes : Be prepared to revise your paper according to the requirements and guidelines of the chosen journal. It is also important to be open to feedback from the editor and reviewers.

List of Journals for Research Paper Publications

There are thousands of academic journals covering various fields of research. Here are some of the most popular ones, categorized by field:

General/Multidisciplinary

  • Nature: https://www.nature.com/
  • Science: https://www.sciencemag.org/
  • PLOS ONE: https://journals.plos.org/plosone/
  • Proceedings of the National Academy of Sciences (PNAS): https://www.pnas.org/
  • The Lancet: https://www.thelancet.com/
  • JAMA (Journal of the American Medical Association): https://jamanetwork.com/journals/jama

Social Sciences/Humanities

  • Journal of Personality and Social Psychology: https://www.apa.org/pubs/journals/psp
  • Journal of Consumer Research: https://www.journals.uchicago.edu/journals/jcr
  • Journal of Educational Psychology: https://www.apa.org/pubs/journals/edu
  • Journal of Applied Psychology: https://www.apa.org/pubs/journals/apl
  • Journal of Communication: https://academic.oup.com/joc
  • American Journal of Political Science: https://ajps.org/
  • Journal of International Business Studies: https://www.jibs.net/
  • Journal of Marketing Research: https://www.ama.org/journal-of-marketing-research/

Natural Sciences

  • Journal of Biological Chemistry: https://www.jbc.org/
  • Cell: https://www.cell.com/
  • Science Advances: https://advances.sciencemag.org/
  • Chemical Reviews: https://pubs.acs.org/journal/chreay
  • Angewandte Chemie: https://onlinelibrary.wiley.com/journal/15213765
  • Physical Review Letters: https://journals.aps.org/prl/
  • Journal of Geophysical Research: https://agupubs.onlinelibrary.wiley.com/journal/2156531X
  • Journal of High Energy Physics: https://link.springer.com/journal/13130

Engineering/Technology

  • IEEE Transactions on Neural Networks and Learning Systems: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5962385
  • IEEE Transactions on Power Systems: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=59
  • IEEE Transactions on Medical Imaging: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=42
  • IEEE Transactions on Control Systems Technology: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=87
  • Journal of Engineering Mechanics: https://ascelibrary.org/journal/jenmdt
  • Journal of Materials Science: https://www.springer.com/journal/10853
  • Journal of Chemical Engineering of Japan: https://www.jstage.jst.go.jp/browse/jcej
  • Journal of Mechanical Design: https://asmedigitalcollection.asme.org/mechanicaldesign

Medical/Health Sciences

  • New England Journal of Medicine: https://www.nejm.org/
  • The BMJ (formerly British Medical Journal): https://www.bmj.com/
  • Journal of the American Medical Association (JAMA): https://jamanetwork.com/journals/jama
  • Annals of Internal Medicine: https://www.acpjournals.org/journal/aim
  • American Journal of Epidemiology: https://academic.oup.com/aje
  • Journal of Clinical Oncology: https://ascopubs.org/journal/jco
  • Journal of Infectious Diseases: https://academic.oup.com/jid

List of Conferences for Research Paper Publications

There are many conferences that accept research papers for publication. The specific conferences you should consider will depend on your field of research. Here are some suggestions for conferences in a few different fields:

Computer Science and Information Technology:

  • IEEE International Conference on Computer Communications (INFOCOM): https://www.ieee-infocom.org/
  • ACM SIGCOMM Conference on Data Communication: https://conferences.sigcomm.org/sigcomm/
  • IEEE Symposium on Security and Privacy (SP): https://www.ieee-security.org/TC/SP/
  • ACM Conference on Computer and Communications Security (CCS): https://www.sigsac.org/ccs/
  • ACM Conference on Human-Computer Interaction (CHI): https://chi2022.acm.org/

Engineering:

  • IEEE International Conference on Robotics and Automation (ICRA): https://www.ieee-icra.org/
  • International Conference on Mechanical and Aerospace Engineering (ICMAE): http://www.icmae.org/
  • International Conference on Civil and Environmental Engineering (ICCEE): http://www.iccee.org/
  • International Conference on Materials Science and Engineering (ICMSE): http://www.icmse.org/
  • International Conference on Energy and Power Engineering (ICEPE): http://www.icepe.org/

Natural Sciences:

  • American Chemical Society National Meeting & Exposition: https://www.acs.org/content/acs/en/meetings/national-meeting.html
  • American Physical Society March Meeting: https://www.aps.org/meetings/march/
  • International Conference on Environmental Science and Technology (ICEST): http://www.icest.org/
  • International Conference on Natural Science and Environment (ICNSE): http://www.icnse.org/
  • International Conference on Life Science and Biological Engineering (LSBE): http://www.lsbe.org/

Social Sciences:

  • Annual Meeting of the American Sociological Association (ASA): https://www.asanet.org/annual-meeting-2022
  • International Conference on Social Science and Humanities (ICSSH): http://www.icssh.org/
  • International Conference on Psychology and Behavioral Sciences (ICPBS): http://www.icpbs.org/
  • International Conference on Education and Social Science (ICESS): http://www.icess.org/
  • International Conference on Management and Information Science (ICMIS): http://www.icmis.org/

How to Publish a Research Paper in Journal

Publishing a research paper in a journal is a crucial step in disseminating scientific knowledge and contributing to the field. Here are the general steps to follow:

  • Choose a research topic : Select a topic of your interest and identify a research question or problem that you want to investigate. Conduct a literature review to identify the gaps in the existing knowledge that your research will address.
  • Conduct research : Develop a research plan and methodology to collect data and conduct experiments. Collect and analyze data to draw conclusions that address the research question.
  • Write a paper: Organize your findings into a well-structured paper with clear and concise language. Your paper should include an introduction, literature review, methodology, results, discussion, and conclusion. Use academic language and provide references for your sources.
  • Choose a journal: Choose a journal that is relevant to your research topic and audience. Consider factors such as impact factor, acceptance rate, and the reputation of the journal.
  • Follow journal guidelines : Review the submission guidelines and formatting requirements of the journal. Follow the guidelines carefully to ensure that your paper meets the journal’s requirements.
  • Submit your paper : Submit your paper to the journal through the online submission system or by email. Include a cover letter that briefly explains the significance of your research and why it is suitable for the journal.
  • Wait for reviews: Your paper will be reviewed by experts in the field. Be prepared to address their comments and make revisions to your paper.
  • Revise and resubmit: Make revisions to your paper based on the reviewers’ comments and resubmit it to the journal. If your paper is accepted, congratulations! If not, consider revising and submitting it to another journal.
  • Address reviewer comments : Reviewers may provide comments and suggestions for revisions to your paper. Address these comments carefully and thoughtfully to improve the quality of your paper.
  • Submit the final version: Once your revisions are complete, submit the final version of your paper to the journal. Be sure to follow any additional formatting guidelines and requirements provided by the journal.
  • Publication : If your paper is accepted, it will be published in the journal. Some journals provide online publication while others may publish a print version. Be sure to cite your published paper in future research and communicate your findings to the scientific community.

How to Publish a Research Paper for Students

Here are some steps you can follow to publish a research paper as an Under Graduate or a High School Student:

  • Select a topic: Choose a topic that is relevant and interesting to you, and that you have a good understanding of.
  • Conduct research : Gather information and data on your chosen topic through research, experiments, surveys, or other means.
  • Write the paper : Start with an outline, then write the introduction, methods, results, discussion, and conclusion sections of the paper. Be sure to follow any guidelines provided by your instructor or the journal you plan to submit to.
  • Edit and revise: Review your paper for errors in spelling, grammar, and punctuation. Ask a peer or mentor to review your paper and provide feedback for improvement.
  • Choose a journal : Look for journals that publish papers in your field of study and that are appropriate for your level of research. Some popular journals for students include PLOS ONE, Nature, and Science.
  • Submit the paper: Follow the submission guidelines for the journal you choose, which typically include a cover letter, abstract, and formatting requirements. Be prepared to wait several weeks to months for a response.
  • Address feedback : If your paper is accepted with revisions, address the feedback from the reviewers and resubmit your paper. If your paper is rejected, review the feedback and consider revising and resubmitting to a different journal.

How to Publish a Research Paper for Free

Publishing a research paper for free can be challenging, but it is possible. Here are some steps you can take to publish your research paper for free:

  • Choose a suitable open-access journal: Look for open-access journals that are relevant to your research area. Open-access journals allow readers to access your paper without charge, so your work will be more widely available.
  • Check the journal’s reputation : Before submitting your paper, ensure that the journal is reputable by checking its impact factor, publication history, and editorial board.
  • Follow the submission guidelines : Every journal has specific guidelines for submitting papers. Make sure to follow these guidelines carefully to increase the chances of acceptance.
  • Submit your paper : Once you have completed your research paper, submit it to the journal following their submission guidelines.
  • Wait for the review process: Your paper will undergo a peer-review process, where experts in your field will evaluate your work. Be patient during this process, as it can take several weeks or even months.
  • Revise your paper : If your paper is rejected, don’t be discouraged. Revise your paper based on the feedback you receive from the reviewers and submit it to another open-access journal.
  • Promote your research: Once your paper is published, promote it on social media and other online platforms. This will increase the visibility of your work and help it reach a wider audience.

Journals and Conferences for Free Research Paper publications

Here are the websites of the open-access journals and conferences mentioned:

Open-Access Journals:

  • PLOS ONE – https://journals.plos.org/plosone/
  • BMC Research Notes – https://bmcresnotes.biomedcentral.com/
  • Frontiers in… – https://www.frontiersin.org/
  • Journal of Open Research Software – https://openresearchsoftware.metajnl.com/
  • PeerJ – https://peerj.com/

Conferences:

  • IEEE Global Communications Conference (GLOBECOM) – https://globecom2022.ieee-globecom.org/
  • IEEE International Conference on Computer Communications (INFOCOM) – https://infocom2022.ieee-infocom.org/
  • IEEE International Conference on Data Mining (ICDM) – https://www.ieee-icdm.org/
  • ACM SIGCOMM Conference on Data Communication (SIGCOMM) – https://conferences.sigcomm.org/sigcomm/
  • ACM Conference on Computer and Communications Security (CCS) – https://www.sigsac.org/ccs/CCS2022/

Importance of Research Paper Publication

Research paper publication is important for several reasons, both for individual researchers and for the scientific community as a whole. Here are some reasons why:

  • Advancing scientific knowledge : Research papers provide a platform for researchers to present their findings and contribute to the body of knowledge in their field. These papers often contain novel ideas, experimental data, and analyses that can help to advance scientific understanding.
  • Building a research career : Publishing research papers is an essential component of building a successful research career. Researchers are often evaluated based on the number and quality of their publications, and having a strong publication record can increase one’s chances of securing funding, tenure, or a promotion.
  • Peer review and quality control: Publication in a peer-reviewed journal means that the research has been scrutinized by other experts in the field. This peer review process helps to ensure the quality and validity of the research findings.
  • Recognition and visibility : Publishing a research paper can bring recognition and visibility to the researchers and their work. It can lead to invitations to speak at conferences, collaborations with other researchers, and media coverage.
  • Impact on society : Research papers can have a significant impact on society by informing policy decisions, guiding clinical practice, and advancing technological innovation.

Advantages of Research Paper Publication

There are several advantages to publishing a research paper, including:

  • Recognition: Publishing a research paper allows researchers to gain recognition for their work, both within their field and in the academic community as a whole. This can lead to new collaborations, invitations to conferences, and other opportunities to share their research with a wider audience.
  • Career advancement : A strong publication record can be an important factor in career advancement, particularly in academia. Publishing research papers can help researchers secure funding, grants, and promotions.
  • Dissemination of knowledge : Research papers are an important way to share new findings and ideas with the broader scientific community. By publishing their research, scientists can contribute to the collective body of knowledge in their field and help advance scientific understanding.
  • Feedback and peer review : Publishing a research paper allows other experts in the field to provide feedback on the research, which can help improve the quality of the work and identify potential flaws or limitations. Peer review also helps ensure that research is accurate and reliable.
  • Citation and impact : Published research papers can be cited by other researchers, which can help increase the impact and visibility of the research. High citation rates can also help establish a researcher’s reputation and credibility within their field.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Research Paper Citation

How to Cite Research Paper – All Formats and...

Delimitations

Delimitations in Research – Types, Examples and...

Research Paper Formats

Research Paper Format – Types, Examples and...

Research Design

Research Design – Types, Methods and Examples

Research Paper Title

Research Paper Title – Writing Guide and Example

Research Paper Introduction

Research Paper Introduction – Writing Guide and...

Home → Get Published → How to Publish a Research Paper: A Step-by-Step Guide

How to Publish a Research Paper: A Step-by-Step Guide

Picture of Jordan Kruszynski

Jordan Kruszynski

  • January 4, 2024

publishing my research paper

You’re in academia.

You’re going steady.

Your research is going well and you begin to wonder: ‘ How exactly do I get a research paper published?’

If this is the question on your lips, then this step-by-step guide is the one for you. We’ll be walking you through the whole process of how to publish a research paper.

Publishing a research paper is a significant milestone for researchers and academics, as it allows you to share your findings, contribute to your field of study, and start to gain serious recognition within the wider academic community. So, want to know how to publish a research paper? By following our guide, you’ll get a firm grasp of the steps involved in this process, giving you the best chance of successfully navigating the publishing process and getting your work out there.

Understanding the Publishing Process

To begin, it’s crucial to understand that getting a research paper published is a multi-step process. From beginning to end, it could take as little as 2 months before you see your paper nestled in the pages of your chosen journal. On the other hand, it could take as long as a year .

Below, we set out the steps before going into more detail on each one. Getting a feel for these steps will help you to visualise what lies ahead, and prepare yourself for each of them in turn. It’s important to remember that you won’t actually have control over every step – in fact, some of them will be decided by people you’ll probably never meet. However, knowing which parts of the process are yours to decide will allow you to adjust your approach and attitude accordingly.

Each of the following stages will play a vital role in the eventual publication of your paper:

  • Preparing Your Research Paper
  • Finding the Right Journal
  • Crafting a Strong Manuscript
  • Navigating the Peer-Review Process
  • Submitting Your Paper
  • Dealing with Rejections and Revising Your Paper

Step 1: Preparing Your Research Paper

It all starts here. The quality and content of your research paper is of fundamental importance if you want to get it published. This step will be different for every researcher depending on the nature of your research, but if you haven’t yet settled on a topic, then consider the following advice:

  • Choose an interesting and relevant topic that aligns with current trends in your field. If your research touches on the passions and concerns of your academic peers or wider society, it may be more likely to capture attention and get published successfully.
  • Conduct a comprehensive literature review (link to lit. review article once it’s published) to identify the state of existing research and any knowledge gaps within it. Aiming to fill a clear gap in the knowledge of your field is a great way to increase the practicality of your research and improve its chances of getting published.
  • Structure your paper in a clear and organised manner, including all the necessary sections such as title, abstract, introduction (link to the ‘how to write a research paper intro’ article once it’s published) , methodology, results, discussion, and conclusion.
  • Adhere to the formatting guidelines provided by your target journal to ensure that your paper is accepted as viable for publishing. More on this in the next section…

Step 2: Finding the Right Journal

Understanding how to publish a research paper involves selecting the appropriate journal for your work. This step is critical for successful publication, and you should take several factors into account when deciding which journal to apply for:

  • Conduct thorough research to identify journals that specialise in your field of study and have published similar research. Naturally, if you submit a piece of research in molecular genetics to a journal that specialises in geology, you won’t be likely to get very far.
  • Consider factors such as the journal’s scope, impact factor, and target audience. Today there is a wide array of journals to choose from, including traditional and respected print journals, as well as numerous online, open-access endeavours. Some, like Nature , even straddle both worlds.
  • Review the submission guidelines provided by the journal and ensure your paper meets all the formatting requirements and word limits. This step is key. Nature, for example, offers a highly informative series of pages that tells you everything you need to know in order to satisfy their formatting guidelines (plus more on the whole submission process).
  • Note that these guidelines can differ dramatically from journal to journal, and details really do matter. You might submit an outstanding piece of research, but if it includes, for example, images in the wrong size or format, this could mean a lengthy delay to getting it published. If you get everything right first time, you’ll save yourself a lot of time and trouble, as well as strengthen your publishing chances in the first place.

Step 3: Crafting a Strong Manuscript

Crafting a strong manuscript is crucial to impress journal editors and reviewers. Look at your paper as a complete package, and ensure that all the sections tie together to deliver your findings with clarity and precision.

  • Begin by creating a clear and concise title that accurately reflects the content of your paper.
  • Compose an informative abstract that summarises the purpose, methodology, results, and significance of your study.
  • Craft an engaging introduction (link to the research paper introduction article) that draws your reader in.
  • Develop a well-structured methodology section, presenting your results effectively using tables and figures.
  • Write a compelling discussion and conclusion that emphasise the significance of your findings.

Step 4: Navigating the Peer-Review Process

Once you submit your research paper to a journal, it undergoes a rigorous peer-review process to ensure its quality and validity. In peer-review, experts in your field assess your research and provide feedback and suggestions for improvement, ultimately determining whether your paper is eligible for publishing or not. You are likely to encounter several models of peer-review, based on which party – author, reviewer, or both – remains anonymous throughout the process.

When your paper undergoes the peer-review process, be prepared for constructive criticism and address the comments you receive from your reviewer thoughtfully, providing clear and concise responses to their concerns or suggestions. These could make all the difference when it comes to making your next submission.

The peer-review process can seem like a closed book at times. Check out our discussion of the issue with philosopher and academic Amna Whiston in The Research Beat podcast!

Step 5: Submitting Your Paper

As we’ve already pointed out, one of the key elements in how to publish a research paper is ensuring that you meticulously follow the journal’s submission guidelines. Strive to comply with all formatting requirements, including citation styles, font, margins, and reference structure.

Before the final submission, thoroughly proofread your paper for errors, including grammar, spelling, and any inconsistencies in your data or analysis. At this stage, consider seeking feedback from colleagues or mentors to further improve the quality of your paper.

Step 6: Dealing with Rejections and Revising Your Paper

Rejection is a common part of the publishing process, but it shouldn’t discourage you. Analyse reviewer comments objectively and focus on the constructive feedback provided. Make necessary revisions and improvements to your paper to address the concerns raised by reviewers. If needed, consider submitting your paper to a different journal that is a better fit for your research.

For more tips on how to publish your paper out there, check out this thread by Dr. Asad Naveed ( @dr_asadnaveed ) – and if you need a refresher on the basics of how to publish under the Open Access model, watch this 5-minute video from Audemic Academy !

Final Thoughts

Successfully understanding how to publish a research paper requires dedication, attention to detail, and a systematic approach. By following the advice in our guide, you can increase your chances of navigating the publishing process effectively and achieving your goal of publication.

Remember, the journey may involve revisions, peer feedback, and potential rejections, but each step is an opportunity for growth and improvement. Stay persistent, maintain a positive mindset, and continue to refine your research paper until it reaches the standards of your target journal. Your contribution to your wider discipline through published research will not only advance your career, but also add to the growing body of collective knowledge in your field. Embrace the challenges and rewards that come with the publication process, and may your research paper make a significant impact in your area of study!

Looking for inspiration for your next big paper? Head to Audemic , where you can organise and listen to all the best and latest research in your field!

Keep striving, researchers! ✨

Table of Contents

Related articles.

publishing my research paper

You’re in academia. You’re going steady. Your research is going well and you begin to wonder: ‘How exactly do I get a

publishing my research paper

Behind the Scenes: What Does a Research Assistant Do?

Have you ever wondered what goes on behind the scenes in a research lab? Does it involve acting out the whims of

publishing my research paper

How to Write a Research Paper Introduction: Hook, Line, and Sinker

Want to know how to write a research paper introduction that dazzles? Struggling to hook your reader in with your opening sentences?

Priceton-logo

Blog Podcast

Privacy policy Terms of service

Subscribe to our newsletter!

Discover more from Audemic: Access any academic research via audio

Subscribe now to keep reading and get access to the full archive.

Type your email…

Continue reading

You are using an outdated browser . Please upgrade your browser today !

How to Write and Publish a Research Paper in 7 Steps

What comes next after you're done with your research? Publishing the results in a journal of course! We tell you how to present your work in the best way possible.

This post is part of a series, which serves to provide hands-on information and resources for authors and editors.

Things have gotten busy in scholarly publishing: These days, a new article gets published in the 50,000 most important peer-reviewed journals every few seconds, while each one takes on average 40 minutes to read. Hundreds of thousands of papers reach the desks of editors and reviewers worldwide each year and 50% of all submissions end up rejected at some stage.

In a nutshell: there is a lot of competition, and the people who decide upon the fate of your manuscript are short on time and overworked. But there are ways to make their lives a little easier and improve your own chances of getting your work published!

Well, it may seem obvious, but before submitting an academic paper, always make sure that it is an excellent reflection of the research you have done and that you present it in the most professional way possible. Incomplete or poorly presented manuscripts can create a great deal of frustration and annoyance for editors who probably won’t even bother wasting the time of the reviewers!

This post will discuss 7 steps to the successful publication of your research paper:

  • Check whether your research is publication-ready
  • Choose an article type
  • Choose a journal
  • Construct your paper
  • Decide the order of authors
  • Check and double-check
  • Submit your paper

1. Check Whether Your Research Is Publication-Ready

Should you publish your research at all?

If your work holds academic value – of course – a well-written scholarly article could open doors to your research community. However, if you are not yet sure, whether your research is ready for publication, here are some key questions to ask yourself depending on your field of expertise:

  • Have you done or found something new and interesting? Something unique?
  • Is the work directly related to a current hot topic?
  • Have you checked the latest results or research in the field?
  • Have you provided solutions to any difficult problems?
  • Have the findings been verified?
  • Have the appropriate controls been performed if required?
  • Are your findings comprehensive?

If the answers to all relevant questions are “yes”, you need to prepare a good, strong manuscript. Remember, a research paper is only useful if it is clearly understood, reproducible and if it is read and used .

2. Choose An Article Type

The first step is to determine which type of paper is most appropriate for your work and what you want to achieve. The following list contains the most important, usually peer-reviewed article types in the natural sciences:

Full original research papers disseminate completed research findings. On average this type of paper is 8-10 pages long, contains five figures, and 25-30 references. Full original research papers are an important part of the process when developing your career.

Review papers present a critical synthesis of a specific research topic. These papers are usually much longer than original papers and will contain numerous references. More often than not, they will be commissioned by journal editors. Reviews present an excellent way to solidify your research career.

Letters, Rapid or Short Communications are often published for the quick and early communication of significant and original advances. They are much shorter than full articles and usually limited in length by the journal. Journals specifically dedicated to short communications or letters are also published in some fields. In these the authors can present short preliminary findings before developing a full-length paper.

3. Choose a Journal

Are you looking for the right place to publish your paper? Find out here whether a De Gruyter journal might be the right fit.

Submit to journals that you already read, that you have a good feel for. If you do so, you will have a better appreciation of both its culture and the requirements of the editors and reviewers.

Other factors to consider are:

  • The specific subject area
  • The aims and scope of the journal
  • The type of manuscript you have written
  • The significance of your work
  • The reputation of the journal
  • The reputation of the editors within the community
  • The editorial/review and production speeds of the journal
  • The community served by the journal
  • The coverage and distribution
  • The accessibility ( open access vs. closed access)

4. Construct Your Paper

Each element of a paper has its purpose, so you should make these sections easy to index and search.

Don’t forget that requirements can differ highly per publication, so always make sure to apply a journal’s specific instructions – or guide – for authors to your manuscript, even to the first draft (text layout, paper citation, nomenclature, figures and table, etc.) It will save you time, and the editor’s.

Also, even in these days of Internet-based publishing, space is still at a premium, so be as concise as possible. As a good journalist would say: “Never use three words when one will do!”

Let’s look at the typical structure of a full research paper, but bear in mind certain subject disciplines may have their own specific requirements so check the instructions for authors on the journal’s home page.

4.1 The Title

It’s important to use the title to tell the reader what your paper is all about! You want to attract their attention, a bit like a newspaper headline does. Be specific and to the point. Keep it informative and concise, and avoid jargon and abbreviations (unless they are universally recognized like DNA, for example).

4.2 The Abstract

This could be termed as the “advertisement” for your article. Make it interesting and easily understood without the reader having to read the whole article. Be accurate and specific, and keep it as brief and concise as possible. Some journals (particularly in the medical fields) will ask you to structure the abstract in distinct, labeled sections, which makes it even more accessible.

A clear abstract will influence whether or not your work is considered and whether an editor should invest more time on it or send it for review.

4.3 Keywords

Keywords are used by abstracting and indexing services, such as PubMed and Web of Science. They are the labels of your manuscript, which make it “searchable” online by other researchers.

Include words or phrases (usually 4-8) that are closely related to your topic but not “too niche” for anyone to find them. Make sure to only use established abbreviations. Think about what scientific terms and its variations your potential readers are likely to use and search for. You can also do a test run of your selected keywords in one of the common academic search engines. Do similar articles to your own appear? Yes? Then that’s a good sign.

4.4 Introduction

This first part of the main text should introduce the problem, as well as any existing solutions you are aware of and the main limitations. Also, state what you hope to achieve with your research.

Do not confuse the introduction with the results, discussion or conclusion.

4.5 Methods

Every research article should include a detailed Methods section (also referred to as “Materials and Methods”) to provide the reader with enough information to be able to judge whether the study is valid and reproducible.

Include detailed information so that a knowledgeable reader can reproduce the experiment. However, use references and supplementary materials to indicate previously published procedures.

4.6 Results

In this section, you will present the essential or primary results of your study. To display them in a comprehensible way, you should use subheadings as well as illustrations such as figures, graphs, tables and photos, as appropriate.

4.7 Discussion

Here you should tell your readers what the results mean .

Do state how the results relate to the study’s aims and hypotheses and how the findings relate to those of other studies. Explain all possible interpretations of your findings and the study’s limitations.

Do not make “grand statements” that are not supported by the data. Also, do not introduce any new results or terms. Moreover, do not ignore work that conflicts or disagrees with your findings. Instead …

Be brave! Address conflicting study results and convince the reader you are the one who is correct.

4.8 Conclusion

Your conclusion isn’t just a summary of what you’ve already written. It should take your paper one step further and answer any unresolved questions.

Sum up what you have shown in your study and indicate possible applications and extensions. The main question your conclusion should answer is: What do my results mean for the research field and my community?

4.9 Acknowledgments and Ethical Statements

It is extremely important to acknowledge anyone who has helped you with your paper, including researchers who supplied materials or reagents (e.g. vectors or antibodies); and anyone who helped with the writing or English, or offered critical comments about the content.

Learn more about academic integrity in our blog post “Scholarly Publication Ethics: 4 Common Mistakes You Want To Avoid” .

Remember to state why people have been acknowledged and ask their permission . Ensure that you acknowledge sources of funding, including any grant or reference numbers.

Furthermore, if you have worked with animals or humans, you need to include information about the ethical approval of your study and, if applicable, whether informed consent was given. Also, state whether you have any competing interests regarding the study (e.g. because of financial or personal relationships.)

4.10 References

The end is in sight, but don’t relax just yet!

De facto, there are often more mistakes in the references than in any other part of the manuscript. It is also one of the most annoying and time-consuming problems for editors.

Remember to cite the main scientific publications on which your work is based. But do not inflate the manuscript with too many references. Avoid excessive – and especially unnecessary – self-citations. Also, avoid excessive citations of publications from the same institute or region.

5. Decide the Order of Authors

In the sciences, the most common way to order the names of the authors is by relative contribution.

Generally, the first author conducts and/or supervises the data analysis and the proper presentation and interpretation of the results. They put the paper together and usually submit the paper to the journal.

Co-authors make intellectual contributions to the data analysis and contribute to data interpretation. They review each paper draft. All of them must be able to present the paper and its results, as well as to defend the implications and discuss study limitations.

Do not leave out authors who should be included or add “gift authors”, i.e. authors who did not contribute significantly.

6. Check and Double-Check

As a final step before submission, ask colleagues to read your work and be constructively critical .

Make sure that the paper is appropriate for the journal – take a last look at their aims and scope. Check if all of the requirements in the instructions for authors are met.

Ensure that the cited literature is balanced. Are the aims, purpose and significance of the results clear?

Conduct a final check for language, either by a native English speaker or an editing service.

7. Submit Your Paper

When you and your co-authors have double-, triple-, quadruple-checked the manuscript: submit it via e-mail or online submission system. Along with your manuscript, submit a cover letter, which highlights the reasons why your paper would appeal to the journal and which ensures that you have received approval of all authors for submission.

It is up to the editors and the peer-reviewers now to provide you with their (ideally constructive and helpful) comments and feedback. Time to take a breather!

If the paper gets rejected, do not despair – it happens to literally everybody. If the journal suggests major or minor revisions, take the chance to provide a thorough response and make improvements as you see fit. If the paper gets accepted, congrats!

It’s now time to get writing and share your hard work – good luck!

If you are interested, check out this related blog post

publishing my research paper

[Title Image by Nick Morrison via Unsplash]

David Sleeman

David Sleeman worked as Senior Journals Manager in the field of Physical Sciences at De Gruyter.

You might also be interested in

Academia & Publishing

The Impact of Transformative Agreements on Scholarly Publishing

Our website is currently unavailable: cyberattacks on cultural heritage institutions, wie steht es um das wissenschaftliche erbe der ddr eine podiumsdiskussion, visit our shop.

De Gruyter publishes over 1,300 new book titles each year and more than 750 journals in the humanities, social sciences, medicine, mathematics, engineering, computer sciences, natural sciences, and law.

Pin It on Pinterest

  • Technical Support
  • Find My Rep

You are here

How to get published.

You believe your research will make a contribution to your field, and you’re ready to share it with your peers far and wide, but how do you go about getting it published, and what exactly does that involve?  

If this is you, this page is a great place to start. Here you’ll find guidance to taking those first steps towards publication with confidence. From what to consider when choosing a journal, to how to submit an article and what happens next. 

Getting started

Choosing the right journal for you.

Submitting your article to a Sage journal

Promoting your article

Related resources you may find useful.

get your journal published

How to Get Your Journal Article Published guide

Our handy guide is a quick overview covering the publishing process from preparing your article and choosing a journal, to publication (5 minute read).

View the How to Get Your Journal Article Published guide

get published webinar

How to Get Published webinars

Free 1 hour monthly How to Get Published webinars cover topics including writing an article, navigating the peer review process, and what exactly it means when you hear “open access.” Join fellow researchers and expert speakers live, or watch our library of recordings on a variety of topics.

Browse our webinars  

Sage Perspectives

Sage Perspectives blog

Looking for tips on how to make sure your article goes smoothly through the peer review process, or how to write the right title for your article?

Read our blog

Sage Campus

Sage Campus courses

Want something a bit more in-depth? Sage Campus courses are short and interactive (around 2 hours each) and cover a range of skills, including how to get published. Your library may already subscribe to the modules, or you may want to recommend that they do. Meanwhile, you can utilize the free modules.

Explore Sage Campus

1378_image_5

Each journal has its own Aims & Scope, so the acceptance of articles is not just about quality, but also about being a good fit. Does your work reflect the scope of the Journal? Is Open Access important to you, and does the Journal have an Open Access model available? What is the readership of the Journal, and is that readership the right audience for your work? Researching the best match for your manuscript will significantly improve your chances of being accepted.

Watch our 2 minute video

1378_image_6

If you already know in which Sage journal you’d like to publish your work, search for it and check the manuscript submission guidelines to make sure it is a good match. Or use the Sage Journal Recommender to tell us your article title and subjects and see which journals are a potential home for your manuscript. Be prepared to adjust your manuscript to match the scope and style of the desired journal.

Find journals with the Sage Journal Recommender  or  browse all Sage journals

1378_image_7

Professional presentation of your work includes a precise and clear writing style, avoiding accidental plagiarism, and formatting your article to meet the criteria of your chosen journal. All of these take time and may not be skills inherent to your field of research. Sage Author Services can help you to prepare your manuscript to comply with these and other related standards, which could significantly improve your chance of acceptance. 

Visit  Sage Author Services

Submitting your article to a Sage journal

You’ve identified the right journal; now you need to make sure your manuscript is the perfect fit. Following the author guidelines can be the difference between possible acceptance and rejection, so it’s definitely worth following the required guidelines. We’ve a selection of resources and guides to help:

Watch How to Get Published: Submitting Your Paper (2 minute video)

Read our Article Submission infographic , a quick reminder of essentials

Here you’ll find chapter and verse on all aspects of our Manuscript Submission Guidelines

Ready to submit? Our online Submission Checklist will help you do a final check before sending your article to us.

Each journal retains editorial independence, which means their Guidelines will vary, so do go to the home page of your chosen journal to check anything you should be aware of. You can submit your article there too.

1378_image_8

The academic world is crowded, how can you make your article stand out? If you are active on social media platforms, telling your followers about your article is one of the simplest and most effective things you can do.

1378_image_9

Between us, we can improve the chances of your article being found, read, downloaded and cited – of your article and you making an impact. Our tips and guidance will show you how to promote your article alongside building your academic profile.

Read our  tips on how to maximize your impact

Publishing Journal Articles book

  • How to Get Published for Librarians
  • How to Do Research and Get Published Webinar Series
  • Manuscript Submission Guidelines
  • Sage Author Services
  • Your Paper and Peer Review
  • Plain Language Summaries
  • Advance: a Sage preprints community
  • The Sage Production Process
  • Help Readers Find Your Article
  • Promote Your Article
  • Research Data Sharing Policies
  • Career and Networking Resources
  • Open Access Publishing Options
  • Top Reasons to Publish with Sage
  • Open Access Introduction for Authors
  • Journal Editor Gateway
  • Journal Reviewer Gateway
  • Ethics & Responsibility
  • Sage Editorial Policies
  • Publication Ethics Policies
  • Sage Chinese Author Gateway 中国作者资源
  • Open Resources & Current Initiatives
  • Discipline Hubs
  • SpringerLink shop

How to publish an article? – Step by step

If you plan to submit an article to one of our journals, or have any questions during the publication process, this helpdesk will guide you through manuscript submission, production and the services you can expect after your article’s publication.

1. Before you start

The following topics will be important during the early stages of writing your article.

  • Publishing Ethics
  • Open Access
  • Impact Factor
  • Rights, permissions and licensing
  • Copyright and plagiarism

2. Turning your manuscript into an article

Preparation, publication.

- Find the right journal for your manuscript

- The Springer Journal Selector

- Manuscript preparation (reference styles, artwork guidelines, etc.)

Read more about Preparation

- Electronic submission

- Reviewing and acceptance

- Managing copyright  – The "MyPublication" process

Read more about Submission

- Copy editing and language polishing

- Data processing and type setting

- Article Tracking

- Checking your article: proofing procedure

- e.Proofing – Makes editing easy!

Read more about Production

- Publishing your article "Online First"

- Publishing your article in a journal issue

Read more about Publication

3. After publication

If your article has been published, the following topics are important for you:

  • Abstracting & Indexing
  • Online access to my article
  • Citation Alert
  • Book discounts
  • Marketing to worldwide audiences

ScienceDirect Support Center

To post social content, you must have a display name. The page will refresh upon submission. Any pending input will be lost.

How do I publish my article with Elsevier?

Follow these steps to submit your article using our online submission system Editorial Manager:

  • This option may not always be available as some journals do not accept submissions.
  • Sign in to Editorial Manager, or register if you are a first-time user.
  • Follow the steps to submit your article. 

Helpful tools and pages

These helpful tools and pages available can help you navigate the publication process.

Finding the right journal

  • Browse Calls for papers
  • JournalFinder

Help with submitting and tracking your article

  • Publishing with Elsevier: step-by-step — provides a good overview of the publication process for first-time authors.
  • Track your accepted article — tool to track your submitted article after it has been accepted.
  • Journal Article Publishing Support Center — support portal for any questions related to publishing with Elsevier (e.g., open access, publication costs, fees, submission timelines) and contact information.

Was this answer helpful?

Thank you for your feedback, it will help us serve you better. If you require assistance, please scroll down and use one of the contact options to get in touch.

Help us to help you:

Thank you for your feedback!

  • Why was this answer not helpful?
  • It was hard to understand / follow.
  • It did not answer my question.
  • The solution did not work.
  • There was a mistake in the answer.
  • Feel free to leave any comments below: Please enter your feedback to submit this form

Related Articles:

  • How do I use the advanced search?
  • What are journal pre-proofs?
  • What are corrected proofs?
  • How do I buy an article or chapter?
  • What can I do on an article page?

For further assistance:

How to Write and Publish a Research Paper for a Peer-Reviewed Journal

  • Open access
  • Published: 30 April 2020
  • Volume 36 , pages 909–913, ( 2021 )

Cite this article

You have full access to this open access article

  • Clara Busse   ORCID: orcid.org/0000-0002-0178-1000 1 &
  • Ella August   ORCID: orcid.org/0000-0001-5151-1036 1 , 2  

268k Accesses

15 Citations

720 Altmetric

Explore all metrics

Communicating research findings is an essential step in the research process. Often, peer-reviewed journals are the forum for such communication, yet many researchers are never taught how to write a publishable scientific paper. In this article, we explain the basic structure of a scientific paper and describe the information that should be included in each section. We also identify common pitfalls for each section and recommend strategies to avoid them. Further, we give advice about target journal selection and authorship. In the online resource 1 , we provide an example of a high-quality scientific paper, with annotations identifying the elements we describe in this article.

Similar content being viewed by others

publishing my research paper

Why, When, Who, What, How, and Where for Trainees Writing Literature Review Articles

Gerry L. Koons, Katja Schenke-Layland & Antonios G. Mikos

publishing my research paper

Literature reviews as independent studies: guidelines for academic practice

Sascha Kraus, Matthias Breier, … João J. Ferreira

publishing my research paper

How to design bibliometric research: an overview and a framework proposal

Oğuzhan Öztürk, Rıdvan Kocaman & Dominik K. Kanbach

Avoid common mistakes on your manuscript.

Introduction

Writing a scientific paper is an important component of the research process, yet researchers often receive little formal training in scientific writing. This is especially true in low-resource settings. In this article, we explain why choosing a target journal is important, give advice about authorship, provide a basic structure for writing each section of a scientific paper, and describe common pitfalls and recommendations for each section. In the online resource 1 , we also include an annotated journal article that identifies the key elements and writing approaches that we detail here. Before you begin your research, make sure you have ethical clearance from all relevant ethical review boards.

Select a Target Journal Early in the Writing Process

We recommend that you select a “target journal” early in the writing process; a “target journal” is the journal to which you plan to submit your paper. Each journal has a set of core readers and you should tailor your writing to this readership. For example, if you plan to submit a manuscript about vaping during pregnancy to a pregnancy-focused journal, you will need to explain what vaping is because readers of this journal may not have a background in this topic. However, if you were to submit that same article to a tobacco journal, you would not need to provide as much background information about vaping.

Information about a journal’s core readership can be found on its website, usually in a section called “About this journal” or something similar. For example, the Journal of Cancer Education presents such information on the “Aims and Scope” page of its website, which can be found here: https://www.springer.com/journal/13187/aims-and-scope .

Peer reviewer guidelines from your target journal are an additional resource that can help you tailor your writing to the journal and provide additional advice about crafting an effective article [ 1 ]. These are not always available, but it is worth a quick web search to find out.

Identify Author Roles Early in the Process

Early in the writing process, identify authors, determine the order of authors, and discuss the responsibilities of each author. Standard author responsibilities have been identified by The International Committee of Medical Journal Editors (ICMJE) [ 2 ]. To set clear expectations about each team member’s responsibilities and prevent errors in communication, we also suggest outlining more detailed roles, such as who will draft each section of the manuscript, write the abstract, submit the paper electronically, serve as corresponding author, and write the cover letter. It is best to formalize this agreement in writing after discussing it, circulating the document to the author team for approval. We suggest creating a title page on which all authors are listed in the agreed-upon order. It may be necessary to adjust authorship roles and order during the development of the paper. If a new author order is agreed upon, be sure to update the title page in the manuscript draft.

In the case where multiple papers will result from a single study, authors should discuss who will author each paper. Additionally, authors should agree on a deadline for each paper and the lead author should take responsibility for producing an initial draft by this deadline.

Structure of the Introduction Section

The introduction section should be approximately three to five paragraphs in length. Look at examples from your target journal to decide the appropriate length. This section should include the elements shown in Fig.  1 . Begin with a general context, narrowing to the specific focus of the paper. Include five main elements: why your research is important, what is already known about the topic, the “gap” or what is not yet known about the topic, why it is important to learn the new information that your research adds, and the specific research aim(s) that your paper addresses. Your research aim should address the gap you identified. Be sure to add enough background information to enable readers to understand your study. Table 1 provides common introduction section pitfalls and recommendations for addressing them.

figure 1

The main elements of the introduction section of an original research article. Often, the elements overlap

Methods Section

The purpose of the methods section is twofold: to explain how the study was done in enough detail to enable its replication and to provide enough contextual detail to enable readers to understand and interpret the results. In general, the essential elements of a methods section are the following: a description of the setting and participants, the study design and timing, the recruitment and sampling, the data collection process, the dataset, the dependent and independent variables, the covariates, the analytic approach for each research objective, and the ethical approval. The hallmark of an exemplary methods section is the justification of why each method was used. Table 2 provides common methods section pitfalls and recommendations for addressing them.

Results Section

The focus of the results section should be associations, or lack thereof, rather than statistical tests. Two considerations should guide your writing here. First, the results should present answers to each part of the research aim. Second, return to the methods section to ensure that the analysis and variables for each result have been explained.

Begin the results section by describing the number of participants in the final sample and details such as the number who were approached to participate, the proportion who were eligible and who enrolled, and the number of participants who dropped out. The next part of the results should describe the participant characteristics. After that, you may organize your results by the aim or by putting the most exciting results first. Do not forget to report your non-significant associations. These are still findings.

Tables and figures capture the reader’s attention and efficiently communicate your main findings [ 3 ]. Each table and figure should have a clear message and should complement, rather than repeat, the text. Tables and figures should communicate all salient details necessary for a reader to understand the findings without consulting the text. Include information on comparisons and tests, as well as information about the sample and timing of the study in the title, legend, or in a footnote. Note that figures are often more visually interesting than tables, so if it is feasible to make a figure, make a figure. To avoid confusing the reader, either avoid abbreviations in tables and figures, or define them in a footnote. Note that there should not be citations in the results section and you should not interpret results here. Table 3 provides common results section pitfalls and recommendations for addressing them.

Discussion Section

Opposite the introduction section, the discussion should take the form of a right-side-up triangle beginning with interpretation of your results and moving to general implications (Fig.  2 ). This section typically begins with a restatement of the main findings, which can usually be accomplished with a few carefully-crafted sentences.

figure 2

Major elements of the discussion section of an original research article. Often, the elements overlap

Next, interpret the meaning or explain the significance of your results, lifting the reader’s gaze from the study’s specific findings to more general applications. Then, compare these study findings with other research. Are these findings in agreement or disagreement with those from other studies? Does this study impart additional nuance to well-accepted theories? Situate your findings within the broader context of scientific literature, then explain the pathways or mechanisms that might give rise to, or explain, the results.

Journals vary in their approach to strengths and limitations sections: some are embedded paragraphs within the discussion section, while some mandate separate section headings. Keep in mind that every study has strengths and limitations. Candidly reporting yours helps readers to correctly interpret your research findings.

The next element of the discussion is a summary of the potential impacts and applications of the research. Should these results be used to optimally design an intervention? Does the work have implications for clinical protocols or public policy? These considerations will help the reader to further grasp the possible impacts of the presented work.

Finally, the discussion should conclude with specific suggestions for future work. Here, you have an opportunity to illuminate specific gaps in the literature that compel further study. Avoid the phrase “future research is necessary” because the recommendation is too general to be helpful to readers. Instead, provide substantive and specific recommendations for future studies. Table 4 provides common discussion section pitfalls and recommendations for addressing them.

Follow the Journal’s Author Guidelines

After you select a target journal, identify the journal’s author guidelines to guide the formatting of your manuscript and references. Author guidelines will often (but not always) include instructions for titles, cover letters, and other components of a manuscript submission. Read the guidelines carefully. If you do not follow the guidelines, your article will be sent back to you.

Finally, do not submit your paper to more than one journal at a time. Even if this is not explicitly stated in the author guidelines of your target journal, it is considered inappropriate and unprofessional.

Your title should invite readers to continue reading beyond the first page [ 4 , 5 ]. It should be informative and interesting. Consider describing the independent and dependent variables, the population and setting, the study design, the timing, and even the main result in your title. Because the focus of the paper can change as you write and revise, we recommend you wait until you have finished writing your paper before composing the title.

Be sure that the title is useful for potential readers searching for your topic. The keywords you select should complement those in your title to maximize the likelihood that a researcher will find your paper through a database search. Avoid using abbreviations in your title unless they are very well known, such as SNP, because it is more likely that someone will use a complete word rather than an abbreviation as a search term to help readers find your paper.

After you have written a complete draft, use the checklist (Fig. 3 ) below to guide your revisions and editing. Additional resources are available on writing the abstract and citing references [ 5 ]. When you feel that your work is ready, ask a trusted colleague or two to read the work and provide informal feedback. The box below provides a checklist that summarizes the key points offered in this article.

figure 3

Checklist for manuscript quality

Data Availability

Michalek AM (2014) Down the rabbit hole…advice to reviewers. J Cancer Educ 29:4–5

Article   Google Scholar  

International Committee of Medical Journal Editors. Defining the role of authors and contributors: who is an author? http://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-role-of-authosrs-and-contributors.html . Accessed 15 January, 2020

Vetto JT (2014) Short and sweet: a short course on concise medical writing. J Cancer Educ 29(1):194–195

Brett M, Kording K (2017) Ten simple rules for structuring papers. PLoS ComputBiol. https://doi.org/10.1371/journal.pcbi.1005619

Lang TA (2017) Writing a better research article. J Public Health Emerg. https://doi.org/10.21037/jphe.2017.11.06

Download references

Acknowledgments

Ella August is grateful to the Sustainable Sciences Institute for mentoring her in training researchers on writing and publishing their research.

Code Availability

Not applicable.

Author information

Authors and affiliations.

Department of Maternal and Child Health, University of North Carolina Gillings School of Global Public Health, 135 Dauer Dr, 27599, Chapel Hill, NC, USA

Clara Busse & Ella August

Department of Epidemiology, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, 48109-2029, USA

Ella August

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Ella August .

Ethics declarations

Conflicts of interests.

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

(PDF 362 kb)

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Busse, C., August, E. How to Write and Publish a Research Paper for a Peer-Reviewed Journal. J Canc Educ 36 , 909–913 (2021). https://doi.org/10.1007/s13187-020-01751-z

Download citation

Published : 30 April 2020

Issue Date : October 2021

DOI : https://doi.org/10.1007/s13187-020-01751-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Manuscripts
  • Scientific writing
  • Find a journal
  • Publish with us
  • Track your research

Orvium

The 5 Best Platforms to Publish Your Academic Research

Academic research is a central component of scientific advancements and breakthrough innovations. However, your research journey is complex and ever-changing. You must take into consideration funding options, how to securely store your information, choosing where to publish your research, finding manuscript peer reviewers, and many more.

To keep up with the change, you and other researchers require modern, easy-to-navigate research platforms to help you uncover, store, verify, compile, and share content, data, and important insights to continue to carry out breakthrough research.

This article explains how to identify the best platforms for publishing your research and gives you a list of five platforms to help you publish. Towards the end, you’ll also see a mention of how Orvium can further assist you with publishing.

How to Identify the Best Platforms for Publishing

When trying to identify the best platforms for publishing your research, you have to consider several factors, including:

  • Does the platform support your research journey ? Can you collaborate with other authors and researchers, discover public groups and research papers and manuscripts (including Open Access work), view interactive graphs, images, tables, etc., track citations, and build a professional research profile?
  • Is the platform easy to use ? Does it offer rich functionalities that are easy to understand, and if so, which ones?
  • Does it use artificial intelligence and machine learning ? Automated actions (email alerts, etc.) can help you unlock breakthroughs faster and deliver deeper insights.
  • What security and governance does it have ? Platforms must be secure and compliant according to local regulations since researchers often deal with sensitive data.

The 5 Best Platforms to Publish Academic Research

Researchgate.

ResearchGate is a platform hosting over 135 million publication pages with a community of 20 million scientists. The platform allows you to show off your work, access papers and advice from other researchers, make contacts and even find jobs. Some of its more prominent features include:

  • Dedicated Q&A section with searchable keywords to target experts in your particular field or area of study
  • Ability to create a personal profile page where you can display all research-specific details about yourself, including up to five pieces of work (including datasets and conference papers)
  • In-depth stats on who reads your work and the ability to track your citations
  • A private messaging service that allows you to send messages to other researchers
  • A comments section to provide feedback when viewing a paper
  • A “projects” section to tell others about your upcoming work.

publishing my research paper

In addition, it's completely free to use!

Academia is a research-sharing platform with over 178 million users, 29 million papers uploaded, and 87 million visitors per month. Their goal is to accelerate research in all fields, ensure that all research is available for free and that the sharing of knowledge is available in multiple formats (videos, datasets, code, short-form content, etc.). Some of their more prominent features include:

  • Mentions and search alerts that notify you when another researcher cites, thanks, or acknowledges your work, and automatic reports of search queries
  • Ability to create a personal profile page
  • “Profile visitor” and “readers” features let you know the title and location of those who visit your profile or read your papers so you can learn about their research interests and get in touch
  • A “grants” feature to allow you to find new grants and fellowships in your field
  • Advanced research discovery tools allow you to see full texts and citations of millions of papers.

publishing my research paper

The platform is based on a “freemium” business model, which provides free access to research for everyone, and paid capabilities to subscribers.

ScienceOpen

ScienceOpen is a discovery platform that empowers researchers to make an impact in their communities. The platform is committed to Open Science, combining decades of experience in traditional publishing, computing, and academic research to provide free access to knowledge to drive creativity, innovation, and development. Some of their more prominent features include:

  • You can publish your most recent paper as a preprint that’s citable and includes a DOI to share with peers immediately and enhance visibility
  • A multidimensional search feature for articles with 18 filters and the ability to sort results by Altmetric scores , citations, date, and rating
  • Ability to create a personal profile with minimal upkeep necessary
  • Access to a suite of metrics (usage, citations, etc.) of your publications
  • Ability to follow other researchers to stay up-to-date on their work and expand your network.

publishing my research paper

The platform is free to use, although some features (like publishing your preprint) may cost money.

IOPscience is a platform that embraces innovative technologies to make it easier for researchers to discover and access technical, scientific, and medical content while managing their own research content. They participate in several programs that offer researchers in developing countries several ways to gain access to journals at little or no cost. Some of their other features include:

  • An enhanced search filtering feature allows you to find relevant research faster
  • A social bookmarking feature allows you to interact with other researchers and share articles
  • Ability to create a personal profile, customize your alerts, view recently published articles within your field or area of interest, and save relevant papers or articles
  • Ability to receive email alerts and RSS feeds once new content is published.

publishing my research paper

IOPscience is free to use and functions on an Open Access policy, which you can check here .

Orvium is an open, community-based research platform that allows researchers, reviewers, and publishers to share, publish, review, and manage their research. Orvium protects your work with built-in blockchain integration to ensure that you maintain the copyright of your work and not only. Some of our more notable features include:

  • Access to a modern web platform with Google indexing, notifications, and mobile-ready features
  • Ability to manage your entire publication process, with control over when you submit, receive peer reviews, and publish your paper
  • “Collaboration” and “full traceability” features allow you to track your profile impact, get in touch with other researchers, and have ownership over your work
  • Recognition badges or economic rewards are given when you peer-review.

publishing my research paper

Orvium is completely free to use.

Orvium Makes Choosing a Platform Easy

No matter what platform or community you choose to be a part of, you now know what you need to look for when choosing one. You also learned about five excellent platforms where you can publish your academic research. Orvium will remain your one-stop-shop platform for all your research needs. Do you want to know how Orvium and our communities work? Check out our platform or contact us with any questions you may have.

Subscribe to our newsletter

Get the latest posts delivered right to your inbox.

Success!

Now check your inbox and click the link to confirm your subscription.

Please enter a valid email address

Oops! There was an error sending the email, please try later.

Leyre Martínez

Recommended for you.

publishing my research paper

How to Write a Research Funding Application | Orvium

publishing my research paper

Increasing Representation and Diversity in Research with Open Science | Orvium

publishing my research paper

Your Guide to Open Access Week 2023

When you choose to publish with PLOS, your research makes an impact. Make your work accessible to all, without restrictions, and accelerate scientific discovery with options like preprints and published peer review that make your work more Open.

  • PLOS Biology
  • PLOS Climate
  • PLOS Complex Systems
  • PLOS Computational Biology
  • PLOS Digital Health
  • PLOS Genetics
  • PLOS Global Public Health
  • PLOS Medicine
  • PLOS Mental Health
  • PLOS Neglected Tropical Diseases
  • PLOS Pathogens
  • PLOS Sustainability and Transformation
  • PLOS Collections

Why Publish with PLOS?

Your research makes an impact. Our goal is to share all excellent science as broadly and effectively as possible to accelerate discovery and lead a transformation in research communication.

Submit Your Manuscript

PLOS publishes a suite of influential Open Access journals across all areas of science and medicine. Rigorously reported, peer reviewed and immediately available without restrictions, promoting the widest readership and impact possible. We encourage you to consider the scope of each journal before submission, as journals are editorially independent and specialized in their publication criteria and breadth of content.

PLOS Biology PLOS Climate PLOS Computational Biology PLOS Digital Health PLOS Genetics PLOS Global Public Health PLOS Medicine PLOS Neglected Tropical Diseases PLOS ONE PLOS Pathogens PLOS Sustainability and Transformation PLOS Water

Coming soon:

PLOS Complex Systems PLOS Mental Health

Based on the merit of your science and everything that goes into it. Tell the full story of your science through your research questions, protocols, data, and even negative outcomes to build a foundation for replicable research.

To make the biggest impact. PLOS press released nearly 400 papers in 2019. Broad visibility and openness help researchers, funders, policymakers, and the general public discover your research and realize its potential.

Opportunity

For researchers of every career stage, discipline, and demographic to make an impact. We’re breaking new ground to make sharing research easier, more efficient, and fair for all authors.

In how, when, and what you decide to publish. From preprints to published peer review history, you customize your experience to share your work earlier and add context.

More Credit

For the work you already do. Track your contributions automatically through CRediT and ORCID and use article-level-metrics to demonstrate the impact of your work when you need it most.

Choose PLOS, get your work recognized.   Submit your manuscript

BlueRoseOne.com

  • How to Publish a Research Paper: A Complete Guide
  • Self Publishing Guide

How to Publish a Research Paper: A Complete Guide

Read:  Learn How to Write & Craft a Compelling Villain for Your Story.
  • Step 1: Identifying the Right Journal
  • Step 2: Preparing Step 3: Your Manuscript

Step 3: Conducting a Thorough Review

Step 4: Writing a Compelling Cover Letter

Step 5: Navigating the Peer Review Process

Step 6: Handling Rejections

Step 7: Preparing for Publication

Step 8: Promoting Your Published Paper

Step 1: Identifying the Right Journal 

The first step in publishing a research paper is crucial, as it sets the foundation for the entire publication process. Identifying the right journal involves carefully selecting a publication platform that aligns with your research topic, audience, and academic goals. Here are the key considerations to keep in mind during this step:

  • Scope and Focus : Assess the scope and focus of your research to find journals that publish articles in your field of study. Look for journals that have previously published papers related to your topic or research area.
  • Readership and Impact Factor : Consider the target audience of the journal and its readership. Higher-impact factor journals typically attract a broader readership and can enhance the visibility and credibility of your research.
  • Publication Frequency : Investigate the publication frequency of the journal. Some journals publish issues monthly, quarterly, or annually. Choose a journal that aligns with your timeline for publication.
  • Indexing and Reputation : Check if the journal is indexed in reputable databases, such as Scopus or PubMed. Indexed journals are more likely to be recognized and accessed by researchers worldwide.
  • Journal Guidelines : Familiarise yourself with the journal’s submission guidelines, available on their website. Pay attention to manuscript length limits, reference styles, and formatting requirements.
  • Open Access Options : Consider whether the journal offers open access publishing. Open-access journals allow unrestricted access to your paper, potentially increasing its visibility and impact.
  • Ethical Considerations : Ensure the journal follows ethical publication practises and abides by industry standards. Verify if the journal is a member of reputable publishing organisations, such as COPE (the Committee on Publication Ethics).
  • Publication Fees : Check if the journal charges any publication fees or article processing charges (APCs). These fees can vary significantly among journals and may influence your decision.
  • Target Audience : Consider the journal’s target audience and the level of technical detail appropriate for that audience. Some journals cater to a more specialised readership, while others aim for a broader appeal.
  • Journal Reputation : Research the reputation of the journal within your academic community. Seek advice from colleagues or mentors who have published in similar journals.

By carefully considering these factors, you can make an informed decision on the most suitable journal for your research paper. Selecting the right journal increases your chances of acceptance and ensures that your work reaches the intended audience, contributing to the advancement of knowledge in your field.

Step 2: Preparing Your Manuscript

After identifying the appropriate journal, the next step is to prepare your manuscript for submission. This stage involves meticulous attention to detail and adherence to the journal’s specific author guidelines. Here’s a comprehensive guide to preparing your manuscript:

  • Read Author Guidelines : Carefully read and understand the journal’s author guidelines, which are available on the journal’s website. The guidelines provide instructions on manuscript preparation, the submission process, and formatting requirements.
  • Manuscript Structure : Follow the standard structure for a research paper, including the abstract, introduction, methodology, results, discussion, and conclusion sections. Ensure that each section is clear and well-organised.
  • Title and Abstract : Craft a concise and informative title that reflects the main focus of your research. The abstract should provide a summary of your study’s objectives, methods, results, and conclusions.
  • Introduction : The introduction should introduce the research problem, provide context, and state the research objectives or questions. Engage readers by highlighting the significance of your research.
  • Methodology : Describe the research design, data collection methods, and data analysis techniques used in your study. Provide sufficient detail to enable other researchers to replicate your study.
  • Results : Present your findings in a clear and logical manner. Use tables, graphs, and figures to enhance the presentation of data. Avoid interpreting the results in this section.
  • Discussion : Analyse and interpret your results in the discussion section. Relate your findings to the research objectives and previously published literature. Discuss the implications of your results and any limitations of your study.
  • Conclusion : In the conclusion, summarise the key findings of your research and restate their significance. Avoid introducing new information in this section.
  • Citations and References : Cite all sources accurately and consistently throughout the manuscript. Follow the journal’s preferred citation style, such as APA, MLA, or Chicago.
  • Proofreading and Editing : Thoroughly proofread your manuscript to correct any grammatical errors, typos, or inconsistencies. Edit for clarity, conciseness, and logical flow.
  • Figures and Tables : Ensure that all figures and tables are clear, properly labelled, and cited in the main text. Follow the journal’s guidelines for the formatting of figures and tables.
  • Ethical Considerations : Include any necessary statements regarding ethical approval, conflicts of interest, or data availability, as required by the journal.

By meticulously preparing your manuscript and adhering to the journal’s guidelines, you increase the likelihood of a successful submission. A well-structured and polished manuscript enhances the readability and impact of your research, ultimately increasing your chances of acceptance for publication.

You may also like: How to Make Book Design More Appealing to the Reader

The process of conducting a thorough review of your research paper is a critical step in the publication journey. This step ensures that your work is polished, accurate, and ready for submission to a journal. A well-reviewed paper increases the chances of acceptance and demonstrates your commitment to producing high-quality research. Here are the key aspects to consider during the review process:

  • Grammatical Errors and Typos : Start by carefully proofreading your paper for any grammatical errors, typos, or spelling mistakes. Even minor errors can undermine the credibility of your research and distract readers from your main points. Use grammar-checking tools, but also read your paper line by line to catch any issues that zated tools might miss.
  • Consistency and Clarity : Ensure that your writing is consistent throughout the paper. Check that you have used the same terminology, abbreviations, and formatting consistently. Additionally, pay attention to sentence structure and coherence, making sure that each paragraph flows logically into the next.
  • Accuracy of Data, Graphs, and Tables : Review all the data presented in your research, including figures, graphs, and tables. Verify that the data is accurate, correctly labelled, and represented in a clear and understandable manner. Any errors in data representation can lead to misinterpretations and undermine the reliability of your findings.
  • Citation and Referencing : Verify that all the sources you have cited are accurate and properly formatted according to the citation style required by the target journal. Missing or incorrect citations can lead to accusations of plagiarism and harm the integrity of your work.
  • Addressing Feedback : If you have received feedback from colleagues, mentors, or peer reviewers during the pre-submission process, carefully consider their suggestions and address any concerns raised. Engaging with feedback shows your willingness to improve and strengthen your paper.
  • Objective Evaluation : Try to read your paper with a critical eye, as if you were a reviewer assessing its merits. Identify any weaknesses or areas that could be improved, both in terms of content and presentation. Be open to rewriting or restructuring sections that could benefit from further clarity or depth.
  • Seek Feedback : To ensure the highest quality, seek feedback from colleagues or mentors who are knowledgeable in your research field. They can provide valuable insights and offer suggestions for improvement. Peer review can identify blind spots and help you refine your arguments.
  • Formatting and Guidelines : Review the journal’s specific formatting and submission guidelines. Adhering to these requirements demonstrates your attention to detail and increases the likelihood of acceptance.

In conclusion, conducting a thorough review of your research paper is an essential step before submission. It involves checking for grammatical errors, ensuring clarity and consistency, verifying data accuracy, addressing feedback, and seeking external input. A well-reviewed paper enhances its chances of publication and contributes to the overall credibility of your research.

The cover letter is your opportunity to make a strong first impression on the journal’s editor and to persuade them that your research paper is a valuable contribution to their publication. It serves as a bridge between your work and the editor, highlighting the significance and originality of your study and explaining why it is a good fit for the journal. Here are the key elements to include in a compelling cover letter:

  • Introduction : Start the letter with a professional and cordial greeting, addressing the editor by their name if possible. Introduce yourself and provide your affiliation, including your academic title and institution. Mention the title of your research paper and its co-authors, if any.
  • Brief Summary of Research : Provide a concise and compelling summary of your research. Clearly state the research question or problem you addressed, the methodology you employed, and your main findings. Emphasise the significance of your research and its potential impact on the field.
  • Highlight Originality : Explain what sets your study apart from existing research in the field. Highlight the original contributions your paper makes, whether it’s a novel approach, new insights, or addressing a gap in the literature. Demonstrating the novelty of your work will capture the editor’s attention.
  • Fit with the Journal : Explain why your research is a good fit for the target journal. Refer to recent articles published in the journal that are related to your topic and discuss how your research complements or extends those works. Aligning your paper with the journal’s scope and objectives enhances your chances of acceptance.
  • Addressing Specific Points : If the journal’s author guidelines include specific requirements, address them in your cover letter. This shows that you have read and followed their guidelines carefully. For example, if the journal requires you to highlight the practical implications of your research, briefly mention these in your letter.
  • Previous Engagement : If you have presented your research at a conference, workshop, or seminar, or if it has been previously reviewed (e.g., as a preprint), mention it in the cover letter. This indicates that your work has already undergone some scrutiny and may strengthen its appeal to the journal.
  • Declaration of Originality : State that the paper is original, has not been published elsewhere, and is not under simultaneous consideration by any other publication. This declaration reassures the editor that your work meets the journal’s submission policies.
  • Contact Information : Provide your contact details, including email and phone number, and express your willingness to address any queries or provide additional information if needed.
  • Expression of Gratitude : Thank the editor for their time and consideration in reviewing your submission.

In conclusion, a well-crafted cover letter complements your research paper and convinces the journal’s editor of the significance and originality of your work. It should provide a succinct overview of your research, highlight its relevance to the journal’s scope, and address any specific points raised in the author guidelines. A compelling cover letter increases the likelihood of your paper being seriously considered for publication.

You may also like: International Publishing: Expanding Your Reach Beyond Borders

The peer review process is a crucial step in scholarly publishing, designed to ensure the quality, accuracy, and validity of research papers before they are accepted for publication. After you submit your manuscript to a journal, it is sent to peer reviewers who are experts in your field. These reviewers carefully assess your work, providing feedback and recommendations to the editor. Navigating the peer review process requires patience, open-mindedness, and a willingness to engage constructively with reviewers. Here’s a detailed explanation of this step:

  • Submission and Assignment : Once you submit your paper, the journal’s editorial team performs an initial screening to check if it aligns with the journal’s scope and guidelines. If it does, the editor assigns peer reviewers who have expertise in the subject matter of your research.
  • Reviewing Process : The peer reviewers evaluate your paper’s methodology, data analysis, conclusions, and overall contribution to the field. They may assess the clarity of your writing, the strength of your arguments, and the relevance of your findings. Reviewers also look for potential flaws or limitations in your study.
  • Reviewer Feedback : After the reviewers have thoroughly examined your paper, they provide feedback to the editor. The feedback usually falls into three categories: acceptance, revision, or rejection. In the case of a revision, reviewers may specify the changes they believe are necessary for the paper to meet the journal’s standards.
  • Editor’s Decision : Based on the reviewers’ feedback, the editor makes a decision about your paper. The decision could be acceptance, conditional acceptance pending minor revisions, major revisions, or rejection. Even if your paper is rejected, remember that the peer review process provides valuable feedback that can help improve your research.
  • Responding to Reviewer Comments : If your paper requires revisions, carefully read the reviewer comments and suggestions. Address each comment in a respectful and diligent manner, providing clear responses and incorporating the necessary changes into your manuscript.
  • Revised Manuscript Submission : Submit the revised version of your paper along with a detailed response to the reviewers’ comments. Explain the changes you made and how you addressed their concerns. This demonstrates your commitment to enhancing the quality of your research.
  • Reiteration of the Review Process : Depending on the revisions, the editor may send your paper back to the same reviewers or to new reviewers for a second round of evaluation. This process continues until the paper is either accepted for publication or deemed unsuitable for the journal.
  • Acceptance and Publication : If your paper successfully navigates the peer review process and meets the journal’s standards, it will be accepted for publication. Congratulations on reaching this milestone!

In conclusion, the peer review process is an essential part of academic publishing. It involves expert evaluation of your research by peers in the field, who provide valuable feedback to improve the quality and rigour of your paper. Embrace the feedback with an open mind, respond diligently to reviewer comments, and be patient during the review process. Navigating peer review is a collaborative effort to ensure that only high-quality and significant research contributes to the scholarly community.

Receiving a rejection of your research paper can be disheartening, but it is a common and normal part of the publication process. It’s important to remember that rejection does not necessarily reflect the quality of your work; many groundbreaking studies have faced rejection before finding the right publication platform. Handling rejections requires resilience, a growth mindset, and the willingness to learn from the feedback. Here’s a comprehensive explanation of this step:

  • Understanding the Decision : When you receive a rejection, take the time to carefully read the editor’s decision letter and the feedback provided by the peer reviewers. Understand the reasons for the rejection and the specific concerns raised about your paper.
  • Embrace Constructive Feedback : Peer reviewer comments can provide valuable insights into the strengths and weaknesses of your research. Embrace the feedback constructively, recognising that it presents an opportunity to improve your work.
  • Assessing Revisions : If the decision letter includes suggestions for revisions, carefully consider whether you agree with them. Evaluate if implementing these revisions aligns with your research goals and the core message of your paper.
  • Revising the Manuscript : If you decide to make revisions based on the feedback, thoroughly address the reviewer’s comments and consider making any necessary improvements to your research. Pay close attention to the areas identified by the reviewers as needing improvement.
  • Resubmission or Alternative Journals : After revising your manuscript, you have the option to either resubmit it to the same journal (if allowed) or consider submitting it to a different journal. If you choose the latter, ensure that the new journal aligns with your research topic and scope.
  • Tailoring the Submission : When submitting to a different journal, tailor your manuscript and cover letter to fit the specific requirements and preferences of that journal. Highlight the relevance of your research to the journal’s readership and address any unique guidelines they have.
  • Don’t Lose Hope : Rejections are a natural part of the publication process, and many researchers face them at some point in their careers. It is essential not to lose hope and to remain persistent in pursuing publication opportunities.
  • Learn and Improve : Use the feedback from the rejection as a learning experience. Identify areas for improvement in your research, writing, and presentation. This will help you grow as a researcher and improve your chances of acceptance in the future.
  • Seek Support and Guidance : If you are struggling to navigate the publication process or interpret reviewer comments, seek support from colleagues, mentors, or academic advisors. Their insights can provide valuable guidance and encouragement.

In conclusion, handling rejections is a normal part of the publication journey. Approach rejection with a growth mindset, embracing the feedback provided by reviewers as an opportunity to improve your research. Revise your manuscript diligently, and consider submitting it to other journals that align with your research. Remember that persistence, learning from feedback, and seeking support are key to achieving success in the scholarly publishing process.

Unlocking Success: How to Sell Books Online Effectively

After successfully navigating the peer review process and receiving acceptance for your research paper, you are one step closer to seeing your work published in a reputable journal. However, before your paper can be published, you need to prepare it for production according to the journal’s specific requirements. This step is essential to ensuring that your paper meets the journal’s formatting and style guidelines and is ready for dissemination to the academic community. Here’s a comprehensive explanation of this step:

  • Reviewing the Acceptance Letter : Start by carefully reviewing the acceptance letter from the journal’s editor. This letter will outline any final comments or suggestions from the reviewers that need to be addressed before publication.
  • Addressing Reviewer Comments : If there are any outstanding revisions or clarifications requested by the reviewers, address them promptly and thoroughly. Reviewer feedback plays a crucial role in enhancing the quality and clarity of your paper, so it’s essential to give each comment due attention.
  • Adhering to Journal Guidelines : Familiarise yourself with the journal’s production requirements and guidelines for formatting, referencing, and figure preparation. Ensure that your paper adheres to these guidelines to avoid delays in the publication process.
  • Finalising the Manuscript : Once all revisions have been made and the paper aligns with the journal’s requirements, finalise your manuscript. Carefully proofread the entire paper to catch any remaining grammatical errors or typos.
  • Handling Permissions and Copyright : If your paper includes copyrighted material (e.g., figures, tables, or excerpts from other publications), obtain permission from the original copyright holders to reproduce that content in your paper. This is crucial to avoid potential copyright infringement issues.
  • Completing Authorship and Affiliation Details : Verify that all authors’ names, affiliations, and contact information are accurate and consistent. Ensure that the corresponding author is clearly identified for communication with the journal during the publication process.
  • Submitting the Final Manuscript : Follow the journal’s instructions to submit the final version of your manuscript along with any required supplementary materials. This may include high-resolution figures, data sets, or additional supporting information.
  • Waiting for Publication : After submitting the final version, the journal’s production team will work on typesetting, formatting, and preparing your paper for publication. This process may take some time, depending on the journal’s workflow and schedule.
  • Proofing and Corrections : Once the typeset proof is ready, carefully review it for any formatting errors or typographical mistakes. Respond to the journal promptly with any necessary corrections or clarifications.
  • Copyright Transfer : If required by the journal, complete the copyright transfer agreement, granting the publisher the right to publish and distribute your work.
  • Publication Date and DOI : Your paper will be assigned a publication date and a Digital Object Identifier (DOI), a unique alphanumeric string that provides a permanent link to your paper, making it easily accessible and citable.

In conclusion, preparing your research paper for publication involves carefully addressing reviewer comments, adhering to journal guidelines, handling permissions and copyright issues, and submitting the final version for production. Thoroughly reviewing and finalising your paper will ensure its readiness for dissemination to the academic community.

Congratulations on successfully publishing your research paper! Now, it’s time to promote your work to reach a broader audience and increase its visibility within the academic and research communities. Effective promotion can lead to more citations, recognition, and potential collaborations. Here’s a comprehensive explanation of this step:

  • Share on Social Media : Utilise social media platforms to announce the publication of your paper. Share the title, abstract, and a link to the paper on your professional profiles, such as  LinkedIn ,  Twitter , or  ResearchGate . Engage with your followers to generate interest and discussion.
  • Collaborate with Colleagues : Collaborate with your co-authors and colleagues to promote the paper collectively. Encourage them to share the publication on their social media and academic networks. A collaborative effort can increase the paper’s visibility and reach.
  • Academic Networks and Research Platforms : Upload your paper to academic networks and research platforms like Academia.edu, Mendeley, or Google Scholar. This allows other researchers to discover and cite your work more easily.
  • Email and Newsletters : Inform your professional contacts and research network about the publication through email announcements or newsletters. Consider writing a brief summary of your paper’s key findings and significance to entice readers to access the full paper.
  • Research Blog or Website : If you have a personal research blog or website, create a dedicated post announcing the publication. Provide a summary of your research and its implications in a reader-friendly format.
  • Engage with the Academic Community : Participate in academic conferences, workshops, and seminars to present your research. Networking with other researchers and sharing your findings in person can create buzz around your paper.
  • Press Releases : If your research has practical implications or societal relevance, consider working with your institution’s press office to issue a press release about your paper. This can attract media attention and increase public awareness.
  • Academic and Research Forums : Engage in online academic and research forums to discuss your findings and share insights. Be active in relevant discussions to establish yourself as an expert in your field.
  • Researcher Profiles : Keep your researcher profiles, such as those on Google Scholar, ORCID, and Scopus, updated with your latest publications. This ensures that your paper is indexed and visible to other researchers searching for related work.
  • Altmetrics : Monitor the altmetrics of your paper to track its online attention, including mentions, downloads, and social media shares. Altmetrics provide additional metrics beyond traditional citations, giving you insights into your paper’s broader impact.
  • Engage with Feedback : Respond to comments and questions from readers who engage with your paper. Engaging in scholarly discussions can further promote your work and demonstrate your expertise in the field.

In conclusion, promoting your published paper is an essential step to increasing its visibility, impact, and potential for further collaboration. Utilise social media, academic networks, collaborations with colleagues, and engagement with the academic community to create interest in your work. Effective promotion can lead to more citations and recognition, enhancing the overall impact of your research.

Read: Here’s a list of 10 best short story books to read in 2023 that you can’t miss.

Publishing a research paper is a rewarding experience that requires dedication, perseverance, and attention to detail. By following this essential guide, you can navigate the publication process successfully and contribute valuable knowledge to your field of study.

Remember, each publication is a stepping stone in your academic journey, and even rejections provide opportunities for growth. Embrace the process, continue refining your research, and celebrate your contributions to advancing scientific knowledge. Good luck on your journey to academic success!

  • About The Author
  • Latest Posts

' src=

Manan Sahni

List of 10 Book Binding methods that you must know

You May Also Like

What are the Advantages & Disadvantages of Print on Demand (POD)

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Locations and Hours

Search the Knowledgebase

  •   Chat with Us M‑F, 9am‑5pm
  •   Call Us (410) 955-3410
  •   Email Us
  •   Find an Expert
  •   Report a Problem
  •   Suggest a Purchase
  •   Locations and Hours

Where is the best place to publish my research?

Identifying the best place to publish research involves consideration of many factors, including:

  • Journal aim and scope
  • Publication of similar work
  • Journal rankings and measures of journal impact
  • Demonstration of good publishing practices

Welch compiled the information below to help guide a researcher through the decision-making process.

 Think. Check. Submit.

“Think. Check. Submit. is a campaign to help researchers identify trusted journals for their research.  It is a simple checklist researchers can use to assess the credentials of a journal or publisher.”

 Retrieved from  http://thinkchecksubmit.org/about/

 Locating Journals

  • Welch Medical Library Journals by Subject Select the subject to view available journals by subject. Journals are sorted according to the following journal rankings: Journal Impact Factor, Citescore, Scimago Journal & Country Rank, and Source Normalized Impact per Paper (SNIP).
  • Elsevier Journal Finder Enter the unpublished article’s title and abstract info into this tool to determine possible sites for publication. Note: Covers only journals published by Elsevier.
  • Journal/Author Name Estimator Enter the unpublished article’s title and/or abstract to determine possible sites for publication. It only covers journals in MEDLINE, regardless of publisher.
  • Springer Journal Suggester Enter the unpublished article’s title and abstract into this tool to determine possible sites for publication. Note: Covers only journals published by Springer.
  • HelioBlast A search tool that allows you to paste in text and identify similar text in MEDLINE. Note: Only covers journals in MEDLINE.
  • Directory of Open Access Journals (DOAJ) Use the Browse Subjects feature, and select Journals to find quality Open Access Journals. Note: Covers only Open Access Journals.
  • JANE Relies on data in PubMed to help you determine where to publish your research. Note: JANE tags journals indexed and found in MEDLINE and DOAJ.
  • Edanz Journal Selector Allows you to search by keyword, journal name, abstract and more. Pulls results from publicly available data sources like Thomson Reuters’ annual Journal Citation Reports®.

Journal Metrics

  • InCites™ Journal Citation Reports® Find a variety of metrics for journal quality, including impact factor, immediacy index, Eigenfactor score, and article influence score. Searchable by journal name and browsable by research category.
  • SCImago Journal & Country Rank Access journal rankings based on citation data from the Scopus database. Journals can be grouped by major thematic areas and specific subject categories.
  • Scopus In search results, click on the journal title to view journal metrics. Scopus will give you SJR (SCImago Journal Rank), IPP (Impact per Publication), and SNIP (Source Normalized Impact per Paper) measurements.
  • Web of Science In search results, click on the journal title to view journal metrics. In Web of Science, view its IF (Impact Factor) and JCR (Journal Citation Reports) rankings.
  • Eigenfactor Find an article’s Eigenfactor ®  and  Article Influence Score ®  to evaluate the influence of a journal.

General Information About Journals

  • JHU Catalog (Catalyst) : Use the “Journal title” search in the catalog to determine if the JHU Libraries subscribe to a particular journal.
  • Journals in PubMed and Other NCBI Databases : Search the catalog of the National Library of Medicine (NLM) for journals referenced by NCBI databases, including PubMed.  Each catalog record indicates key journal details, including ISSN, abbreviations, and whether its articles are currently indexed for MEDLINE.
  • Ulrich's Periodical Directory : Search this comprehensive database of serial publications for key details about journals, including previous titles, publishers, ISSNs, URLs, indexing, and English versions of foreign titles.

  Search for Open Access Journals

  • Enago Open Access Journal Finder : Paste in content from your publication to access a shortlist of quality Open Access Journals that are relevant to you. This tool searches against DOAJ’s list of journals.

Publishing in an Open Access Journal allows you to share your work widely and bypass permission and paywall barriers so the public has greater access to your work. However, predatory publishers, many disguised as Open Access Journals, may solicit you for your research. If you encounter a potential predatory publisher, take the time to analyze the journal or publisher before submitting work to make sure they are not a predatory journal or publisher. Use the Think.Check.Submit method to assess a potential journal.

You can also take the following steps:

  • Search DOAJ and MEDLINE to see if the journal is listed
  • Search Google for the journal/publisher
  • Look up the location of the publisher to see what appears on a map
  • Look for spelling errors on the publisher's website and in the solicitation email message
  • Check the editorial board for names you may recognize
  • Ask your Welch informationist

Find the right journal

If you know the name of the journal you want to submit to, view all journals .

If you would like us to recommend the journal/s that are best suited to publish your article, use our Journal Suggester . All you need is an abstract or description of your article to find matching journals.

Tips for finding the right journal

Submitting a manuscript to unsuitable journals is a common mistake, and can cause journal editors to reject the manuscript before peer review. Choosing a relevant journal makes it more likely that your manuscript will be accepted. Some factors to consider are:

  • The topics the journal publishes. If your research is applied, target a journal that publishes applied science; if it is clinical, target a clinical journal; if it is basic research, target a journal that publishes basic research. You may find it easier to browse a list of journals by subject area.
  • The journal's audience. Will researchers in related fields be interested in your study? If so, a journal that covers a broad range of topics may be best. If only researchers in your field are likely to want to read your study, then a field-specific journal would be best.
  • The types of articles the journal publishes. If you are looking to publish a review, case study or a theorem, ensure that your target journal accepts theses type of manuscripts.
  • The reputation of the journal. A journal's Impact Factor is one measure of its reputation, but not always the most important. You should consider the prestige of the authors that publish in the journal and whether your research is of a similar level.
  • What are your personal requirements: Does the journal usually publish articles quickly; is the "time to publication" important for you?

When looking for suitable journals in which to publish your own results, start with what you have read. You should already be familiar with published studies that are similar to yours. Which journal were those studies published in? The same journals may be appropriate for your manuscript, so make a list of them. If you need more journals to consider, you can do literature searches for other published articles in your field that are similar in scope and impact on the field, and see where they were published.

When you have a list of potential target journals, visit and read the websites for these journals. Every journal should have a page that provides instructions for authors, including information on many of the factors listed above.

Journals on your list that are not a match for your manuscript based on the factors listed above should be eliminated from consideration. Among the remaining journals, it is likely that one or more will stand out as a very good candidate. Consider if any additional experiments will give you a better chance of achieving publication in your top choice. If you are in a hurry to publish, consider which of the remaining journals offers rapid publication; if none do, consider which has the highest publication frequency. If your main goal is to reach as many readers as possible, strongly consider candidate journals that provide an open access option. Open access allows anyone to read your article, free of charge, online, which can make your article more likely to be read and cited.

When you have chosen the journal you think is the best fit for your study and your goals, it is usually a good idea to also identify your second- and third-choice journals. That way, if your paper is rejected from your first-choice journal, you can quickly submit to your second-choice journal.

How to find the right journal for your research (using actual data)

publishing my research paper

Joanna Wilkinson

Want to help your research flourish? We share tips for using publisher-neutral data and statistics to find the right journal for your research paper.

The right journal helps your research flourish. It puts you in the best position to reach a relevant and engaged audience, and can extend the impact of your paper through a high-quality publishing process.

Unfortunately, finding the right journal is a particular pain point for inexperienced authors and those who publish on interdisciplinary topics. The sheer number of journals published today is one reason for this. More than 42,000 active scholarly peer-reviewed journals were published in 2018 alone, and there’s been accelerated growth of more than 5% in recent years.

The overwhelming growth in journals has left many researchers struggling to find the best home for their manuscripts which can be a daunting prospect after several long months producing research. Submitting to the wrong journal can hinder the impact of your manuscript. It could even result in a series of rejections, stalling both your research and career. Conversely, the right journal can help you showcase your research to the world in an environment consistent with your values.

Keep reading to learn how solutions like Journal Citation Reports ™ (JCR) and Master Journal List   can help you find the right journal for your research in the fastest possible time.

What to look for in a journal and why

To find the right journal for your research paper, it’s important to consider what you need and want out of the publishing process.

The goal for many researchers is to find a prestigious, peer-reviewed journal to publish in. This might be one that can support an application for tenure, promotion or future funding. It’s not always that simple, however. If your research is in a specialized field, you may want to avoid a journal with a multidisciplinary focus. And if you have ground-breaking results, you may want to pay attention to journals with a speedy review process and frequent publication schedule. Moreover, you may want to publish your paper as open access so that it’s accessible to everyone—and your institution or funder may also require this.

With so many points to consider, it’s good practice to have a journal in mind before you start writing. We published an earlier post to help you with this: Find top journals in a research field, step-by-step guide . Check it out to discover where the top researchers in your field are publishing.

Already written your manuscript? No problem: this blog will help you use publisher-neutral data and statistics to choose the right journal for your paper.

First stop: Manuscript Matcher in the Master Journal List

Master Journal List Manuscript Matcher is the ultimate place to begin your search for journals. It is a free tool that helps you narrow down your journal options based on your research topic and goals.

Find the right journal with Master Journal List

Pairing your research with a journal

Manuscript Matcher, also available via EndNote™ , provides a list of relevant journals indexed in the Web of Science™ . First, you’ll want to input your title and abstract (or keywords, if you prefer). You can then filter your results using the options shown on the left-hand sidebar, or simply click on the profile page of any journal listed.

Each journal page details the journal’s coverage in the Web of Science. Where available, it may also display a wealth of information, including:

  • open access information (including whether a journal is Gold OA)
  • the journal’s aims and scope
  • download statistics
  • average number of weeks from submission to publication, and
  • peer review information (including type and policy)

Ready to try Manuscript Matcher? Follow this link .

journal for labout market research

Identify the journals that are a good topical fit for your research using Manuscript Matcher. You can then move to Journal Citation Reports to understand their citation impact, audience and open access statistics.

Find the right journal with Journal Citation Reports

Journal Citation Reports   is the most powerful solution for journal intelligence. It uses transparent, publisher-neutral data and statistics to provide unique insight into a journal’s role and influence. This will help you produce a definitive list of journals best-placed to publish your findings, and more.

publishing my research paper

Three data points exist on every journal page to help you assess a journal as a home for your research. These are: citation metrics, article relevance and audience.

Citation Metrics

The Journal Impact Factor™ (JIF) is included as part of the rich array of citation metrics offered on each journal page. It shows how often a journal’s recently published material is cited on average.

Learn how the JIF is calculated in this guide .

It’s important to note that the JIF has its limitations and no researcher should depend on the impact factor alone when assessing the usefulness or prestige of a journal. Journal Citation Reports helps you understand the context of a journal’s JIF and how to use the metric responsibly.

The JCR Trend Graph, for example, places the JIF in the context of time and subject category performance. Citation behavior varies across disciplines, and journals in JCR may be placed across multiple subject categories depending on the scope of their content. The Trend Graph shows you how the journal performs against others in the same subject category. It also gives you an understanding of how stable that performance is year-on-year.

You can learn more about this here .

The 2021 JCR release introduced a new, field-normalized metric for measuring the citation impact of a journal’s recent publications. By normalizing for different fields of research and their widely varying rates of publication and citation, the Journal Citation Indicator provides a single journal-level metric that can be easily interpreted and compared across disciplines. Learn more about the Journal Citation Indicator here .

Article relevance

The Contributing Items section in JCR demonstrates whether the journal is a good match for your paper. It can also validate the information you found in the Manuscript Matcher. You can view the full list in the Web of Science by selecting “Show all.”

JCR helps you understand the scholarly community engaging with a journal on both a country and an institutional level. This information provides insight on where in the world your own paper might have an impact if published in that particular journal. It also gives you a sense of general readership, and who you might be talking to if you choose that journal.

Start using Journal Citation Reports today .

Ready to find the right journal for your paper?

The expansion of scholarly journals in previous years has made it difficult for researchers to choose the right journal for their research. This isn’t a good position to be in when you’ve spent many long months preparing your research for the world. Journal Citation Reports , Manuscript Matcher by Master Journal List  and the Web of Science  are all products dedicated to helping you find the right home for your paper. Try them out today and help your research flourish.

Stay connected

Want to learn more?  You can also read related articles in our Research Smarter series,  with guidance on finding the relevant papers for your research  and how you can save hundreds of hours in the writing process . You can also read about the 2022 JCR release here . Finally, subscribe to receive our latest news, resources and events to help make your research journey a smart one.

Subscribe to receive regular updates on how to research smarter

Related posts

Demonstrating socioeconomic impact – a historical perspective of ancient wisdom and modern challenges.

publishing my research paper

Unlocking U.K. research excellence: Key insights from the Research Professional News Live summit

publishing my research paper

For better insights, assess research performance at the department level

publishing my research paper

High School Guide: How to Publish a Research Paper in 5 Easy Steps

 alt=

Indigo Research Team

Work on a research project

We understand how overwhelming the idea of publishing research as a high schooler may seem. It’s true, that the process of submitting and publishing a paper can be very complex and daunting. It needs a lot of preparation and perseverance.

However, publishing research increasingly becomes the " gold " that a college Admission Officer is looking for. Publication in leading journals, like Concord Review, or International Journal for High School Students can showcase your ability and determination to a college admission officer when you apply for college.

Although it seems complicated, worry not! We’ll simplify the steps for you.

Process of publishing a research paper

‍ This article will break down 5 steps on how to publish a research paper.

1. Find the Right Mentor for Your Research Purposes

Can you write a research paper on your own? Yes, you can. But, it would be extremely difficult. Finding the perfect mentor is key to having a smooth ride. As an aspiring high school student, you'll want guidance from someone who shares your intellectual interests and can offer expertise in your field of study. Mentors can also help you find information about publishing research as well as where to publish a research paper.

“If you cannot see where you are going, find someone who has been there before.” - J.L. Norris

To find a mentor, first , you need to reflect on your goals and needs. Ask yourself these questions:

• Do you want help developing research questions? • Feedback on a draft? • Opportunities to co-author a paper?

Defining what you hope to gain from mentorship will help determine who may be the best fit.

‍ Secondly, once you know (in general) who you want to work with, you can start your search by browsing the faculty profiles on your school’s website or research database like academia.edu or you can also utilize social media platforms like LinkedIn. Look for professors with expertise in your areas of interest. 

It’s important to reach out in the right manner for them to notice you. Remember, you are the one who needs their help and not the other way around. Therefore, the way you reach out online is very crucial to get their attention. Keep in mind that you should do thorough research about this person before sending a message. Here’s an example of a short template message you can use for initial communication on LinkedIn:

Dear Professor [Last Name],

I'm [Your Name], a high school student passionate about [Your Research Interest]. Impressed by your work in [Their Field]. I'm very intrigued by your argumentation about [Topic]. I’m looking for a mentorship for a project I'm planning. Your guidance would be invaluable. Could we discuss this possibility

Looking forward to hearing from you. Best,

[Your Name] ‍

Third, if you still can’t find an available mentor, you should also expose yourself to new ideas by attending guest lectures, joining online forums, and reading publications in your field. You can also find mentors who have published research papers that you are interested in. Engage with the material by asking questions. This demonstrates your passion for learning and can lead to finding a mentor.

While finding a mentor can be a bit of a hassle, you can check out our mentors and find the mentor of your preferences. After you have found your mentor, you can start doing the second step.

2. Choose an Exciting Research Topic That Interests You

Choosing topics that you are deeply passionate about or interested in is the key to keeping you motivated until the end of the research. 

Discover Your Passions or Interests

There are many passion project ideas that you can explore. But you can always start by asking:

• What do you love to read about or discuss with friends?  • Are there any social issues you care deeply about?  • What are the topics related to your hobbies, favorite books or movies, sports teams, and travel destinations? • Or do you like more of the popular subjects in your school like biology, chemistry, computer science, psychology, or genetics? Look for topics that spark your curiosity or creativity.

Find an Opportunity Gap

Review what research has already been done on topics that interest you. Look for areas that could use more exploration or that you could investigate further. Think about new angles, questions, or perspectives you might bring to the subject. Finding an unexplored niche in a broader topic area can lead to an exciting, original research paper.

Talk to Your Mentor

Discuss ideas with your mentor, especially if you have an area of study in mind but need guidance narrowing down to a specific, manageable research question. Your mentor may be able to suggest topics that would work well for a research paper and align with standards or curriculum. They can also help determine if a topic idea is too broad or narrow, or if resources will be readily available.

Application of the Research in Reality

Choose a topic that could have real-world implications or applications. How can your research paper help real-world problems?

Think about local issues in your community or school that could be addressed or improved through research. Papers investigating practical solutions or the effectiveness of policies, programs, or interventions tend to be very compelling.

publishing my research paper

3. Choose the Right Journal or Conference to Publish Your Research Paper

“Where can I publish my research paper?” ‍

You can publish your research paper through respectable journals, conferences, or research paper competitions. It's important to have a goal in mind before starting any research paper. Determining this in the beginning might help you to stay on course and motivated. 

Consider the Scope of the Selected Journals

Decide the scope then look for publications that focus on your area of study or research topic. Are you looking to publish a research paper in an international journal? Or are you aiming for more local journals? 

Double-check that the journal accepts submissions from high school students and check their reputation. Aim high, but be realistic. See if any professors or mentors can recommend appropriate platforms. Review the editorial board and see if top researchers in your field are involved.

Examples of the journals that can publish your research paper as a high schooler include:

  • Concord Review  
  • The National High School Journal of Science
  • STEM Fellowship Journal
  • Journal of Student Research
  • Journal of High School Science (JHSS)
  • International Journal of High School Research (IJHSR)

“Where can I publish my research paper for free?” ‍

Here are some journals where you can submit your research paper for free, but be aware some of them require a publication fee:

  • Journal of Emerging Investigators (JEI)
  • Young Scientist Journal
  • Youth Medical Journal
  • Journal Research High School
  • Hope Humanities Journal
  • International Youth Neuroscience Association Journal
  • Whitman Journal of Psychology

Review Submission Guidelines

Once you’ve set your mind and chosen your goal, carefully read and follow the instructions for authors. Pay attention to formatting, abstract length, images, and anything else specified. Following the guidelines shows you understand publishing norms in your field.

4. Conduct Thorough Research, Write and Format Your Research Paper Properly

Now that you have selected a topic and compiled sources, it's time to dive into your research and start writing. Publishing a research paper in a journal requires thorough research and a properly formatted paper.

  • Analyze and read all of your resources and take notes on the key ideas, facts, questions, examples, data, quotes, and arguments that might be relevant to your research project. Keep it organized into an outline.
  • Determine your research question and consult with your mentor. Once you begin drafting your paper, be sure to paraphrase, summarize, and quote the right citation.  ‍
  • Carefully proofread and format your paper. Double-check for any spelling, grammar, or punctuation errors. Ensure your paper follows the recommended style guide for font type and size, spacing, margins, page numbers, headings, and image captions. ‍

Of course, writing a research paper is not as easy. If you need guidance, you can also try to join research programs that will allow you to finish the research paper easier.

5. Review Before Submitting Your Research Paper and Respond to Feedback

Once your paper is complete, it's time to share your work with the world.

Review Your Research Paper

Before making this incredible step, review your research paper once again. Have a teacher or mentor check your paper to ensure it meets the journal's standards. Put together a cover letter introducing yourself and your research. Explain the importance of your work and most importantly, why they need to publish your work.

Anticipate Feedback

Even after submitting, your work isn't done. Journals will send your paper out for peer review by experts in the field. Reviewers may suggest changes to strengthen your paper before it can be accepted. Don't get discouraged—even professional researchers incorporate feedback! Address each comment thoroughly and openly. Making revisions will improve your paper and help you become a better writer and researcher.

How Long Does it Take to Publish a Research Paper?

In general, the publication process can take several months to a year or more from the initial submission to final publication. It depends on the institutions and the availability of the peer reviewers. If your paper is accepted for publication, congratulations! If not, use the experience as an opportunity to improve. Carefully consider the feedback and see it as a chance to strengthen your methods, arguments, and writing. Don't hesitate to submit to another journal or work with your mentor to revise and resubmit.

That’s it! Congratulations on finishing all the steps!

Whether or not you get published, finishing the research paper is an achievement in itself. We hope that this article on how to publish a research paper will help you to get your research paper published. Remember that persistence, attention to detail, and a clear understanding of your target journal's guidelines are key. Stay determined and keep researching. You got this!

Need more guidance to do your research paper and most importantly, publish your paper? Don't worry, we've got you! At Indigo Research, we connect you with leading professors from renowned universities who are eager to mentor you and support you in publishing your research!

Click to discover more about how we can help!

  • 2 Peer Review
  • 3 Publication

Publish with IEEE

Where you publish matters. IEEE is a trusted source for researchers in academia, industry, and government. By publishing with IEEE, you will get the global prestige that high-quality research deserves. Authors are welcome to post their preprints to  TechRxiv . 

Video Tutorials

Gain essential tips to help you publish your research faster and more efficiently with quick video tutorials on a variety of useful topics.

Author Tools

Save time and effort with authoring tools and resources to help you write, prepare, and share your work more effectively.

Learn about authorship, citations, data reporting, and how to follow the ethical guidelines required in scientific publishing.

Save time and effort with authoring tools and resources to help you write, prepare, and share your work more effectively.

AI Index: State of AI in 13 Charts

In the new report, foundation models dominate, benchmarks fall, prices skyrocket, and on the global stage, the U.S. overshadows.

Illustration of bright lines intersecting on a dark background

This year’s AI Index — a 500-page report tracking 2023’s worldwide trends in AI — is out.

The index is an independent initiative at the Stanford Institute for Human-Centered Artificial Intelligence (HAI), led by the AI Index Steering Committee, an interdisciplinary group of experts from across academia and industry. This year’s report covers the rise of multimodal foundation models, major cash investments into generative AI, new performance benchmarks, shifting global opinions, and new major regulations.

Don’t have an afternoon to pore through the findings? Check out the high level here.

Pie chart showing 98 models were open-sourced in 2023

A Move Toward Open-Sourced

This past year, organizations released 149 foundation models, more than double the number released in 2022. Of these newly released models, 65.7% were open-source (meaning they can be freely used and modified by anyone), compared with only 44.4% in 2022 and 33.3% in 2021.

bar chart showing that closed models outperformed open models across tasks

But At a Cost of Performance?

Closed-source models still outperform their open-sourced counterparts. On 10 selected benchmarks, closed models achieved a median performance advantage of 24.2%, with differences ranging from as little as 4.0% on mathematical tasks like GSM8K to as much as 317.7% on agentic tasks like AgentBench.

Bar chart showing Google has more foundation models than any other company

Biggest Players

Industry dominates AI, especially in building and releasing foundation models. This past year Google edged out other industry players in releasing the most models, including Gemini and RT-2. In fact, since 2019, Google has led in releasing the most foundation models, with a total of 40, followed by OpenAI with 20. Academia trails industry: This past year, UC Berkeley released three models and Stanford two.

Line chart showing industry far outpaces academia and government in creating foundation models over the decade

Industry Dwarfs All

If you needed more striking evidence that corporate AI is the only player in the room right now, this should do it. In 2023, industry accounted for 72% of all new foundation models.

Chart showing the growing costs of training AI models

Prices Skyrocket

One of the reasons academia and government have been edged out of the AI race: the exponential increase in cost of training these giant models. Google’s Gemini Ultra cost an estimated $191 million worth of compute to train, while OpenAI’s GPT-4 cost an estimated $78 million. In comparison, in 2017, the original Transformer model, which introduced the architecture that underpins virtually every modern LLM, cost around $900.

Bar chart showing the united states produces by far the largest number of foundation models

What AI Race?

At least in terms of notable machine learning models, the United States vastly outpaced other countries in 2023, developing a total of 61 models in 2023. Since 2019, the U.S. has consistently led in originating the majority of notable models, followed by China and the UK.

Line chart showing that across many intellectual task categories, AI has exceeded human performance

Move Over, Human

As of 2023, AI has hit human-level performance on many significant AI benchmarks, from those testing reading comprehension to visual reasoning. Still, it falls just short on some benchmarks like competition-level math. Because AI has been blasting past so many standard benchmarks, AI scholars have had to create new and more difficult challenges. This year’s index also tracked several of these new benchmarks, including those for tasks in coding, advanced reasoning, and agentic behavior.

Bar chart showing a dip in overall private investment in AI, but a surge in generative AI investment

Private Investment Drops (But We See You, GenAI)

While AI private investment has steadily dropped since 2021, generative AI is gaining steam. In 2023, the sector attracted $25.2 billion, nearly ninefold the investment of 2022 and about 30 times the amount from 2019 (call it the ChatGPT effect). Generative AI accounted for over a quarter of all AI-related private investments in 2023.

Bar chart showing the united states overwhelming dwarfs other countries in private investment in AI

U.S. Wins $$ Race

And again, in 2023 the United States dominates in AI private investment. In 2023, the $67.2 billion invested in the U.S. was roughly 8.7 times greater than the amount invested in the next highest country, China, and 17.8 times the amount invested in the United Kingdom. That lineup looks the same when zooming out: Cumulatively since 2013, the United States leads investments at $335.2 billion, followed by China with $103.7 billion, and the United Kingdom at $22.3 billion.

Infographic showing 26% of businesses use AI for contact-center automation, and 23% use it for personalization

Where is Corporate Adoption?

More companies are implementing AI in some part of their business: In surveys, 55% of organizations said they were using AI in 2023, up from 50% in 2022 and 20% in 2017. Businesses report using AI to automate contact centers, personalize content, and acquire new customers. 

Bar chart showing 57% of people believe AI will change how they do their job in 5 years, and 36% believe AI will replace their jobs.

Younger and Wealthier People Worry About Jobs

Globally, most people expect AI to change their jobs, and more than a third expect AI to replace them. Younger generations — Gen Z and millennials — anticipate more substantial effects from AI compared with older generations like Gen X and baby boomers. Specifically, 66% of Gen Z compared with 46% of boomer respondents believe AI will significantly affect their current jobs. Meanwhile, individuals with higher incomes, more education, and decision-making roles foresee AI having a great impact on their employment.

Bar chart depicting the countries most nervous about AI; Australia at 69%, Great Britain at 65%, and Canada at 63% top the list

While the Commonwealth Worries About AI Products

When asked in a survey about whether AI products and services make you nervous, 69% of Aussies and 65% of Brits said yes. Japan is the least worried about their AI products at 23%.  

Line graph showing uptick in AI regulation in the united states since 2016; 25 policies passed in 2023

Regulation Rallies

More American regulatory agencies are passing regulations to protect citizens and govern the use of AI tools and data. For example, the Copyright Office and the Library of Congress passed copyright registration guidance concerning works that contained material generated by AI, while the Securities and Exchange Commission developed a cybersecurity risk management strategy, governance, and incident disclosure plan. The agencies to pass the most regulation were the Executive Office of the President and the Commerce Department. 

The AI Index was first created to track AI development. The index collaborates with such organizations as LinkedIn, Quid, McKinsey, Studyportals, the Schwartz Reisman Institute, and the International Federation of Robotics to gather the most current research and feature important insights on the AI ecosystem. 

More News Topics

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 17 April 2024

The economic commitment of climate change

  • Maximilian Kotz   ORCID: orcid.org/0000-0003-2564-5043 1 , 2 ,
  • Anders Levermann   ORCID: orcid.org/0000-0003-4432-4704 1 , 2 &
  • Leonie Wenz   ORCID: orcid.org/0000-0002-8500-1568 1 , 3  

Nature volume  628 ,  pages 551–557 ( 2024 ) Cite this article

57k Accesses

3393 Altmetric

Metrics details

  • Environmental economics
  • Environmental health
  • Interdisciplinary studies
  • Projection and prediction

Global projections of macroeconomic climate-change damages typically consider impacts from average annual and national temperatures over long time horizons 1 , 2 , 3 , 4 , 5 , 6 . Here we use recent empirical findings from more than 1,600 regions worldwide over the past 40 years to project sub-national damages from temperature and precipitation, including daily variability and extremes 7 , 8 . Using an empirical approach that provides a robust lower bound on the persistence of impacts on economic growth, we find that the world economy is committed to an income reduction of 19% within the next 26 years independent of future emission choices (relative to a baseline without climate impacts, likely range of 11–29% accounting for physical climate and empirical uncertainty). These damages already outweigh the mitigation costs required to limit global warming to 2 °C by sixfold over this near-term time frame and thereafter diverge strongly dependent on emission choices. Committed damages arise predominantly through changes in average temperature, but accounting for further climatic components raises estimates by approximately 50% and leads to stronger regional heterogeneity. Committed losses are projected for all regions except those at very high latitudes, at which reductions in temperature variability bring benefits. The largest losses are committed at lower latitudes in regions with lower cumulative historical emissions and lower present-day income.

Similar content being viewed by others

publishing my research paper

Climate damage projections beyond annual temperature

Paul Waidelich, Fulden Batibeniz, … Sonia I. Seneviratne

publishing my research paper

Investment incentive reduced by climate damages can be restored by optimal policy

Sven N. Willner, Nicole Glanemann & Anders Levermann

publishing my research paper

Climate economics support for the UN climate targets

Martin C. Hänsel, Moritz A. Drupp, … Thomas Sterner

Projections of the macroeconomic damage caused by future climate change are crucial to informing public and policy debates about adaptation, mitigation and climate justice. On the one hand, adaptation against climate impacts must be justified and planned on the basis of an understanding of their future magnitude and spatial distribution 9 . This is also of importance in the context of climate justice 10 , as well as to key societal actors, including governments, central banks and private businesses, which increasingly require the inclusion of climate risks in their macroeconomic forecasts to aid adaptive decision-making 11 , 12 . On the other hand, climate mitigation policy such as the Paris Climate Agreement is often evaluated by balancing the costs of its implementation against the benefits of avoiding projected physical damages. This evaluation occurs both formally through cost–benefit analyses 1 , 4 , 5 , 6 , as well as informally through public perception of mitigation and damage costs 13 .

Projections of future damages meet challenges when informing these debates, in particular the human biases relating to uncertainty and remoteness that are raised by long-term perspectives 14 . Here we aim to overcome such challenges by assessing the extent of economic damages from climate change to which the world is already committed by historical emissions and socio-economic inertia (the range of future emission scenarios that are considered socio-economically plausible 15 ). Such a focus on the near term limits the large uncertainties about diverging future emission trajectories, the resulting long-term climate response and the validity of applying historically observed climate–economic relations over long timescales during which socio-technical conditions may change considerably. As such, this focus aims to simplify the communication and maximize the credibility of projected economic damages from future climate change.

In projecting the future economic damages from climate change, we make use of recent advances in climate econometrics that provide evidence for impacts on sub-national economic growth from numerous components of the distribution of daily temperature and precipitation 3 , 7 , 8 . Using fixed-effects panel regression models to control for potential confounders, these studies exploit within-region variation in local temperature and precipitation in a panel of more than 1,600 regions worldwide, comprising climate and income data over the past 40 years, to identify the plausibly causal effects of changes in several climate variables on economic productivity 16 , 17 . Specifically, macroeconomic impacts have been identified from changing daily temperature variability, total annual precipitation, the annual number of wet days and extreme daily rainfall that occur in addition to those already identified from changing average temperature 2 , 3 , 18 . Moreover, regional heterogeneity in these effects based on the prevailing local climatic conditions has been found using interactions terms. The selection of these climate variables follows micro-level evidence for mechanisms related to the impacts of average temperatures on labour and agricultural productivity 2 , of temperature variability on agricultural productivity and health 7 , as well as of precipitation on agricultural productivity, labour outcomes and flood damages 8 (see Extended Data Table 1 for an overview, including more detailed references). References  7 , 8 contain a more detailed motivation for the use of these particular climate variables and provide extensive empirical tests about the robustness and nature of their effects on economic output, which are summarized in Methods . By accounting for these extra climatic variables at the sub-national level, we aim for a more comprehensive description of climate impacts with greater detail across both time and space.

Constraining the persistence of impacts

A key determinant and source of discrepancy in estimates of the magnitude of future climate damages is the extent to which the impact of a climate variable on economic growth rates persists. The two extreme cases in which these impacts persist indefinitely or only instantaneously are commonly referred to as growth or level effects 19 , 20 (see Methods section ‘Empirical model specification: fixed-effects distributed lag models’ for mathematical definitions). Recent work shows that future damages from climate change depend strongly on whether growth or level effects are assumed 20 . Following refs.  2 , 18 , we provide constraints on this persistence by using distributed lag models to test the significance of delayed effects separately for each climate variable. Notably, and in contrast to refs.  2 , 18 , we use climate variables in their first-differenced form following ref.  3 , implying a dependence of the growth rate on a change in climate variables. This choice means that a baseline specification without any lags constitutes a model prior of purely level effects, in which a permanent change in the climate has only an instantaneous effect on the growth rate 3 , 19 , 21 . By including lags, one can then test whether any effects may persist further. This is in contrast to the specification used by refs.  2 , 18 , in which climate variables are used without taking the first difference, implying a dependence of the growth rate on the level of climate variables. In this alternative case, the baseline specification without any lags constitutes a model prior of pure growth effects, in which a change in climate has an infinitely persistent effect on the growth rate. Consequently, including further lags in this alternative case tests whether the initial growth impact is recovered 18 , 19 , 21 . Both of these specifications suffer from the limiting possibility that, if too few lags are included, one might falsely accept the model prior. The limitations of including a very large number of lags, including loss of data and increasing statistical uncertainty with an increasing number of parameters, mean that such a possibility is likely. By choosing a specification in which the model prior is one of level effects, our approach is therefore conservative by design, avoiding assumptions of infinite persistence of climate impacts on growth and instead providing a lower bound on this persistence based on what is observable empirically (see Methods section ‘Empirical model specification: fixed-effects distributed lag models’ for further exposition of this framework). The conservative nature of such a choice is probably the reason that ref.  19 finds much greater consistency between the impacts projected by models that use the first difference of climate variables, as opposed to their levels.

We begin our empirical analysis of the persistence of climate impacts on growth using ten lags of the first-differenced climate variables in fixed-effects distributed lag models. We detect substantial effects on economic growth at time lags of up to approximately 8–10 years for the temperature terms and up to approximately 4 years for the precipitation terms (Extended Data Fig. 1 and Extended Data Table 2 ). Furthermore, evaluation by means of information criteria indicates that the inclusion of all five climate variables and the use of these numbers of lags provide a preferable trade-off between best-fitting the data and including further terms that could cause overfitting, in comparison with model specifications excluding climate variables or including more or fewer lags (Extended Data Fig. 3 , Supplementary Methods Section  1 and Supplementary Table 1 ). We therefore remove statistically insignificant terms at later lags (Supplementary Figs. 1 – 3 and Supplementary Tables 2 – 4 ). Further tests using Monte Carlo simulations demonstrate that the empirical models are robust to autocorrelation in the lagged climate variables (Supplementary Methods Section  2 and Supplementary Figs. 4 and 5 ), that information criteria provide an effective indicator for lag selection (Supplementary Methods Section  2 and Supplementary Fig. 6 ), that the results are robust to concerns of imperfect multicollinearity between climate variables and that including several climate variables is actually necessary to isolate their separate effects (Supplementary Methods Section  3 and Supplementary Fig. 7 ). We provide a further robustness check using a restricted distributed lag model to limit oscillations in the lagged parameter estimates that may result from autocorrelation, finding that it provides similar estimates of cumulative marginal effects to the unrestricted model (Supplementary Methods Section 4 and Supplementary Figs. 8 and 9 ). Finally, to explicitly account for any outstanding uncertainty arising from the precise choice of the number of lags, we include empirical models with marginally different numbers of lags in the error-sampling procedure of our projection of future damages. On the basis of the lag-selection procedure (the significance of lagged terms in Extended Data Fig. 1 and Extended Data Table 2 , as well as information criteria in Extended Data Fig. 3 ), we sample from models with eight to ten lags for temperature and four for precipitation (models shown in Supplementary Figs. 1 – 3 and Supplementary Tables 2 – 4 ). In summary, this empirical approach to constrain the persistence of climate impacts on economic growth rates is conservative by design in avoiding assumptions of infinite persistence, but nevertheless provides a lower bound on the extent of impact persistence that is robust to the numerous tests outlined above.

Committed damages until mid-century

We combine these empirical economic response functions (Supplementary Figs. 1 – 3 and Supplementary Tables 2 – 4 ) with an ensemble of 21 climate models (see Supplementary Table 5 ) from the Coupled Model Intercomparison Project Phase 6 (CMIP-6) 22 to project the macroeconomic damages from these components of physical climate change (see Methods for further details). Bias-adjusted climate models that provide a highly accurate reproduction of observed climatological patterns with limited uncertainty (Supplementary Table 6 ) are used to avoid introducing biases in the projections. Following a well-developed literature 2 , 3 , 19 , these projections do not aim to provide a prediction of future economic growth. Instead, they are a projection of the exogenous impact of future climate conditions on the economy relative to the baselines specified by socio-economic projections, based on the plausibly causal relationships inferred by the empirical models and assuming ceteris paribus. Other exogenous factors relevant for the prediction of economic output are purposefully assumed constant.

A Monte Carlo procedure that samples from climate model projections, empirical models with different numbers of lags and model parameter estimates (obtained by 1,000 block-bootstrap resamples of each of the regressions in Supplementary Figs. 1 – 3 and Supplementary Tables 2 – 4 ) is used to estimate the combined uncertainty from these sources. Given these uncertainty distributions, we find that projected global damages are statistically indistinguishable across the two most extreme emission scenarios until 2049 (at the 5% significance level; Fig. 1 ). As such, the climate damages occurring before this time constitute those to which the world is already committed owing to the combination of past emissions and the range of future emission scenarios that are considered socio-economically plausible 15 . These committed damages comprise a permanent income reduction of 19% on average globally (population-weighted average) in comparison with a baseline without climate-change impacts (with a likely range of 11–29%, following the likelihood classification adopted by the Intergovernmental Panel on Climate Change (IPCC); see caption of Fig. 1 ). Even though levels of income per capita generally still increase relative to those of today, this constitutes a permanent income reduction for most regions, including North America and Europe (each with median income reductions of approximately 11%) and with South Asia and Africa being the most strongly affected (each with median income reductions of approximately 22%; Fig. 1 ). Under a middle-of-the road scenario of future income development (SSP2, in which SSP stands for Shared Socio-economic Pathway), this corresponds to global annual damages in 2049 of 38 trillion in 2005 international dollars (likely range of 19–59 trillion 2005 international dollars). Compared with empirical specifications that assume pure growth or pure level effects, our preferred specification that provides a robust lower bound on the extent of climate impact persistence produces damages between these two extreme assumptions (Extended Data Fig. 3 ).

figure 1

Estimates of the projected reduction in income per capita from changes in all climate variables based on empirical models of climate impacts on economic output with a robust lower bound on their persistence (Extended Data Fig. 1 ) under a low-emission scenario compatible with the 2 °C warming target and a high-emission scenario (SSP2-RCP2.6 and SSP5-RCP8.5, respectively) are shown in purple and orange, respectively. Shading represents the 34% and 10% confidence intervals reflecting the likely and very likely ranges, respectively (following the likelihood classification adopted by the IPCC), having estimated uncertainty from a Monte Carlo procedure, which samples the uncertainty from the choice of physical climate models, empirical models with different numbers of lags and bootstrapped estimates of the regression parameters shown in Supplementary Figs. 1 – 3 . Vertical dashed lines show the time at which the climate damages of the two emission scenarios diverge at the 5% and 1% significance levels based on the distribution of differences between emission scenarios arising from the uncertainty sampling discussed above. Note that uncertainty in the difference of the two scenarios is smaller than the combined uncertainty of the two respective scenarios because samples of the uncertainty (climate model and empirical model choice, as well as model parameter bootstrap) are consistent across the two emission scenarios, hence the divergence of damages occurs while the uncertainty bounds of the two separate damage scenarios still overlap. Estimates of global mitigation costs from the three IAMs that provide results for the SSP2 baseline and SSP2-RCP2.6 scenario are shown in light green in the top panel, with the median of these estimates shown in bold.

Damages already outweigh mitigation costs

We compare the damages to which the world is committed over the next 25 years to estimates of the mitigation costs required to achieve the Paris Climate Agreement. Taking estimates of mitigation costs from the three integrated assessment models (IAMs) in the IPCC AR6 database 23 that provide results under comparable scenarios (SSP2 baseline and SSP2-RCP2.6, in which RCP stands for Representative Concentration Pathway), we find that the median committed climate damages are larger than the median mitigation costs in 2050 (six trillion in 2005 international dollars) by a factor of approximately six (note that estimates of mitigation costs are only provided every 10 years by the IAMs and so a comparison in 2049 is not possible). This comparison simply aims to compare the magnitude of future damages against mitigation costs, rather than to conduct a formal cost–benefit analysis of transitioning from one emission path to another. Formal cost–benefit analyses typically find that the net benefits of mitigation only emerge after 2050 (ref.  5 ), which may lead some to conclude that physical damages from climate change are simply not large enough to outweigh mitigation costs until the second half of the century. Our simple comparison of their magnitudes makes clear that damages are actually already considerably larger than mitigation costs and the delayed emergence of net mitigation benefits results primarily from the fact that damages across different emission paths are indistinguishable until mid-century (Fig. 1 ).

Although these near-term damages constitute those to which the world is already committed, we note that damage estimates diverge strongly across emission scenarios after 2049, conveying the clear benefits of mitigation from a purely economic point of view that have been emphasized in previous studies 4 , 24 . As well as the uncertainties assessed in Fig. 1 , these conclusions are robust to structural choices, such as the timescale with which changes in the moderating variables of the empirical models are estimated (Supplementary Figs. 10 and 11 ), as well as the order in which one accounts for the intertemporal and international components of currency comparison (Supplementary Fig. 12 ; see Methods for further details).

Damages from variability and extremes

Committed damages primarily arise through changes in average temperature (Fig. 2 ). This reflects the fact that projected changes in average temperature are larger than those in other climate variables when expressed as a function of their historical interannual variability (Extended Data Fig. 4 ). Because the historical variability is that on which the empirical models are estimated, larger projected changes in comparison with this variability probably lead to larger future impacts in a purely statistical sense. From a mechanistic perspective, one may plausibly interpret this result as implying that future changes in average temperature are the most unprecedented from the perspective of the historical fluctuations to which the economy is accustomed and therefore will cause the most damage. This insight may prove useful in terms of guiding adaptation measures to the sources of greatest damage.

figure 2

Estimates of the median projected reduction in sub-national income per capita across emission scenarios (SSP2-RCP2.6 and SSP2-RCP8.5) as well as climate model, empirical model and model parameter uncertainty in the year in which climate damages diverge at the 5% level (2049, as identified in Fig. 1 ). a , Impacts arising from all climate variables. b – f , Impacts arising separately from changes in annual mean temperature ( b ), daily temperature variability ( c ), total annual precipitation ( d ), the annual number of wet days (>1 mm) ( e ) and extreme daily rainfall ( f ) (see Methods for further definitions). Data on national administrative boundaries are obtained from the GADM database version 3.6 and are freely available for academic use ( https://gadm.org/ ).

Nevertheless, future damages based on empirical models that consider changes in annual average temperature only and exclude the other climate variables constitute income reductions of only 13% in 2049 (Extended Data Fig. 5a , likely range 5–21%). This suggests that accounting for the other components of the distribution of temperature and precipitation raises net damages by nearly 50%. This increase arises through the further damages that these climatic components cause, but also because their inclusion reveals a stronger negative economic response to average temperatures (Extended Data Fig. 5b ). The latter finding is consistent with our Monte Carlo simulations, which suggest that the magnitude of the effect of average temperature on economic growth is underestimated unless accounting for the impacts of other correlated climate variables (Supplementary Fig. 7 ).

In terms of the relative contributions of the different climatic components to overall damages, we find that accounting for daily temperature variability causes the largest increase in overall damages relative to empirical frameworks that only consider changes in annual average temperature (4.9 percentage points, likely range 2.4–8.7 percentage points, equivalent to approximately 10 trillion international dollars). Accounting for precipitation causes smaller increases in overall damages, which are—nevertheless—equivalent to approximately 1.2 trillion international dollars: 0.01 percentage points (−0.37–0.33 percentage points), 0.34 percentage points (0.07–0.90 percentage points) and 0.36 percentage points (0.13–0.65 percentage points) from total annual precipitation, the number of wet days and extreme daily precipitation, respectively. Moreover, climate models seem to underestimate future changes in temperature variability 25 and extreme precipitation 26 , 27 in response to anthropogenic forcing as compared with that observed historically, suggesting that the true impacts from these variables may be larger.

The distribution of committed damages

The spatial distribution of committed damages (Fig. 2a ) reflects a complex interplay between the patterns of future change in several climatic components and those of historical economic vulnerability to changes in those variables. Damages resulting from increasing annual mean temperature (Fig. 2b ) are negative almost everywhere globally, and larger at lower latitudes in regions in which temperatures are already higher and economic vulnerability to temperature increases is greatest (see the response heterogeneity to mean temperature embodied in Extended Data Fig. 1a ). This occurs despite the amplified warming projected at higher latitudes 28 , suggesting that regional heterogeneity in economic vulnerability to temperature changes outweighs heterogeneity in the magnitude of future warming (Supplementary Fig. 13a ). Economic damages owing to daily temperature variability (Fig. 2c ) exhibit a strong latitudinal polarisation, primarily reflecting the physical response of daily variability to greenhouse forcing in which increases in variability across lower latitudes (and Europe) contrast decreases at high latitudes 25 (Supplementary Fig. 13b ). These two temperature terms are the dominant determinants of the pattern of overall damages (Fig. 2a ), which exhibits a strong polarity with damages across most of the globe except at the highest northern latitudes. Future changes in total annual precipitation mainly bring economic benefits except in regions of drying, such as the Mediterranean and central South America (Fig. 2d and Supplementary Fig. 13c ), but these benefits are opposed by changes in the number of wet days, which produce damages with a similar pattern of opposite sign (Fig. 2e and Supplementary Fig. 13d ). By contrast, changes in extreme daily rainfall produce damages in all regions, reflecting the intensification of daily rainfall extremes over global land areas 29 , 30 (Fig. 2f and Supplementary Fig. 13e ).

The spatial distribution of committed damages implies considerable injustice along two dimensions: culpability for the historical emissions that have caused climate change and pre-existing levels of socio-economic welfare. Spearman’s rank correlations indicate that committed damages are significantly larger in countries with smaller historical cumulative emissions, as well as in regions with lower current income per capita (Fig. 3 ). This implies that those countries that will suffer the most from the damages already committed are those that are least responsible for climate change and which also have the least resources to adapt to it.

figure 3

Estimates of the median projected change in national income per capita across emission scenarios (RCP2.6 and RCP8.5) as well as climate model, empirical model and model parameter uncertainty in the year in which climate damages diverge at the 5% level (2049, as identified in Fig. 1 ) are plotted against cumulative national emissions per capita in 2020 (from the Global Carbon Project) and coloured by national income per capita in 2020 (from the World Bank) in a and vice versa in b . In each panel, the size of each scatter point is weighted by the national population in 2020 (from the World Bank). Inset numbers indicate the Spearman’s rank correlation ρ and P -values for a hypothesis test whose null hypothesis is of no correlation, as well as the Spearman’s rank correlation weighted by national population.

To further quantify this heterogeneity, we assess the difference in committed damages between the upper and lower quartiles of regions when ranked by present income levels and historical cumulative emissions (using a population weighting to both define the quartiles and estimate the group averages). On average, the quartile of countries with lower income are committed to an income loss that is 8.9 percentage points (or 61%) greater than the upper quartile (Extended Data Fig. 6 ), with a likely range of 3.8–14.7 percentage points across the uncertainty sampling of our damage projections (following the likelihood classification adopted by the IPCC). Similarly, the quartile of countries with lower historical cumulative emissions are committed to an income loss that is 6.9 percentage points (or 40%) greater than the upper quartile, with a likely range of 0.27–12 percentage points. These patterns reemphasize the prevalence of injustice in climate impacts 31 , 32 , 33 in the context of the damages to which the world is already committed by historical emissions and socio-economic inertia.

Contextualizing the magnitude of damages

The magnitude of projected economic damages exceeds previous literature estimates 2 , 3 , arising from several developments made on previous approaches. Our estimates are larger than those of ref.  2 (see first row of Extended Data Table 3 ), primarily because of the facts that sub-national estimates typically show a steeper temperature response (see also refs.  3 , 34 ) and that accounting for other climatic components raises damage estimates (Extended Data Fig. 5 ). However, we note that our empirical approach using first-differenced climate variables is conservative compared with that of ref.  2 in regard to the persistence of climate impacts on growth (see introduction and Methods section ‘Empirical model specification: fixed-effects distributed lag models’), an important determinant of the magnitude of long-term damages 19 , 21 . Using a similar empirical specification to ref.  2 , which assumes infinite persistence while maintaining the rest of our approach (sub-national data and further climate variables), produces considerably larger damages (purple curve of Extended Data Fig. 3 ). Compared with studies that do take the first difference of climate variables 3 , 35 , our estimates are also larger (see second and third rows of Extended Data Table 3 ). The inclusion of further climate variables (Extended Data Fig. 5 ) and a sufficient number of lags to more adequately capture the extent of impact persistence (Extended Data Figs. 1 and 2 ) are the main sources of this difference, as is the use of specifications that capture nonlinearities in the temperature response when compared with ref.  35 . In summary, our estimates develop on previous studies by incorporating the latest data and empirical insights 7 , 8 , as well as in providing a robust empirical lower bound on the persistence of impacts on economic growth, which constitutes a middle ground between the extremes of the growth-versus-levels debate 19 , 21 (Extended Data Fig. 3 ).

Compared with the fraction of variance explained by the empirical models historically (<5%), the projection of reductions in income of 19% may seem large. This arises owing to the fact that projected changes in climatic conditions are much larger than those that were experienced historically, particularly for changes in average temperature (Extended Data Fig. 4 ). As such, any assessment of future climate-change impacts necessarily requires an extrapolation outside the range of the historical data on which the empirical impact models were evaluated. Nevertheless, these models constitute the most state-of-the-art methods for inference of plausibly causal climate impacts based on observed data. Moreover, we take explicit steps to limit out-of-sample extrapolation by capping the moderating variables of the interaction terms at the 95th percentile of the historical distribution (see Methods ). This avoids extrapolating the marginal effects outside what was observed historically. Given the nonlinear response of economic output to annual mean temperature (Extended Data Fig. 1 and Extended Data Table 2 ), this is a conservative choice that limits the magnitude of damages that we project. Furthermore, back-of-the-envelope calculations indicate that the projected damages are consistent with the magnitude and patterns of historical economic development (see Supplementary Discussion Section  5 ).

Missing impacts and spatial spillovers

Despite assessing several climatic components from which economic impacts have recently been identified 3 , 7 , 8 , this assessment of aggregate climate damages should not be considered comprehensive. Important channels such as impacts from heatwaves 31 , sea-level rise 36 , tropical cyclones 37 and tipping points 38 , 39 , as well as non-market damages such as those to ecosystems 40 and human health 41 , are not considered in these estimates. Sea-level rise is unlikely to be feasibly incorporated into empirical assessments such as this because historical sea-level variability is mostly small. Non-market damages are inherently intractable within our estimates of impacts on aggregate monetary output and estimates of these impacts could arguably be considered as extra to those identified here. Recent empirical work suggests that accounting for these channels would probably raise estimates of these committed damages, with larger damages continuing to arise in the global south 31 , 36 , 37 , 38 , 39 , 40 , 41 , 42 .

Moreover, our main empirical analysis does not explicitly evaluate the potential for impacts in local regions to produce effects that ‘spill over’ into other regions. Such effects may further mitigate or amplify the impacts we estimate, for example, if companies relocate production from one affected region to another or if impacts propagate along supply chains. The current literature indicates that trade plays a substantial role in propagating spillover effects 43 , 44 , making their assessment at the sub-national level challenging without available data on sub-national trade dependencies. Studies accounting for only spatially adjacent neighbours indicate that negative impacts in one region induce further negative impacts in neighbouring regions 45 , 46 , 47 , 48 , suggesting that our projected damages are probably conservative by excluding these effects. In Supplementary Fig. 14 , we assess spillovers from neighbouring regions using a spatial-lag model. For simplicity, this analysis excludes temporal lags, focusing only on contemporaneous effects. The results show that accounting for spatial spillovers can amplify the overall magnitude, and also the heterogeneity, of impacts. Consistent with previous literature, this indicates that the overall magnitude (Fig. 1 ) and heterogeneity (Fig. 3 ) of damages that we project in our main specification may be conservative without explicitly accounting for spillovers. We note that further analysis that addresses both spatially and trade-connected spillovers, while also accounting for delayed impacts using temporal lags, would be necessary to adequately address this question fully. These approaches offer fruitful avenues for further research but are beyond the scope of this manuscript, which primarily aims to explore the impacts of different climate conditions and their persistence.

Policy implications

We find that the economic damages resulting from climate change until 2049 are those to which the world economy is already committed and that these greatly outweigh the costs required to mitigate emissions in line with the 2 °C target of the Paris Climate Agreement (Fig. 1 ). This assessment is complementary to formal analyses of the net costs and benefits associated with moving from one emission path to another, which typically find that net benefits of mitigation only emerge in the second half of the century 5 . Our simple comparison of the magnitude of damages and mitigation costs makes clear that this is primarily because damages are indistinguishable across emissions scenarios—that is, committed—until mid-century (Fig. 1 ) and that they are actually already much larger than mitigation costs. For simplicity, and owing to the availability of data, we compare damages to mitigation costs at the global level. Regional estimates of mitigation costs may shed further light on the national incentives for mitigation to which our results already hint, of relevance for international climate policy. Although these damages are committed from a mitigation perspective, adaptation may provide an opportunity to reduce them. Moreover, the strong divergence of damages after mid-century reemphasizes the clear benefits of mitigation from a purely economic perspective, as highlighted in previous studies 1 , 4 , 6 , 24 .

Historical climate data

Historical daily 2-m temperature and precipitation totals (in mm) are obtained for the period 1979–2019 from the W5E5 database. The W5E5 dataset comes from ERA-5, a state-of-the-art reanalysis of historical observations, but has been bias-adjusted by applying version 2.0 of the WATCH Forcing Data to ERA-5 reanalysis data and precipitation data from version 2.3 of the Global Precipitation Climatology Project to better reflect ground-based measurements 49 , 50 , 51 . We obtain these data on a 0.5° × 0.5° grid from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) database. Notably, these historical data have been used to bias-adjust future climate projections from CMIP-6 (see the following section), ensuring consistency between the distribution of historical daily weather on which our empirical models were estimated and the climate projections used to estimate future damages. These data are publicly available from the ISIMIP database. See refs.  7 , 8 for robustness tests of the empirical models to the choice of climate data reanalysis products.

Future climate data

Daily 2-m temperature and precipitation totals (in mm) are taken from 21 climate models participating in CMIP-6 under a high (RCP8.5) and a low (RCP2.6) greenhouse gas emission scenario from 2015 to 2100. The data have been bias-adjusted and statistically downscaled to a common half-degree grid to reflect the historical distribution of daily temperature and precipitation of the W5E5 dataset using the trend-preserving method developed by the ISIMIP 50 , 52 . As such, the climate model data reproduce observed climatological patterns exceptionally well (Supplementary Table 5 ). Gridded data are publicly available from the ISIMIP database.

Historical economic data

Historical economic data come from the DOSE database of sub-national economic output 53 . We use a recent revision to the DOSE dataset that provides data across 83 countries, 1,660 sub-national regions with varying temporal coverage from 1960 to 2019. Sub-national units constitute the first administrative division below national, for example, states for the USA and provinces for China. Data come from measures of gross regional product per capita (GRPpc) or income per capita in local currencies, reflecting the values reported in national statistical agencies, yearbooks and, in some cases, academic literature. We follow previous literature 3 , 7 , 8 , 54 and assess real sub-national output per capita by first converting values from local currencies to US dollars to account for diverging national inflationary tendencies and then account for US inflation using a US deflator. Alternatively, one might first account for national inflation and then convert between currencies. Supplementary Fig. 12 demonstrates that our conclusions are consistent when accounting for price changes in the reversed order, although the magnitude of estimated damages varies. See the documentation of the DOSE dataset for further discussion of these choices. Conversions between currencies are conducted using exchange rates from the FRED database of the Federal Reserve Bank of St. Louis 55 and the national deflators from the World Bank 56 .

Future socio-economic data

Baseline gridded gross domestic product (GDP) and population data for the period 2015–2100 are taken from the middle-of-the-road scenario SSP2 (ref.  15 ). Population data have been downscaled to a half-degree grid by the ISIMIP following the methodologies of refs.  57 , 58 , which we then aggregate to the sub-national level of our economic data using the spatial aggregation procedure described below. Because current methodologies for downscaling the GDP of the SSPs use downscaled population to do so, per-capita estimates of GDP with a realistic distribution at the sub-national level are not readily available for the SSPs. We therefore use national-level GDP per capita (GDPpc) projections for all sub-national regions of a given country, assuming homogeneity within countries in terms of baseline GDPpc. Here we use projections that have been updated to account for the impact of the COVID-19 pandemic on the trajectory of future income, while remaining consistent with the long-term development of the SSPs 59 . The choice of baseline SSP alters the magnitude of projected climate damages in monetary terms, but when assessed in terms of percentage change from the baseline, the choice of socio-economic scenario is inconsequential. Gridded SSP population data and national-level GDPpc data are publicly available from the ISIMIP database. Sub-national estimates as used in this study are available in the code and data replication files.

Climate variables

Following recent literature 3 , 7 , 8 , we calculate an array of climate variables for which substantial impacts on macroeconomic output have been identified empirically, supported by further evidence at the micro level for plausible underlying mechanisms. See refs.  7 , 8 for an extensive motivation for the use of these particular climate variables and for detailed empirical tests on the nature and robustness of their effects on economic output. To summarize, these studies have found evidence for independent impacts on economic growth rates from annual average temperature, daily temperature variability, total annual precipitation, the annual number of wet days and extreme daily rainfall. Assessments of daily temperature variability were motivated by evidence of impacts on agricultural output and human health, as well as macroeconomic literature on the impacts of volatility on growth when manifest in different dimensions, such as government spending, exchange rates and even output itself 7 . Assessments of precipitation impacts were motivated by evidence of impacts on agricultural productivity, metropolitan labour outcomes and conflict, as well as damages caused by flash flooding 8 . See Extended Data Table 1 for detailed references to empirical studies of these physical mechanisms. Marked impacts of daily temperature variability, total annual precipitation, the number of wet days and extreme daily rainfall on macroeconomic output were identified robustly across different climate datasets, spatial aggregation schemes, specifications of regional time trends and error-clustering approaches. They were also found to be robust to the consideration of temperature extremes 7 , 8 . Furthermore, these climate variables were identified as having independent effects on economic output 7 , 8 , which we further explain here using Monte Carlo simulations to demonstrate the robustness of the results to concerns of imperfect multicollinearity between climate variables (Supplementary Methods Section  2 ), as well as by using information criteria (Supplementary Table 1 ) to demonstrate that including several lagged climate variables provides a preferable trade-off between optimally describing the data and limiting the possibility of overfitting.

We calculate these variables from the distribution of daily, d , temperature, T x , d , and precipitation, P x , d , at the grid-cell, x , level for both the historical and future climate data. As well as annual mean temperature, \({\bar{T}}_{x,y}\) , and annual total precipitation, P x , y , we calculate annual, y , measures of daily temperature variability, \({\widetilde{T}}_{x,y}\) :

the number of wet days, Pwd x , y :

and extreme daily rainfall:

in which T x , d , m , y is the grid-cell-specific daily temperature in month m and year y , \({\bar{T}}_{x,m,{y}}\) is the year and grid-cell-specific monthly, m , mean temperature, D m and D y the number of days in a given month m or year y , respectively, H the Heaviside step function, 1 mm the threshold used to define wet days and P 99.9 x is the 99.9th percentile of historical (1979–2019) daily precipitation at the grid-cell level. Units of the climate measures are degrees Celsius for annual mean temperature and daily temperature variability, millimetres for total annual precipitation and extreme daily precipitation, and simply the number of days for the annual number of wet days.

We also calculated weighted standard deviations of monthly rainfall totals as also used in ref.  8 but do not include them in our projections as we find that, when accounting for delayed effects, their effect becomes statistically indistinct and is better captured by changes in total annual rainfall.

Spatial aggregation

We aggregate grid-cell-level historical and future climate measures, as well as grid-cell-level future GDPpc and population, to the level of the first administrative unit below national level of the GADM database, using an area-weighting algorithm that estimates the portion of each grid cell falling within an administrative boundary. We use this as our baseline specification following previous findings that the effect of area or population weighting at the sub-national level is negligible 7 , 8 .

Empirical model specification: fixed-effects distributed lag models

Following a wide range of climate econometric literature 16 , 60 , we use panel regression models with a selection of fixed effects and time trends to isolate plausibly exogenous variation with which to maximize confidence in a causal interpretation of the effects of climate on economic growth rates. The use of region fixed effects, μ r , accounts for unobserved time-invariant differences between regions, such as prevailing climatic norms and growth rates owing to historical and geopolitical factors. The use of yearly fixed effects, η y , accounts for regionally invariant annual shocks to the global climate or economy such as the El Niño–Southern Oscillation or global recessions. In our baseline specification, we also include region-specific linear time trends, k r y , to exclude the possibility of spurious correlations resulting from common slow-moving trends in climate and growth.

The persistence of climate impacts on economic growth rates is a key determinant of the long-term magnitude of damages. Methods for inferring the extent of persistence in impacts on growth rates have typically used lagged climate variables to evaluate the presence of delayed effects or catch-up dynamics 2 , 18 . For example, consider starting from a model in which a climate condition, C r , y , (for example, annual mean temperature) affects the growth rate, Δlgrp r , y (the first difference of the logarithm of gross regional product) of region r in year y :

which we refer to as a ‘pure growth effects’ model in the main text. Typically, further lags are included,

and the cumulative effect of all lagged terms is evaluated to assess the extent to which climate impacts on growth rates persist. Following ref.  18 , in the case that,

the implication is that impacts on the growth rate persist up to NL years after the initial shock (possibly to a weaker or a stronger extent), whereas if

then the initial impact on the growth rate is recovered after NL years and the effect is only one on the level of output. However, we note that such approaches are limited by the fact that, when including an insufficient number of lags to detect a recovery of the growth rates, one may find equation ( 6 ) to be satisfied and incorrectly assume that a change in climatic conditions affects the growth rate indefinitely. In practice, given a limited record of historical data, including too few lags to confidently conclude in an infinitely persistent impact on the growth rate is likely, particularly over the long timescales over which future climate damages are often projected 2 , 24 . To avoid this issue, we instead begin our analysis with a model for which the level of output, lgrp r , y , depends on the level of a climate variable, C r , y :

Given the non-stationarity of the level of output, we follow the literature 19 and estimate such an equation in first-differenced form as,

which we refer to as a model of ‘pure level effects’ in the main text. This model constitutes a baseline specification in which a permanent change in the climate variable produces an instantaneous impact on the growth rate and a permanent effect only on the level of output. By including lagged variables in this specification,

we are able to test whether the impacts on the growth rate persist any further than instantaneously by evaluating whether α L  > 0 are statistically significantly different from zero. Even though this framework is also limited by the possibility of including too few lags, the choice of a baseline model specification in which impacts on the growth rate do not persist means that, in the case of including too few lags, the framework reverts to the baseline specification of level effects. As such, this framework is conservative with respect to the persistence of impacts and the magnitude of future damages. It naturally avoids assumptions of infinite persistence and we are able to interpret any persistence that we identify with equation ( 9 ) as a lower bound on the extent of climate impact persistence on growth rates. See the main text for further discussion of this specification choice, in particular about its conservative nature compared with previous literature estimates, such as refs.  2 , 18 .

We allow the response to climatic changes to vary across regions, using interactions of the climate variables with historical average (1979–2019) climatic conditions reflecting heterogenous effects identified in previous work 7 , 8 . Following this previous work, the moderating variables of these interaction terms constitute the historical average of either the variable itself or of the seasonal temperature difference, \({\hat{T}}_{r}\) , or annual mean temperature, \({\bar{T}}_{r}\) , in the case of daily temperature variability 7 and extreme daily rainfall, respectively 8 .

The resulting regression equation with N and M lagged variables, respectively, reads:

in which Δlgrp r , y is the annual, regional GRPpc growth rate, measured as the first difference of the logarithm of real GRPpc, following previous work 2 , 3 , 7 , 8 , 18 , 19 . Fixed-effects regressions were run using the fixest package in R (ref.  61 ).

Estimates of the coefficients of interest α i , L are shown in Extended Data Fig. 1 for N  =  M  = 10 lags and for our preferred choice of the number of lags in Supplementary Figs. 1 – 3 . In Extended Data Fig. 1 , errors are shown clustered at the regional level, but for the construction of damage projections, we block-bootstrap the regressions by region 1,000 times to provide a range of parameter estimates with which to sample the projection uncertainty (following refs.  2 , 31 ).

Spatial-lag model

In Supplementary Fig. 14 , we present the results from a spatial-lag model that explores the potential for climate impacts to ‘spill over’ into spatially neighbouring regions. We measure the distance between centroids of each pair of sub-national regions and construct spatial lags that take the average of the first-differenced climate variables and their interaction terms over neighbouring regions that are at distances of 0–500, 500–1,000, 1,000–1,500 and 1,500–2000 km (spatial lags, ‘SL’, 1 to 4). For simplicity, we then assess a spatial-lag model without temporal lags to assess spatial spillovers of contemporaneous climate impacts. This model takes the form:

in which SL indicates the spatial lag of each climate variable and interaction term. In Supplementary Fig. 14 , we plot the cumulative marginal effect of each climate variable at different baseline climate conditions by summing the coefficients for each climate variable and interaction term, for example, for average temperature impacts as:

These cumulative marginal effects can be regarded as the overall spatially dependent impact to an individual region given a one-unit shock to a climate variable in that region and all neighbouring regions at a given value of the moderating variable of the interaction term.

Constructing projections of economic damage from future climate change

We construct projections of future climate damages by applying the coefficients estimated in equation ( 10 ) and shown in Supplementary Tables 2 – 4 (when including only lags with statistically significant effects in specifications that limit overfitting; see Supplementary Methods Section  1 ) to projections of future climate change from the CMIP-6 models. Year-on-year changes in each primary climate variable of interest are calculated to reflect the year-to-year variations used in the empirical models. 30-year moving averages of the moderating variables of the interaction terms are calculated to reflect the long-term average of climatic conditions that were used for the moderating variables in the empirical models. By using moving averages in the projections, we account for the changing vulnerability to climate shocks based on the evolving long-term conditions (Supplementary Figs. 10 and 11 show that the results are robust to the precise choice of the window of this moving average). Although these climate variables are not differenced, the fact that the bias-adjusted climate models reproduce observed climatological patterns across regions for these moderating variables very accurately (Supplementary Table 6 ) with limited spread across models (<3%) precludes the possibility that any considerable bias or uncertainty is introduced by this methodological choice. However, we impose caps on these moderating variables at the 95th percentile at which they were observed in the historical data to prevent extrapolation of the marginal effects outside the range in which the regressions were estimated. This is a conservative choice that limits the magnitude of our damage projections.

Time series of primary climate variables and moderating climate variables are then combined with estimates of the empirical model parameters to evaluate the regression coefficients in equation ( 10 ), producing a time series of annual GRPpc growth-rate reductions for a given emission scenario, climate model and set of empirical model parameters. The resulting time series of growth-rate impacts reflects those occurring owing to future climate change. By contrast, a future scenario with no climate change would be one in which climate variables do not change (other than with random year-to-year fluctuations) and hence the time-averaged evaluation of equation ( 10 ) would be zero. Our approach therefore implicitly compares the future climate-change scenario to this no-climate-change baseline scenario.

The time series of growth-rate impacts owing to future climate change in region r and year y , δ r , y , are then added to the future baseline growth rates, π r , y (in log-diff form), obtained from the SSP2 scenario to yield trajectories of damaged GRPpc growth rates, ρ r , y . These trajectories are aggregated over time to estimate the future trajectory of GRPpc with future climate impacts:

in which GRPpc r , y =2020 is the initial log level of GRPpc. We begin damage estimates in 2020 to reflect the damages occurring since the end of the period for which we estimate the empirical models (1979–2019) and to match the timing of mitigation-cost estimates from most IAMs (see below).

For each emission scenario, this procedure is repeated 1,000 times while randomly sampling from the selection of climate models, the selection of empirical models with different numbers of lags (shown in Supplementary Figs. 1 – 3 and Supplementary Tables 2 – 4 ) and bootstrapped estimates of the regression parameters. The result is an ensemble of future GRPpc trajectories that reflect uncertainty from both physical climate change and the structural and sampling uncertainty of the empirical models.

Estimates of mitigation costs

We obtain IPCC estimates of the aggregate costs of emission mitigation from the AR6 Scenario Explorer and Database hosted by IIASA 23 . Specifically, we search the AR6 Scenarios Database World v1.1 for IAMs that provided estimates of global GDP and population under both a SSP2 baseline and a SSP2-RCP2.6 scenario to maintain consistency with the socio-economic and emission scenarios of the climate damage projections. We find five IAMs that provide data for these scenarios, namely, MESSAGE-GLOBIOM 1.0, REMIND-MAgPIE 1.5, AIM/GCE 2.0, GCAM 4.2 and WITCH-GLOBIOM 3.1. Of these five IAMs, we use the results only from the first three that passed the IPCC vetting procedure for reproducing historical emission and climate trajectories. We then estimate global mitigation costs as the percentage difference in global per capita GDP between the SSP2 baseline and the SSP2-RCP2.6 emission scenario. In the case of one of these IAMs, estimates of mitigation costs begin in 2020, whereas in the case of two others, mitigation costs begin in 2010. The mitigation cost estimates before 2020 in these two IAMs are mostly negligible, and our choice to begin comparison with damage estimates in 2020 is conservative with respect to the relative weight of climate damages compared with mitigation costs for these two IAMs.

Data availability

Data on economic production and ERA-5 climate data are publicly available at https://doi.org/10.5281/zenodo.4681306 (ref. 62 ) and https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5 , respectively. Data on mitigation costs are publicly available at https://data.ene.iiasa.ac.at/ar6/#/downloads . Processed climate and economic data, as well as all other necessary data for reproduction of the results, are available at the public repository https://doi.org/10.5281/zenodo.10562951  (ref. 63 ).

Code availability

All code necessary for reproduction of the results is available at the public repository https://doi.org/10.5281/zenodo.10562951  (ref. 63 ).

Glanemann, N., Willner, S. N. & Levermann, A. Paris Climate Agreement passes the cost-benefit test. Nat. Commun. 11 , 110 (2020).

Article   ADS   CAS   PubMed   PubMed Central   Google Scholar  

Burke, M., Hsiang, S. M. & Miguel, E. Global non-linear effect of temperature on economic production. Nature 527 , 235–239 (2015).

Article   ADS   CAS   PubMed   Google Scholar  

Kalkuhl, M. & Wenz, L. The impact of climate conditions on economic production. Evidence from a global panel of regions. J. Environ. Econ. Manag. 103 , 102360 (2020).

Article   Google Scholar  

Moore, F. C. & Diaz, D. B. Temperature impacts on economic growth warrant stringent mitigation policy. Nat. Clim. Change 5 , 127–131 (2015).

Article   ADS   Google Scholar  

Drouet, L., Bosetti, V. & Tavoni, M. Net economic benefits of well-below 2°C scenarios and associated uncertainties. Oxf. Open Clim. Change 2 , kgac003 (2022).

Ueckerdt, F. et al. The economically optimal warming limit of the planet. Earth Syst. Dyn. 10 , 741–763 (2019).

Kotz, M., Wenz, L., Stechemesser, A., Kalkuhl, M. & Levermann, A. Day-to-day temperature variability reduces economic growth. Nat. Clim. Change 11 , 319–325 (2021).

Kotz, M., Levermann, A. & Wenz, L. The effect of rainfall changes on economic production. Nature 601 , 223–227 (2022).

Kousky, C. Informing climate adaptation: a review of the economic costs of natural disasters. Energy Econ. 46 , 576–592 (2014).

Harlan, S. L. et al. in Climate Change and Society: Sociological Perspectives (eds Dunlap, R. E. & Brulle, R. J.) 127–163 (Oxford Univ. Press, 2015).

Bolton, P. et al. The Green Swan (BIS Books, 2020).

Alogoskoufis, S. et al. ECB Economy-wide Climate Stress Test: Methodology and Results European Central Bank, 2021).

Weber, E. U. What shapes perceptions of climate change? Wiley Interdiscip. Rev. Clim. Change 1 , 332–342 (2010).

Markowitz, E. M. & Shariff, A. F. Climate change and moral judgement. Nat. Clim. Change 2 , 243–247 (2012).

Riahi, K. et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42 , 153–168 (2017).

Auffhammer, M., Hsiang, S. M., Schlenker, W. & Sobel, A. Using weather data and climate model output in economic analyses of climate change. Rev. Environ. Econ. Policy 7 , 181–198 (2013).

Kolstad, C. D. & Moore, F. C. Estimating the economic impacts of climate change using weather observations. Rev. Environ. Econ. Policy 14 , 1–24 (2020).

Dell, M., Jones, B. F. & Olken, B. A. Temperature shocks and economic growth: evidence from the last half century. Am. Econ. J. Macroecon. 4 , 66–95 (2012).

Newell, R. G., Prest, B. C. & Sexton, S. E. The GDP-temperature relationship: implications for climate change damages. J. Environ. Econ. Manag. 108 , 102445 (2021).

Kikstra, J. S. et al. The social cost of carbon dioxide under climate-economy feedbacks and temperature variability. Environ. Res. Lett. 16 , 094037 (2021).

Article   ADS   CAS   Google Scholar  

Bastien-Olvera, B. & Moore, F. Persistent effect of temperature on GDP identified from lower frequency temperature variability. Environ. Res. Lett. 17 , 084038 (2022).

Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9 , 1937–1958 (2016).

Byers, E. et al. AR6 scenarios database. Zenodo https://zenodo.org/records/7197970 (2022).

Burke, M., Davis, W. M. & Diffenbaugh, N. S. Large potential reduction in economic damages under UN mitigation targets. Nature 557 , 549–553 (2018).

Kotz, M., Wenz, L. & Levermann, A. Footprint of greenhouse forcing in daily temperature variability. Proc. Natl Acad. Sci. 118 , e2103294118 (2021).

Article   CAS   PubMed   PubMed Central   Google Scholar  

Myhre, G. et al. Frequency of extreme precipitation increases extensively with event rareness under global warming. Sci. Rep. 9 , 16063 (2019).

Min, S.-K., Zhang, X., Zwiers, F. W. & Hegerl, G. C. Human contribution to more-intense precipitation extremes. Nature 470 , 378–381 (2011).

England, M. R., Eisenman, I., Lutsko, N. J. & Wagner, T. J. The recent emergence of Arctic Amplification. Geophys. Res. Lett. 48 , e2021GL094086 (2021).

Fischer, E. M. & Knutti, R. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Clim. Change 5 , 560–564 (2015).

Pfahl, S., O’Gorman, P. A. & Fischer, E. M. Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Clim. Change 7 , 423–427 (2017).

Callahan, C. W. & Mankin, J. S. Globally unequal effect of extreme heat on economic growth. Sci. Adv. 8 , eadd3726 (2022).

Diffenbaugh, N. S. & Burke, M. Global warming has increased global economic inequality. Proc. Natl Acad. Sci. 116 , 9808–9813 (2019).

Callahan, C. W. & Mankin, J. S. National attribution of historical climate damages. Clim. Change 172 , 40 (2022).

Burke, M. & Tanutama, V. Climatic constraints on aggregate economic output. National Bureau of Economic Research, Working Paper 25779. https://doi.org/10.3386/w25779 (2019).

Kahn, M. E. et al. Long-term macroeconomic effects of climate change: a cross-country analysis. Energy Econ. 104 , 105624 (2021).

Desmet, K. et al. Evaluating the economic cost of coastal flooding. National Bureau of Economic Research, Working Paper 24918. https://doi.org/10.3386/w24918 (2018).

Hsiang, S. M. & Jina, A. S. The causal effect of environmental catastrophe on long-run economic growth: evidence from 6,700 cyclones. National Bureau of Economic Research, Working Paper 20352. https://doi.org/10.3386/w2035 (2014).

Ritchie, P. D. et al. Shifts in national land use and food production in Great Britain after a climate tipping point. Nat. Food 1 , 76–83 (2020).

Dietz, S., Rising, J., Stoerk, T. & Wagner, G. Economic impacts of tipping points in the climate system. Proc. Natl Acad. Sci. 118 , e2103081118 (2021).

Bastien-Olvera, B. A. & Moore, F. C. Use and non-use value of nature and the social cost of carbon. Nat. Sustain. 4 , 101–108 (2021).

Carleton, T. et al. Valuing the global mortality consequences of climate change accounting for adaptation costs and benefits. Q. J. Econ. 137 , 2037–2105 (2022).

Bastien-Olvera, B. A. et al. Unequal climate impacts on global values of natural capital. Nature 625 , 722–727 (2024).

Malik, A. et al. Impacts of climate change and extreme weather on food supply chains cascade across sectors and regions in Australia. Nat. Food 3 , 631–643 (2022).

Article   ADS   PubMed   Google Scholar  

Kuhla, K., Willner, S. N., Otto, C., Geiger, T. & Levermann, A. Ripple resonance amplifies economic welfare loss from weather extremes. Environ. Res. Lett. 16 , 114010 (2021).

Schleypen, J. R., Mistry, M. N., Saeed, F. & Dasgupta, S. Sharing the burden: quantifying climate change spillovers in the European Union under the Paris Agreement. Spat. Econ. Anal. 17 , 67–82 (2022).

Dasgupta, S., Bosello, F., De Cian, E. & Mistry, M. Global temperature effects on economic activity and equity: a spatial analysis. European Institute on Economics and the Environment, Working Paper 22-1 (2022).

Neal, T. The importance of external weather effects in projecting the macroeconomic impacts of climate change. UNSW Economics Working Paper 2023-09 (2023).

Deryugina, T. & Hsiang, S. M. Does the environment still matter? Daily temperature and income in the United States. National Bureau of Economic Research, Working Paper 20750. https://doi.org/10.3386/w20750 (2014).

Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146 , 1999–2049 (2020).

Cucchi, M. et al. WFDE5: bias-adjusted ERA5 reanalysis data for impact studies. Earth Syst. Sci. Data 12 , 2097–2120 (2020).

Adler, R. et al. The New Version 2.3 of the Global Precipitation Climatology Project (GPCP) Monthly Analysis Product 1072–1084 (University of Maryland, 2016).

Lange, S. Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0). Geosci. Model Dev. 12 , 3055–3070 (2019).

Wenz, L., Carr, R. D., Kögel, N., Kotz, M. & Kalkuhl, M. DOSE – global data set of reported sub-national economic output. Sci. Data 10 , 425 (2023).

Article   PubMed   PubMed Central   Google Scholar  

Gennaioli, N., La Porta, R., Lopez De Silanes, F. & Shleifer, A. Growth in regions. J. Econ. Growth 19 , 259–309 (2014).

Board of Governors of the Federal Reserve System (US). U.S. dollars to euro spot exchange rate. https://fred.stlouisfed.org/series/AEXUSEU (2022).

World Bank. GDP deflator. https://data.worldbank.org/indicator/NY.GDP.DEFL.ZS (2022).

Jones, B. & O’Neill, B. C. Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways. Environ. Res. Lett. 11 , 084003 (2016).

Murakami, D. & Yamagata, Y. Estimation of gridded population and GDP scenarios with spatially explicit statistical downscaling. Sustainability 11 , 2106 (2019).

Koch, J. & Leimbach, M. Update of SSP GDP projections: capturing recent changes in national accounting, PPP conversion and Covid 19 impacts. Ecol. Econ. 206 (2023).

Carleton, T. A. & Hsiang, S. M. Social and economic impacts of climate. Science 353 , aad9837 (2016).

Article   PubMed   Google Scholar  

Bergé, L. Efficient estimation of maximum likelihood models with multiple fixed-effects: the R package FENmlm. DEM Discussion Paper Series 18-13 (2018).

Kalkuhl, M., Kotz, M. & Wenz, L. DOSE - The MCC-PIK Database Of Subnational Economic output. Zenodo https://zenodo.org/doi/10.5281/zenodo.4681305 (2021).

Kotz, M., Wenz, L. & Levermann, A. Data and code for “The economic commitment of climate change”. Zenodo https://zenodo.org/doi/10.5281/zenodo.10562951 (2024).

Dasgupta, S. et al. Effects of climate change on combined labour productivity and supply: an empirical, multi-model study. Lancet Planet. Health 5 , e455–e465 (2021).

Lobell, D. B. et al. The critical role of extreme heat for maize production in the United States. Nat. Clim. Change 3 , 497–501 (2013).

Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl Acad. Sci. 114 , 9326–9331 (2017).

Wheeler, T. R., Craufurd, P. Q., Ellis, R. H., Porter, J. R. & Prasad, P. V. Temperature variability and the yield of annual crops. Agric. Ecosyst. Environ. 82 , 159–167 (2000).

Rowhani, P., Lobell, D. B., Linderman, M. & Ramankutty, N. Climate variability and crop production in Tanzania. Agric. For. Meteorol. 151 , 449–460 (2011).

Ceglar, A., Toreti, A., Lecerf, R., Van der Velde, M. & Dentener, F. Impact of meteorological drivers on regional inter-annual crop yield variability in France. Agric. For. Meteorol. 216 , 58–67 (2016).

Shi, L., Kloog, I., Zanobetti, A., Liu, P. & Schwartz, J. D. Impacts of temperature and its variability on mortality in New England. Nat. Clim. Change 5 , 988–991 (2015).

Xue, T., Zhu, T., Zheng, Y. & Zhang, Q. Declines in mental health associated with air pollution and temperature variability in China. Nat. Commun. 10 , 2165 (2019).

Article   ADS   PubMed   PubMed Central   Google Scholar  

Liang, X.-Z. et al. Determining climate effects on US total agricultural productivity. Proc. Natl Acad. Sci. 114 , E2285–E2292 (2017).

Desbureaux, S. & Rodella, A.-S. Drought in the city: the economic impact of water scarcity in Latin American metropolitan areas. World Dev. 114 , 13–27 (2019).

Damania, R. The economics of water scarcity and variability. Oxf. Rev. Econ. Policy 36 , 24–44 (2020).

Davenport, F. V., Burke, M. & Diffenbaugh, N. S. Contribution of historical precipitation change to US flood damages. Proc. Natl Acad. Sci. 118 , e2017524118 (2021).

Dave, R., Subramanian, S. S. & Bhatia, U. Extreme precipitation induced concurrent events trigger prolonged disruptions in regional road networks. Environ. Res. Lett. 16 , 104050 (2021).

Download references

Acknowledgements

We gratefully acknowledge financing from the Volkswagen Foundation and the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH on behalf of the Government of the Federal Republic of Germany and Federal Ministry for Economic Cooperation and Development (BMZ).

Open access funding provided by Potsdam-Institut für Klimafolgenforschung (PIK) e.V.

Author information

Authors and affiliations.

Research Domain IV, Research Domain IV, Potsdam Institute for Climate Impact Research, Potsdam, Germany

Maximilian Kotz, Anders Levermann & Leonie Wenz

Institute of Physics, Potsdam University, Potsdam, Germany

Maximilian Kotz & Anders Levermann

Mercator Research Institute on Global Commons and Climate Change, Berlin, Germany

Leonie Wenz

You can also search for this author in PubMed   Google Scholar

Contributions

All authors contributed to the design of the analysis. M.K. conducted the analysis and produced the figures. All authors contributed to the interpretation and presentation of the results. M.K. and L.W. wrote the manuscript.

Corresponding author

Correspondence to Leonie Wenz .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Peer review

Peer review information.

Nature thanks Xin-Zhong Liang, Chad Thackeray and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended data fig. 1 constraining the persistence of historical climate impacts on economic growth rates..

The results of a panel-based fixed-effects distributed lag model for the effects of annual mean temperature ( a ), daily temperature variability ( b ), total annual precipitation ( c ), the number of wet days ( d ) and extreme daily precipitation ( e ) on sub-national economic growth rates. Point estimates show the effects of a 1 °C or one standard deviation increase (for temperature and precipitation variables, respectively) at the lower quartile, median and upper quartile of the relevant moderating variable (green, orange and purple, respectively) at different lagged periods after the initial shock (note that these are not cumulative effects). Climate variables are used in their first-differenced form (see main text for discussion) and the moderating climate variables are the annual mean temperature, seasonal temperature difference, total annual precipitation, number of wet days and annual mean temperature, respectively, in panels a – e (see Methods for further discussion). Error bars show the 95% confidence intervals having clustered standard errors by region. The within-region R 2 , Bayesian and Akaike information criteria for the model are shown at the top of the figure. This figure shows results with ten lags for each variable to demonstrate the observed levels of persistence, but our preferred specifications remove later lags based on the statistical significance of terms shown above and the information criteria shown in Extended Data Fig. 2 . The resulting models without later lags are shown in Supplementary Figs. 1 – 3 .

Extended Data Fig. 2 Incremental lag-selection procedure using information criteria and within-region R 2 .

Starting from a panel-based fixed-effects distributed lag model estimating the effects of climate on economic growth using the real historical data (as in equation ( 4 )) with ten lags for all climate variables (as shown in Extended Data Fig. 1 ), lags are incrementally removed for one climate variable at a time. The resulting Bayesian and Akaike information criteria are shown in a – e and f – j , respectively, and the within-region R 2 and number of observations in k – o and p – t , respectively. Different rows show the results when removing lags from different climate variables, ordered from top to bottom as annual mean temperature, daily temperature variability, total annual precipitation, the number of wet days and extreme annual precipitation. Information criteria show minima at approximately four lags for precipitation variables and ten to eight for temperature variables, indicating that including these numbers of lags does not lead to overfitting. See Supplementary Table 1 for an assessment using information criteria to determine whether including further climate variables causes overfitting.

Extended Data Fig. 3 Damages in our preferred specification that provides a robust lower bound on the persistence of climate impacts on economic growth versus damages in specifications of pure growth or pure level effects.

Estimates of future damages as shown in Fig. 1 but under the emission scenario RCP8.5 for three separate empirical specifications: in orange our preferred specification, which provides an empirical lower bound on the persistence of climate impacts on economic growth rates while avoiding assumptions of infinite persistence (see main text for further discussion); in purple a specification of ‘pure growth effects’ in which the first difference of climate variables is not taken and no lagged climate variables are included (the baseline specification of ref.  2 ); and in pink a specification of ‘pure level effects’ in which the first difference of climate variables is taken but no lagged terms are included.

Extended Data Fig. 4 Climate changes in different variables as a function of historical interannual variability.

Changes in each climate variable of interest from 1979–2019 to 2035–2065 under the high-emission scenario SSP5-RCP8.5, expressed as a percentage of the historical variability of each measure. Historical variability is estimated as the standard deviation of each detrended climate variable over the period 1979–2019 during which the empirical models were identified (detrending is appropriate because of the inclusion of region-specific linear time trends in the empirical models). See Supplementary Fig. 13 for changes expressed in standard units. Data on national administrative boundaries are obtained from the GADM database version 3.6 and are freely available for academic use ( https://gadm.org/ ).

Extended Data Fig. 5 Contribution of different climate variables to overall committed damages.

a , Climate damages in 2049 when using empirical models that account for all climate variables, changes in annual mean temperature only or changes in both annual mean temperature and one other climate variable (daily temperature variability, total annual precipitation, the number of wet days and extreme daily precipitation, respectively). b , The cumulative marginal effects of an increase in annual mean temperature of 1 °C, at different baseline temperatures, estimated from empirical models including all climate variables or annual mean temperature only. Estimates and uncertainty bars represent the median and 95% confidence intervals obtained from 1,000 block-bootstrap resamples from each of three different empirical models using eight, nine or ten lags of temperature terms.

Extended Data Fig. 6 The difference in committed damages between the upper and lower quartiles of countries when ranked by GDP and cumulative historical emissions.

Quartiles are defined using a population weighting, as are the average committed damages across each quartile group. The violin plots indicate the distribution of differences between quartiles across the two extreme emission scenarios (RCP2.6 and RCP8.5) and the uncertainty sampling procedure outlined in Methods , which accounts for uncertainty arising from the choice of lags in the empirical models, uncertainty in the empirical model parameter estimates, as well as the climate model projections. Bars indicate the median, as well as the 10th and 90th percentiles and upper and lower sixths of the distribution reflecting the very likely and likely ranges following the likelihood classification adopted by the IPCC.

Supplementary information

Supplementary information, peer review file, rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Kotz, M., Levermann, A. & Wenz, L. The economic commitment of climate change. Nature 628 , 551–557 (2024). https://doi.org/10.1038/s41586-024-07219-0

Download citation

Received : 25 January 2023

Accepted : 21 February 2024

Published : 17 April 2024

Issue Date : 18 April 2024

DOI : https://doi.org/10.1038/s41586-024-07219-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

By submitting a comment you agree to abide by our Terms and Community Guidelines . If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

publishing my research paper

To revisit this article, visit My Profile, then View saved stories .

  • Backchannel
  • Newsletters
  • WIRED Insider
  • WIRED Consulting

Amanda Hoover

Students Are Likely Writing Millions of Papers With AI

Illustration of four hands holding pencils that are connected to a central brain

Students have submitted more than 22 million papers that may have used generative AI in the past year, new data released by plagiarism detection company Turnitin shows.

A year ago, Turnitin rolled out an AI writing detection tool that was trained on its trove of papers written by students as well as other AI-generated texts. Since then, more than 200 million papers have been reviewed by the detector, predominantly written by high school and college students. Turnitin found that 11 percent may contain AI-written language in 20 percent of its content, with 3 percent of the total papers reviewed getting flagged for having 80 percent or more AI writing. (Turnitin is owned by Advance, which also owns Condé Nast, publisher of WIRED.) Turnitin says its detector has a false positive rate of less than 1 percent when analyzing full documents.

ChatGPT’s launch was met with knee-jerk fears that the English class essay would die . The chatbot can synthesize information and distill it near-instantly—but that doesn’t mean it always gets it right. Generative AI has been known to hallucinate , creating its own facts and citing academic references that don’t actually exist. Generative AI chatbots have also been caught spitting out biased text on gender and race . Despite those flaws, students have used chatbots for research, organizing ideas, and as a ghostwriter . Traces of chatbots have even been found in peer-reviewed, published academic writing .

Teachers understandably want to hold students accountable for using generative AI without permission or disclosure. But that requires a reliable way to prove AI was used in a given assignment. Instructors have tried at times to find their own solutions to detecting AI in writing, using messy, untested methods to enforce rules , and distressing students. Further complicating the issue, some teachers are even using generative AI in their grading processes.

Detecting the use of gen AI is tricky. It’s not as easy as flagging plagiarism, because generated text is still original text. Plus, there’s nuance to how students use gen AI; some may ask chatbots to write their papers for them in large chunks or in full, while others may use the tools as an aid or a brainstorm partner.

Students also aren't tempted by only ChatGPT and similar large language models. So-called word spinners are another type of AI software that rewrites text, and may make it less obvious to a teacher that work was plagiarized or generated by AI. Turnitin’s AI detector has also been updated to detect word spinners, says Annie Chechitelli, the company’s chief product officer. It can also flag work that was rewritten by services like spell checker Grammarly, which now has its own generative AI tool . As familiar software increasingly adds generative AI components, what students can and can’t use becomes more muddled.

Detection tools themselves have a risk of bias. English language learners may be more likely to set them off; a 2023 study found a 61.3 percent false positive rate when evaluating Test of English as a Foreign Language (TOEFL) exams with seven different AI detectors. The study did not examine Turnitin’s version. The company says it has trained its detector on writing from English language learners as well as native English speakers. A study published in October found that Turnitin was among the most accurate of 16 AI language detectors in a test that had the tool examine undergraduate papers and AI-generated papers.

The Biggest Deepfake Porn Website Is Now Blocked in the UK

Matt Burgess

A Wave of AI Tools Is Set to Transform Work Meetings

Steven Levy

The 16 Best Movies on Amazon Prime Right Now

Schools that use Turnitin had access to the AI detection software for a free pilot period, which ended at the start of this year. Chechitelli says a majority of the service’s clients have opted to purchase the AI detection. But the risks of false positives and bias against English learners have led some universities to ditch the tools for now. Montclair State University in New Jersey announced in November that it would pause use of Turnitin’s AI detector. Vanderbilt University and Northwestern University did the same last summer.

“This is hard. I understand why people want a tool,” says Emily Isaacs, executive director of the Office of Faculty Excellence at Montclair State. But Isaacs says the university is concerned about potentially biased results from AI detectors, as well as the fact that the tools can’t provide confirmation the way they can with plagiarism. Plus, Montclair State doesn’t want to put a blanket ban on AI, which will have some place in academia. With time and more trust in the tools, the policies could change. “It’s not a forever decision, it’s a now decision,” Isaacs says.

Chechitelli says the Turnitin tool shouldn’t be the only consideration in passing or failing a student. Instead, it’s a chance for teachers to start conversations with students that touch on all of the nuance in using generative AI. “People don’t really know where that line should be,” she says.

You Might Also Like …

In your inbox: The best and weirdest stories from WIRED’s archive

Jeffrey Epstein’s island visitors exposed by data broker

8 Google employees invented modern AI. Here’s the inside story

The crypto fraud kingpin who almost got away

Listen up! These are the best podcasts , no matter what you’re into

publishing my research paper

Benj Edwards, Ars Technica

Inside the Creation of the World’s Most Powerful Open Source AI Model

Will Knight

How to Stop Your Data From Being Used to Train AI

Reece Rogers

Here's How Generative AI Depicts Queer People

Stephen Ornes

IMAGES

  1. Research Paper Publication

    publishing my research paper

  2. How to publish research paper in International Journals?

    publishing my research paper

  3. Where Can I Publish my Research Paper

    publishing my research paper

  4. How to Publish Your Research Papers

    publishing my research paper

  5. Research Paper Sample Pdf Chapter Download Scientific Pertaining To Academic Journal Template

    publishing my research paper

  6. Paper Publishing Process » Procedure to Publish in Peer-reviewed Journal

    publishing my research paper

VIDEO

  1. How to publish a research paper

  2. ACM SAC Presentation on my research paper

  3. My Research Paper published in Indian Geotechnical Conference (IGC-2021)

  4. PUBLISHING AN OBGYN PAPER IN A JOURNAL

  5. Literature Review: How I can create my search term for my research paper?

  6. Mistakes to Avoid in Your Research Paper

COMMENTS

  1. Publish with Elsevier: Step by step

    4. Track your paper. 5. Share and promote. 1. Find a journal. Find out the journals that could be best suited for publishing your research. For a comprehensive list of Elsevier journals check our Journal Catalog. You can also match your manuscript using the JournalFinder tool, then learn more about each journal.

  2. How to Publish a Research Paper: Your Step-by-Step Guide

    3. Submit your article according to the journal's submission guidelines. Go to the "author's guide" (or similar) on the journal's website to review its submission requirements. Once you are satisfied that your paper meets all of the guidelines, submit the paper through the appropriate channels.

  3. How to publish your research

    Step 1: Choosing a journal. Choosing which journal to publish your research paper in is one of the most significant decisions you have to make as a researcher. Where you decide to submit your work can make a big difference to the reach and impact your research has. It's important to take your time to consider your options carefully and ...

  4. How to Publish a Research Paper

    To Publish a Research Paper follow the guide below: Conduct original research: Conduct thorough research on a specific topic or problem. Collect data, analyze it, and draw conclusions based on your findings. Write the paper: Write a detailed paper describing your research.

  5. 7 steps to publishing in a scientific journal

    Sun and Linton (2014), Hierons (2016) and Craig (2010) offer useful discussions on the subject of "desk rejections.". 4. Make a good first impression with your title and abstract. The title and abstract are incredibly important components of a manuscript as they are the first elements a journal editor sees.

  6. How to Publish a Research Paper: A Step-by-Step Guide

    Step 2: Finding the Right Journal. Understanding how to publish a research paper involves selecting the appropriate journal for your work. This step is critical for successful publication, and you should take several factors into account when deciding which journal to apply for: Conduct thorough research to identify journals that specialise in ...

  7. How to Write and Publish a Research Paper in 7 Steps

    This post will discuss 7 steps to the successful publication of your research paper: Check whether your research is publication-ready. Choose an article type. Choose a journal. Construct your paper. Decide the order of authors. Check and double-check. Submit your paper. 1.

  8. How to Get Published

    Free 1 hour monthly How to Get Published webinars cover topics including writing an article, navigating the peer review process, and what exactly it means when you hear "open access.". Join fellow researchers and expert speakers live, or watch our library of recordings on a variety of topics. Browse our webinars.

  9. How to publish your paper

    A. Yes, instead of giving the volume and page number, you can give the paper's DOI at the end of the citation. For example, Nature papers should be cited in the form; Author (s) Nature advance ...

  10. Understanding the Publishing Process

    The publication process explained. The path to publication can be unsettling when you're unsure what's happening with your paper. Learn about staple journal workflows to see the detailed steps required for ensuring a rigorous and ethical publication. Your team has prepared the paper, written a cover letter and completed the submission form.

  11. Author Services

    Research your publishing options. Take the time to explore the journals in your field, to choose the best fit for your research. Find a journal that serves the audience you're trying to reach, and whose aims and scope match your approach. You might also have choices to make about different publishing options, including open access.

  12. Publish My Research

    Explore over 1,600 research journals to publish your research, access our author services, and gain help promoting your article.

  13. How to publish an article?

    Production. - Copy editing and language polishing. - Data processing and type setting. - Article Tracking. - Checking your article: proofing procedure. - e.Proofing - Makes editing easy! Read more. Publication. - Publishing your article "Online First".

  14. How do I publish my article with Elsevier?

    Select ' Submit your article ' on the homepage of the journal you would like to publish in. This option may not always be available as some journals do not accept submissions. Sign in to Editorial Manager, or register if you are a first-time user. Follow the steps to submit your article. After submitting your article, use the reference number ...

  15. How to Write and Publish a Research Paper for a Peer ...

    Communicating research findings is an essential step in the research process. Often, peer-reviewed journals are the forum for such communication, yet many researchers are never taught how to write a publishable scientific paper. In this article, we explain the basic structure of a scientific paper and describe the information that should be included in each section. We also identify common ...

  16. The 5 Best Platforms to Publish Your Academic Research

    ResearchGate. ResearchGate is a platform hosting over 135 million publication pages with a community of 20 million scientists. The platform allows you to show off your work, access papers and advice from other researchers, make contacts and even find jobs. Some of its more prominent features include: Dedicated Q&A section with searchable ...

  17. Publish with PLOS

    When you choose to publish with PLOS, your research makes an impact. Make your work accessible to all, without restrictions, and accelerate scientific discovery with options like preprints and published peer review that make your work more Open. ... PLOS press released nearly 400 papers in 2019. Broad visibility and openness help researchers ...

  18. How to Publish a Research Paper: A Complete Guide

    Here's a list of steps to keep in mind before publishing a research paper : Step 1: Identifying the Right Journal. Step 2: Preparing Step 3: Your Manuscript. Step 3: Conducting a Thorough Review. Step 4: Writing a Compelling Cover Letter. Step 5: Navigating the Peer Review Process. Step 6: Handling Rejections.

  19. How should I choose the best platform to publish my research paper

    Coming to your query, there are actually quite a few points to keep in mind, such as the scope and focus of the journal (whether the topic of your paper is aligned with the topics published by the journal), the frequency of its publication, and its quality/stature, to name a few. One thing you need to be watchful of though is the presence of ...

  20. Find a journal

    Elsevier Journal Finder helps you find journals that could be best suited for publishing your scientific article. Journal Finder uses smart search technology and field-of-research specific vocabularies to match your paper's abstract to scientific journals.

  21. Where is the best place to publish my research?

    Identifying the best place to publish research involves consideration of many factors, including: Journal aim and scope. Publication of similar work. Journal rankings and measures of journal impact. Demonstration of good publishing practices. Welch compiled the information below to help guide a researcher through the decision-making process.

  22. Find the right journal

    The topics the journal publishes. If your research is applied, target a journal that publishes applied science; if it is clinical, target a clinical journal; if it is basic research, target a journal that publishes basic research. You may find it easier to browse a list of journals by subject area. The journal's audience.

  23. How to find the right journal for your research (using ...

    The right journal helps your research flourish. It puts you in the best position to reach a relevant and engaged audience, and can extend the impact of your paper through a high-quality publishing process. Unfortunately, finding the right journal is a particular pain point for inexperienced authors and those who publish on interdisciplinary ...

  24. How to Publish a Research Paper in 5 Easy Steps

    Carefully proofread and format your paper. Double-check for any spelling, grammar, or punctuation errors. Ensure your paper follows the recommended style guide for font type and size, spacing, margins, page numbers, headings, and image captions. ‍. Of course, writing a research paper is not as easy.

  25. Publish with IEEE

    By publishing with IEEE, you will get the global prestige that high-quality research deserves. ... Gain essential tips to help you publish your research faster and more efficiently with quick video tutorials on a variety of useful topics. Author Tools. Save time and effort with authoring tools and resources to help you write, prepare, and share ...

  26. AI Index Report

    The AI Index report tracks, collates, distills, and visualizes data related to artificial intelligence (AI). Our mission is to provide unbiased, rigorously vetted, broadly sourced data in order for policymakers, researchers, executives, journalists, and the general public to develop a more thorough and nuanced understanding of the complex field ...

  27. How to publish a research paper?

    1. Your paper: Must be current and must follow the six steps of Scientific research. ( problem, question, hypothesis, methodology, results, conclusion and so on) 2. Make sure to ask a scholar to ...

  28. AI Index: State of AI in 13 Charts

    This year's AI Index — a 500-page report tracking 2023's worldwide trends in AI — is out.. The index is an independent initiative at the Stanford Institute for Human-Centered Artificial Intelligence (HAI), led by the AI Index Steering Committee, an interdisciplinary group of experts from across academia and industry. This year's report covers the rise of multimodal foundation models ...

  29. The economic commitment of climate change

    Policy implications. We find that the economic damages resulting from climate change until 2049 are those to which the world economy is already committed and that these greatly outweigh the costs ...

  30. Students Are Likely Writing Millions of Papers With AI

    Despite those flaws, students have used chatbots for research, organizing ideas, and as a ghostwriter. Traces of chatbots have even been found in peer-reviewed, published academic writing .