• Privacy Policy

Research Method

Home » Research Methodology – Types, Examples and writing Guide

Research Methodology – Types, Examples and writing Guide

Table of Contents

Research Methodology

Research Methodology

Definition:

Research Methodology refers to the systematic and scientific approach used to conduct research, investigate problems, and gather data and information for a specific purpose. It involves the techniques and procedures used to identify, collect , analyze , and interpret data to answer research questions or solve research problems . Moreover, They are philosophical and theoretical frameworks that guide the research process.

Structure of Research Methodology

Research methodology formats can vary depending on the specific requirements of the research project, but the following is a basic example of a structure for a research methodology section:

I. Introduction

  • Provide an overview of the research problem and the need for a research methodology section
  • Outline the main research questions and objectives

II. Research Design

  • Explain the research design chosen and why it is appropriate for the research question(s) and objectives
  • Discuss any alternative research designs considered and why they were not chosen
  • Describe the research setting and participants (if applicable)

III. Data Collection Methods

  • Describe the methods used to collect data (e.g., surveys, interviews, observations)
  • Explain how the data collection methods were chosen and why they are appropriate for the research question(s) and objectives
  • Detail any procedures or instruments used for data collection

IV. Data Analysis Methods

  • Describe the methods used to analyze the data (e.g., statistical analysis, content analysis )
  • Explain how the data analysis methods were chosen and why they are appropriate for the research question(s) and objectives
  • Detail any procedures or software used for data analysis

V. Ethical Considerations

  • Discuss any ethical issues that may arise from the research and how they were addressed
  • Explain how informed consent was obtained (if applicable)
  • Detail any measures taken to ensure confidentiality and anonymity

VI. Limitations

  • Identify any potential limitations of the research methodology and how they may impact the results and conclusions

VII. Conclusion

  • Summarize the key aspects of the research methodology section
  • Explain how the research methodology addresses the research question(s) and objectives

Research Methodology Types

Types of Research Methodology are as follows:

Quantitative Research Methodology

This is a research methodology that involves the collection and analysis of numerical data using statistical methods. This type of research is often used to study cause-and-effect relationships and to make predictions.

Qualitative Research Methodology

This is a research methodology that involves the collection and analysis of non-numerical data such as words, images, and observations. This type of research is often used to explore complex phenomena, to gain an in-depth understanding of a particular topic, and to generate hypotheses.

Mixed-Methods Research Methodology

This is a research methodology that combines elements of both quantitative and qualitative research. This approach can be particularly useful for studies that aim to explore complex phenomena and to provide a more comprehensive understanding of a particular topic.

Case Study Research Methodology

This is a research methodology that involves in-depth examination of a single case or a small number of cases. Case studies are often used in psychology, sociology, and anthropology to gain a detailed understanding of a particular individual or group.

Action Research Methodology

This is a research methodology that involves a collaborative process between researchers and practitioners to identify and solve real-world problems. Action research is often used in education, healthcare, and social work.

Experimental Research Methodology

This is a research methodology that involves the manipulation of one or more independent variables to observe their effects on a dependent variable. Experimental research is often used to study cause-and-effect relationships and to make predictions.

Survey Research Methodology

This is a research methodology that involves the collection of data from a sample of individuals using questionnaires or interviews. Survey research is often used to study attitudes, opinions, and behaviors.

Grounded Theory Research Methodology

This is a research methodology that involves the development of theories based on the data collected during the research process. Grounded theory is often used in sociology and anthropology to generate theories about social phenomena.

Research Methodology Example

An Example of Research Methodology could be the following:

Research Methodology for Investigating the Effectiveness of Cognitive Behavioral Therapy in Reducing Symptoms of Depression in Adults

Introduction:

The aim of this research is to investigate the effectiveness of cognitive-behavioral therapy (CBT) in reducing symptoms of depression in adults. To achieve this objective, a randomized controlled trial (RCT) will be conducted using a mixed-methods approach.

Research Design:

The study will follow a pre-test and post-test design with two groups: an experimental group receiving CBT and a control group receiving no intervention. The study will also include a qualitative component, in which semi-structured interviews will be conducted with a subset of participants to explore their experiences of receiving CBT.

Participants:

Participants will be recruited from community mental health clinics in the local area. The sample will consist of 100 adults aged 18-65 years old who meet the diagnostic criteria for major depressive disorder. Participants will be randomly assigned to either the experimental group or the control group.

Intervention :

The experimental group will receive 12 weekly sessions of CBT, each lasting 60 minutes. The intervention will be delivered by licensed mental health professionals who have been trained in CBT. The control group will receive no intervention during the study period.

Data Collection:

Quantitative data will be collected through the use of standardized measures such as the Beck Depression Inventory-II (BDI-II) and the Generalized Anxiety Disorder-7 (GAD-7). Data will be collected at baseline, immediately after the intervention, and at a 3-month follow-up. Qualitative data will be collected through semi-structured interviews with a subset of participants from the experimental group. The interviews will be conducted at the end of the intervention period, and will explore participants’ experiences of receiving CBT.

Data Analysis:

Quantitative data will be analyzed using descriptive statistics, t-tests, and mixed-model analyses of variance (ANOVA) to assess the effectiveness of the intervention. Qualitative data will be analyzed using thematic analysis to identify common themes and patterns in participants’ experiences of receiving CBT.

Ethical Considerations:

This study will comply with ethical guidelines for research involving human subjects. Participants will provide informed consent before participating in the study, and their privacy and confidentiality will be protected throughout the study. Any adverse events or reactions will be reported and managed appropriately.

Data Management:

All data collected will be kept confidential and stored securely using password-protected databases. Identifying information will be removed from qualitative data transcripts to ensure participants’ anonymity.

Limitations:

One potential limitation of this study is that it only focuses on one type of psychotherapy, CBT, and may not generalize to other types of therapy or interventions. Another limitation is that the study will only include participants from community mental health clinics, which may not be representative of the general population.

Conclusion:

This research aims to investigate the effectiveness of CBT in reducing symptoms of depression in adults. By using a randomized controlled trial and a mixed-methods approach, the study will provide valuable insights into the mechanisms underlying the relationship between CBT and depression. The results of this study will have important implications for the development of effective treatments for depression in clinical settings.

How to Write Research Methodology

Writing a research methodology involves explaining the methods and techniques you used to conduct research, collect data, and analyze results. It’s an essential section of any research paper or thesis, as it helps readers understand the validity and reliability of your findings. Here are the steps to write a research methodology:

  • Start by explaining your research question: Begin the methodology section by restating your research question and explaining why it’s important. This helps readers understand the purpose of your research and the rationale behind your methods.
  • Describe your research design: Explain the overall approach you used to conduct research. This could be a qualitative or quantitative research design, experimental or non-experimental, case study or survey, etc. Discuss the advantages and limitations of the chosen design.
  • Discuss your sample: Describe the participants or subjects you included in your study. Include details such as their demographics, sampling method, sample size, and any exclusion criteria used.
  • Describe your data collection methods : Explain how you collected data from your participants. This could include surveys, interviews, observations, questionnaires, or experiments. Include details on how you obtained informed consent, how you administered the tools, and how you minimized the risk of bias.
  • Explain your data analysis techniques: Describe the methods you used to analyze the data you collected. This could include statistical analysis, content analysis, thematic analysis, or discourse analysis. Explain how you dealt with missing data, outliers, and any other issues that arose during the analysis.
  • Discuss the validity and reliability of your research : Explain how you ensured the validity and reliability of your study. This could include measures such as triangulation, member checking, peer review, or inter-coder reliability.
  • Acknowledge any limitations of your research: Discuss any limitations of your study, including any potential threats to validity or generalizability. This helps readers understand the scope of your findings and how they might apply to other contexts.
  • Provide a summary: End the methodology section by summarizing the methods and techniques you used to conduct your research. This provides a clear overview of your research methodology and helps readers understand the process you followed to arrive at your findings.

When to Write Research Methodology

Research methodology is typically written after the research proposal has been approved and before the actual research is conducted. It should be written prior to data collection and analysis, as it provides a clear roadmap for the research project.

The research methodology is an important section of any research paper or thesis, as it describes the methods and procedures that will be used to conduct the research. It should include details about the research design, data collection methods, data analysis techniques, and any ethical considerations.

The methodology should be written in a clear and concise manner, and it should be based on established research practices and standards. It is important to provide enough detail so that the reader can understand how the research was conducted and evaluate the validity of the results.

Applications of Research Methodology

Here are some of the applications of research methodology:

  • To identify the research problem: Research methodology is used to identify the research problem, which is the first step in conducting any research.
  • To design the research: Research methodology helps in designing the research by selecting the appropriate research method, research design, and sampling technique.
  • To collect data: Research methodology provides a systematic approach to collect data from primary and secondary sources.
  • To analyze data: Research methodology helps in analyzing the collected data using various statistical and non-statistical techniques.
  • To test hypotheses: Research methodology provides a framework for testing hypotheses and drawing conclusions based on the analysis of data.
  • To generalize findings: Research methodology helps in generalizing the findings of the research to the target population.
  • To develop theories : Research methodology is used to develop new theories and modify existing theories based on the findings of the research.
  • To evaluate programs and policies : Research methodology is used to evaluate the effectiveness of programs and policies by collecting data and analyzing it.
  • To improve decision-making: Research methodology helps in making informed decisions by providing reliable and valid data.

Purpose of Research Methodology

Research methodology serves several important purposes, including:

  • To guide the research process: Research methodology provides a systematic framework for conducting research. It helps researchers to plan their research, define their research questions, and select appropriate methods and techniques for collecting and analyzing data.
  • To ensure research quality: Research methodology helps researchers to ensure that their research is rigorous, reliable, and valid. It provides guidelines for minimizing bias and error in data collection and analysis, and for ensuring that research findings are accurate and trustworthy.
  • To replicate research: Research methodology provides a clear and detailed account of the research process, making it possible for other researchers to replicate the study and verify its findings.
  • To advance knowledge: Research methodology enables researchers to generate new knowledge and to contribute to the body of knowledge in their field. It provides a means for testing hypotheses, exploring new ideas, and discovering new insights.
  • To inform decision-making: Research methodology provides evidence-based information that can inform policy and decision-making in a variety of fields, including medicine, public health, education, and business.

Advantages of Research Methodology

Research methodology has several advantages that make it a valuable tool for conducting research in various fields. Here are some of the key advantages of research methodology:

  • Systematic and structured approach : Research methodology provides a systematic and structured approach to conducting research, which ensures that the research is conducted in a rigorous and comprehensive manner.
  • Objectivity : Research methodology aims to ensure objectivity in the research process, which means that the research findings are based on evidence and not influenced by personal bias or subjective opinions.
  • Replicability : Research methodology ensures that research can be replicated by other researchers, which is essential for validating research findings and ensuring their accuracy.
  • Reliability : Research methodology aims to ensure that the research findings are reliable, which means that they are consistent and can be depended upon.
  • Validity : Research methodology ensures that the research findings are valid, which means that they accurately reflect the research question or hypothesis being tested.
  • Efficiency : Research methodology provides a structured and efficient way of conducting research, which helps to save time and resources.
  • Flexibility : Research methodology allows researchers to choose the most appropriate research methods and techniques based on the research question, data availability, and other relevant factors.
  • Scope for innovation: Research methodology provides scope for innovation and creativity in designing research studies and developing new research techniques.

Research Methodology Vs Research Methods

About the author.

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Dissertation Methodology

Dissertation Methodology – Structure, Example...

Research Methods

Research Methods – Types, Examples and Guide

Data Interpretation

Data Interpretation – Process, Methods and...

Research Paper

Research Paper – Structure, Examples and Writing...

Thesis

Thesis – Structure, Example and Writing Guide

Limitations in Research

Limitations in Research – Types, Examples and...

Logo for M Libraries Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

11.1 The Purpose of Research Writing

Learning objectives.

  • Identify reasons to research writing projects.
  • Outline the steps of the research writing process.

Why was the Great Wall of China built? What have scientists learned about the possibility of life on Mars? What roles did women play in the American Revolution? How does the human brain create, store, and retrieve memories? Who invented the game of football, and how has it changed over the years?

You may know the answers to these questions off the top of your head. If you are like most people, however, you find answers to tough questions like these by searching the Internet, visiting the library, or asking others for information. To put it simply, you perform research.

Whether you are a scientist, an artist, a paralegal, or a parent, you probably perform research in your everyday life. When your boss, your instructor, or a family member asks you a question that you do not know the answer to, you locate relevant information, analyze your findings, and share your results. Locating, analyzing, and sharing information are key steps in the research process, and in this chapter, you will learn more about each step. By developing your research writing skills, you will prepare yourself to answer any question no matter how challenging.

Reasons for Research

When you perform research, you are essentially trying to solve a mystery—you want to know how something works or why something happened. In other words, you want to answer a question that you (and other people) have about the world. This is one of the most basic reasons for performing research.

But the research process does not end when you have solved your mystery. Imagine what would happen if a detective collected enough evidence to solve a criminal case, but she never shared her solution with the authorities. Presenting what you have learned from research can be just as important as performing the research. Research results can be presented in a variety of ways, but one of the most popular—and effective—presentation forms is the research paper . A research paper presents an original thesis, or purpose statement, about a topic and develops that thesis with information gathered from a variety of sources.

If you are curious about the possibility of life on Mars, for example, you might choose to research the topic. What will you do, though, when your research is complete? You will need a way to put your thoughts together in a logical, coherent manner. You may want to use the facts you have learned to create a narrative or to support an argument. And you may want to show the results of your research to your friends, your teachers, or even the editors of magazines and journals. Writing a research paper is an ideal way to organize thoughts, craft narratives or make arguments based on research, and share your newfound knowledge with the world.

Write a paragraph about a time when you used research in your everyday life. Did you look for the cheapest way to travel from Houston to Denver? Did you search for a way to remove gum from the bottom of your shoe? In your paragraph, explain what you wanted to research, how you performed the research, and what you learned as a result.

Research Writing and the Academic Paper

No matter what field of study you are interested in, you will most likely be asked to write a research paper during your academic career. For example, a student in an art history course might write a research paper about an artist’s work. Similarly, a student in a psychology course might write a research paper about current findings in childhood development.

Having to write a research paper may feel intimidating at first. After all, researching and writing a long paper requires a lot of time, effort, and organization. However, writing a research paper can also be a great opportunity to explore a topic that is particularly interesting to you. The research process allows you to gain expertise on a topic of your choice, and the writing process helps you remember what you have learned and understand it on a deeper level.

Research Writing at Work

Knowing how to write a good research paper is a valuable skill that will serve you well throughout your career. Whether you are developing a new product, studying the best way to perform a procedure, or learning about challenges and opportunities in your field of employment, you will use research techniques to guide your exploration. You may even need to create a written report of your findings. And because effective communication is essential to any company, employers seek to hire people who can write clearly and professionally.

Writing at Work

Take a few minutes to think about each of the following careers. How might each of these professionals use researching and research writing skills on the job?

  • Medical laboratory technician
  • Small business owner
  • Information technology professional
  • Freelance magazine writer

A medical laboratory technician or information technology professional might do research to learn about the latest technological developments in either of these fields. A small business owner might conduct research to learn about the latest trends in his or her industry. A freelance magazine writer may need to research a given topic to write an informed, up-to-date article.

Think about the job of your dreams. How might you use research writing skills to perform that job? Create a list of ways in which strong researching, organizing, writing, and critical thinking skills could help you succeed at your dream job. How might these skills help you obtain that job?

Steps of the Research Writing Process

How does a research paper grow from a folder of brainstormed notes to a polished final draft? No two projects are identical, but most projects follow a series of six basic steps.

These are the steps in the research writing process:

  • Choose a topic.
  • Plan and schedule time to research and write.
  • Conduct research.
  • Organize research and ideas.
  • Draft your paper.
  • Revise and edit your paper.

Each of these steps will be discussed in more detail later in this chapter. For now, though, we will take a brief look at what each step involves.

Step 1: Choosing a Topic

As you may recall from Chapter 8 “The Writing Process: How Do I Begin?” , to narrow the focus of your topic, you may try freewriting exercises, such as brainstorming. You may also need to ask a specific research question —a broad, open-ended question that will guide your research—as well as propose a possible answer, or a working thesis . You may use your research question and your working thesis to create a research proposal . In a research proposal, you present your main research question, any related subquestions you plan to explore, and your working thesis.

Step 2: Planning and Scheduling

Before you start researching your topic, take time to plan your researching and writing schedule. Research projects can take days, weeks, or even months to complete. Creating a schedule is a good way to ensure that you do not end up being overwhelmed by all the work you have to do as the deadline approaches.

During this step of the process, it is also a good idea to plan the resources and organizational tools you will use to keep yourself on track throughout the project. Flowcharts, calendars, and checklists can all help you stick to your schedule. See Chapter 11 “Writing from Research: What Will I Learn?” , Section 11.2 “Steps in Developing a Research Proposal” for an example of a research schedule.

Step 3: Conducting Research

When going about your research, you will likely use a variety of sources—anything from books and periodicals to video presentations and in-person interviews.

Your sources will include both primary sources and secondary sources . Primary sources provide firsthand information or raw data. For example, surveys, in-person interviews, and historical documents are primary sources. Secondary sources, such as biographies, literary reviews, or magazine articles, include some analysis or interpretation of the information presented. As you conduct research, you will take detailed, careful notes about your discoveries. You will also evaluate the reliability of each source you find.

Step 4: Organizing Research and the Writer’s Ideas

When your research is complete, you will organize your findings and decide which sources to cite in your paper. You will also have an opportunity to evaluate the evidence you have collected and determine whether it supports your thesis, or the focus of your paper. You may decide to adjust your thesis or conduct additional research to ensure that your thesis is well supported.

Remember, your working thesis is not set in stone. You can and should change your working thesis throughout the research writing process if the evidence you find does not support your original thesis. Never try to force evidence to fit your argument. For example, your working thesis is “Mars cannot support life-forms.” Yet, a week into researching your topic, you find an article in the New York Times detailing new findings of bacteria under the Martian surface. Instead of trying to argue that bacteria are not life forms, you might instead alter your thesis to “Mars cannot support complex life-forms.”

Step 5: Drafting Your Paper

Now you are ready to combine your research findings with your critical analysis of the results in a rough draft. You will incorporate source materials into your paper and discuss each source thoughtfully in relation to your thesis or purpose statement.

When you cite your reference sources, it is important to pay close attention to standard conventions for citing sources in order to avoid plagiarism , or the practice of using someone else’s words without acknowledging the source. Later in this chapter, you will learn how to incorporate sources in your paper and avoid some of the most common pitfalls of attributing information.

Step 6: Revising and Editing Your Paper

In the final step of the research writing process, you will revise and polish your paper. You might reorganize your paper’s structure or revise for unity and cohesion, ensuring that each element in your paper flows into the next logically and naturally. You will also make sure that your paper uses an appropriate and consistent tone.

Once you feel confident in the strength of your writing, you will edit your paper for proper spelling, grammar, punctuation, mechanics, and formatting. When you complete this final step, you will have transformed a simple idea or question into a thoroughly researched and well-written paper you can be proud of!

Review the steps of the research writing process. Then answer the questions on your own sheet of paper.

  • In which steps of the research writing process are you allowed to change your thesis?
  • In step 2, which types of information should you include in your project schedule?
  • What might happen if you eliminated step 4 from the research writing process?

Key Takeaways

  • People undertake research projects throughout their academic and professional careers in order to answer specific questions, share their findings with others, increase their understanding of challenging topics, and strengthen their researching, writing, and analytical skills.
  • The research writing process generally comprises six steps: choosing a topic, scheduling and planning time for research and writing, conducting research, organizing research and ideas, drafting a paper, and revising and editing the paper.

Writing for Success Copyright © 2015 by University of Minnesota is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

ESSENTIAL

Research methodology and writing skills

Some suggested resources on Research methodology and writing skills

  • Thomas W. Edgar and David O. Manz, Research Methods for Cyber Security (Elsevier Inc. 2017).
  • Patrick Dunleavy, Authoring a PhD: How to plan, draft, write and finish a doctoral thesis or dissertation (Patrick Dunleavy 2003).
  • Cynthia Grant and Azadeh Osanloo, ‘Understanding, Selecting, And Integrating A Theoretical Framework in Dissertation Research: Creating the Blueprint for Your House’ (2014) 4 Administrative Issues Journal

research methodology and writing skills

  • Training and Events

ESSENTIAL

  • Privacy Overview
  • Strictly Necessary Cookies

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.

Strictly Necessary Cookie should be enabled at all times so that we can save your preferences for cookie settings.

If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.

Explore Jobs

  • Jobs Near Me
  • Remote Jobs
  • Full Time Jobs
  • Part Time Jobs
  • Entry Level Jobs
  • Work From Home Jobs

Find Specific Jobs

  • $15 Per Hour Jobs
  • $20 Per Hour Jobs
  • Hiring Immediately Jobs
  • High School Jobs
  • H1b Visa Jobs

Explore Careers

  • Business And Financial
  • Architecture And Engineering
  • Computer And Mathematical

Explore Professions

  • What They Do
  • Certifications
  • Demographics

Best Companies

  • Health Care
  • Fortune 500

Explore Companies

  • CEO And Executies
  • Resume Builder
  • Career Advice
  • Explore Majors
  • Questions And Answers
  • Interview Questions

The Most Important Research Skills (With Examples)

  • What Are Hard Skills?
  • What Are Technical Skills?
  • What Are What Are Life Skills?
  • What Are Social Media Skills Resume?
  • What Are Administrative Skills?
  • What Are Analytical Skills?
  • What Are Research Skills?
  • What Are Transferable Skills?
  • What Are Microsoft Office Skills?
  • What Are Clerical Skills?
  • What Are Computer Skills?
  • What Are Core Competencies?
  • What Are Collaboration Skills?
  • What Are Conflict Resolution Skills?
  • What Are Mathematical Skills?
  • How To Delegate

Find a Job You Really Want In

Research skills are the ability to find out accurate information on a topic. They include being able to determine the data you need, find and interpret those findings, and then explain that to others. Being able to do effective research is a beneficial skill in any profession, as data and research inform how businesses operate.

Whether you’re unsure of your research skills or are looking for ways to further improve them, then this article will cover important research skills and how to become even better at research.

Key Takeaways

Having strong research skills can help you understand your competitors, develop new processes, and build your professional skills in addition to aiding you in finding new customers and saving your company money.

Some of the most valuable research skills you can have include goal setting, data collection, and analyzing information from multiple sources.

You can and should put your research skills on your resume and highlight them in your job interviews.

The Most Important Research Skills

What are research skills?

Why are research skills important, 12 of the most important research skills, how to improve your research skills, highlighting your research skills in a job interview, how to include research skills on your resume, resume examples showcasing research skills, research skills faqs.

  • Sign Up For More Advice and Jobs

Research skills are the necessary tools to be able to find, compile, and interpret information in order to answer a question. Of course, there are several aspects to this. Researchers typically have to decide how to go about researching a problem — which for most people is internet research.

In addition, you need to be able to interpret the reliability of a source, put the information you find together in an organized and logical way, and be able to present your findings to others. That means that they’re comprised of both hard skills — knowing your subject and what’s true and what isn’t — and soft skills. You need to be able to interpret sources and communicate clearly.

Research skills are useful in any industry, and have applications in innovation, product development, competitor research, and many other areas. In addition, the skills used in researching aren’t only useful for research. Being able to interpret information is a necessary skill, as is being able to clearly explain your reasoning.

Research skills are used to:

Do competitor research. Knowing what your biggest competitors are up to is an essential part of any business. Researching what works for your competitors, what they’re doing better than you, and where you can improve your standing with the lowest resource expenditure are all essential if a company wants to remain functional.

Develop new processes and products. You don’t have to be involved in research and development to make improvements in how your team gets things done. Researching new processes that make your job (and those of your team) more efficient will be valued by any sensible employer.

Foster self-improvement. Folks who have a knack and passion for research are never content with doing things the same way they’ve always been done. Organizations need independent thinkers who will seek out their own answers and improve their skills as a matter of course. These employees will also pick up new technologies more easily.

Manage customer relationships. Being able to conduct research on your customer base is positively vital in virtually every industry. It’s hard to move products or sell services if you don’t know what people are interested in. Researching your customer base’s interests, needs, and pain points is a valuable responsibility.

Save money. Whether your company is launching a new product or just looking for ways to scale back its current spending, research is crucial for finding wasted resources and redirecting them to more deserving ends. Anyone who proactively researches ways that the company can save money will be highly appreciated by their employer.

Solve problems. Problem solving is a major part of a lot of careers, and research skills are instrumental in making sure your solution is effective. Finding out the cause of the problem and determining an effective solution both require accurate information, and research is the best way to obtain that — be it via the internet or by observation.

Determine reliable information. Being able to tell whether or not the information you receive seems accurate is a very valuable skill. While research skills won’t always guarantee that you’ll be able to tell the reliability of the information at first glance, it’ll prevent you from being too trusting. And it’ll give the tools to double-check .

Experienced researchers know that worthwhile investigation involves a variety of skills. Consider which research skills come naturally to you, and which you could work on more.

Data collection . When thinking about the research process, data collection is often the first thing that comes to mind. It is the nuts and bolts of research. How data is collected can be flexible.

For some purposes, simply gathering facts and information on the internet can fulfill your need. Others may require more direct and crowd-sourced research. Having experience in various methods of data collection can make your resume more impressive to recruiters.

Data collection methods include: Observation Interviews Questionnaires Experimentation Conducting focus groups

Analysis of information from different sources. Putting all your eggs in one source basket usually results in error and disappointment. One of the skills that good researchers always incorporate into their process is an abundance of sources. It’s also best practice to consider the reliability of these sources.

Are you reading about U.S. history on a conspiracy theorist’s blog post? Taking facts for a presentation from an anonymous Twitter account?

If you can’t determine the validity of the sources you’re using, it can compromise all of your research. That doesn’t mean just disregard anything on the internet but double-check your findings. In fact, quadruple-check. You can make your research even stronger by turning to references outside of the internet.

Examples of reliable information sources include: Published books Encyclopedias Magazines Databases Scholarly journals Newspapers Library catalogs

Finding information on the internet. While it can be beneficial to consulate alternative sources, strong internet research skills drive modern-day research.

One of the great things about the internet is how much information it contains, however, this comes with digging through a lot of garbage to get to the facts you need. The ability to efficiently use the vast database of knowledge that is on the internet without getting lost in the junk is very valuable to employers.

Internet research skills include: Source checking Searching relevant questions Exploring deeper than the first options Avoiding distraction Giving credit Organizing findings

Interviewing. Some research endeavors may require a more hands-on approach than just consulting internet sources. Being prepared with strong interviewing skills can be very helpful in the research process.

Interviews can be a useful research tactic to gain first-hand information and being able to manage a successful interview can greatly improve your research skills.

Interviewing skills involves: A plan of action Specific, pointed questions Respectfulness Considering the interview setting Actively Listening Taking notes Gratitude for participation

Report writing. Possessing skills in report writing can assist you in job and scholarly research. The overall purpose of a report in any context is to convey particular information to its audience.

Effective report writing is largely dependent on communication. Your boss, professor , or general reader should walk away completely understanding your findings and conclusions.

Report writing skills involve: Proper format Including a summary Focusing on your initial goal Creating an outline Proofreading Directness

Critical thinking. Critical thinking skills can aid you greatly throughout the research process, and as an employee in general. Critical thinking refers to your data analysis skills. When you’re in the throes of research, you need to be able to analyze your results and make logical decisions about your findings.

Critical thinking skills involve: Observation Analysis Assessing issues Problem-solving Creativity Communication

Planning and scheduling. Research is a work project like any other, and that means it requires a little forethought before starting. Creating a detailed outline map for the points you want to touch on in your research produces more organized results.

It also makes it much easier to manage your time. Planning and scheduling skills are important to employers because they indicate a prepared employee.

Planning and scheduling skills include: Setting objectives Identifying tasks Prioritizing Delegating if needed Vision Communication Clarity Time-management

Note-taking. Research involves sifting through and taking in lots of information. Taking exhaustive notes ensures that you will not neglect any findings later and allows you to communicate these results to your co-workers. Being able to take good notes helps summarize research.

Examples of note-taking skills include: Focus Organization Using short-hand Keeping your objective in mind Neatness Highlighting important points Reviewing notes afterward

Communication skills. Effective research requires being able to understand and process the information you receive, either written or spoken. That means that you need strong reading comprehension and writing skills — two major aspects of communication — as well as excellent listening skills.

Most research also involves showcasing your findings. This can be via a presentation. , report, chart, or Q&A. Whatever the case, you need to be able to communicate your findings in a way that educates your audience.

Communication skills include: Reading comprehension Writing Listening skills Presenting to an audience Creating graphs or charts Explaining in layman’s terms

Time management. We’re, unfortunately, only given 24 measly hours in a day. The ability to effectively manage this time is extremely powerful in a professional context. Hiring managers seek candidates who can accomplish goals in a given timeframe.

Strong time management skills mean that you can organize a plan for how to break down larger tasks in a project and complete them by a deadline. Developing your time management skills can greatly improve the productivity of your research.

Time management skills include: Scheduling Creating task outlines Strategic thinking Stress-management Delegation Communication Utilizing resources Setting realistic expectations Meeting deadlines

Using your network. While this doesn’t seem immediately relevant to research skills, remember that there are a lot of experts out there. Knowing what people’s areas of expertise and asking for help can be tremendously beneficial — especially if it’s a subject you’re unfamiliar with.

Your coworkers are going to have different areas of expertise than you do, and your network of people will as well. You may even know someone who knows someone who’s knowledgeable in the area you’re researching. Most people are happy to share their expertise, as it’s usually also an area of interest to them.

Networking involves: Remembering people’s areas of expertise Being willing to ask for help Communication Returning favors Making use of advice Asking for specific assistance

Attention to detail. Research is inherently precise. That means that you need to be attentive to the details, both in terms of the information you’re gathering, but also in where you got it from. Making errors in statistics can have a major impact on the interpretation of the data, not to mention that it’ll reflect poorly on you.

There are proper procedures for citing sources that you should follow. That means that your sources will be properly credited, preventing accusations of plagiarism. In addition, it means that others can make use of your research by returning to the original sources.

Attention to detail includes: Double checking statistics Taking notes Keeping track of your sources Staying organized Making sure graphs are accurate and representative Properly citing sources

As with many professional skills, research skills serve us in our day to day life. Any time you search for information on the internet, you’re doing research. That means that you’re practicing it outside of work as well. If you want to continue improving your research skills, both for professional and personal use, here are some tips to try.

Differentiate between source quality. A researcher is only as good as their worst source. Start paying attention to the quality of the sources you use, and be suspicious of everything your read until you check out the attributions and works cited.

Be critical and ask yourself about the author’s bias, where the author’s research aligns with the larger body of verified research in the field, and what publication sponsored or published the research.

Use multiple resources. When you can verify information from a multitude of sources, it becomes more and more credible. To bolster your faith in one source, see if you can find another source that agrees with it.

Don’t fall victim to confirmation bias. Confirmation bias is when a researcher expects a certain outcome and then goes to find data that supports this hypothesis. It can even go so far as disregarding anything that challenges the researcher’s initial hunch. Be prepared for surprising answers and keep an open mind.

Be open to the idea that you might not find a definitive answer. It’s best to be honest and say that you found no definitive answer instead of just confirming what you think your boss or coworkers expect or want to hear. Experts and good researchers are willing to say that they don’t know.

Stay organized. Being able to cite sources accurately and present all your findings is just as important as conducting the research itself. Start practicing good organizational skills , both on your devices and for any physical products you’re using.

Get specific as you go. There’s nothing wrong with starting your research in a general way. After all, it’s important to become familiar with the terminology and basic gist of the researcher’s findings before you dig down into all the minutia.

A job interview is itself a test of your research skills. You can expect questions on what you know about the company, the role, and your field or industry more generally. In order to give expert answers on all these topics, research is crucial.

Start by researching the company . Look into how they communicate with the public through social media, what their mission statement is, and how they describe their culture.

Pay close attention to the tone of their website. Is it hyper professional or more casual and fun-loving? All of these elements will help decide how best to sell yourself at the interview.

Next, research the role. Go beyond the job description and reach out to current employees working at your desired company and in your potential department. If you can find out what specific problems your future team is or will be facing, you’re sure to impress hiring managers and recruiters with your ability to research all the facts.

Finally, take time to research the job responsibilities you’re not as comfortable with. If you’re applying for a job that represents increased difficulty or entirely new tasks, it helps to come into the interview with at least a basic knowledge of what you’ll need to learn.

Research projects require dedication. Being committed is a valuable skill for hiring managers. Whether you’ve had research experience throughout education or a former job, including it properly can boost the success of your resume .

Consider how extensive your research background is. If you’ve worked on multiple, in-depth research projects, it might be best to include it as its own section. If you have less research experience, include it in the skills section .

Focus on your specific role in the research, as opposed to just the research itself. Try to quantify accomplishments to the best of your abilities. If you were put in charge of competitor research, for example, list that as one of the tasks you had in your career.

If it was a particular project, such as tracking the sale of women’s clothing at a tee-shirt company, you can say that you “directed analysis into women’s clothing sales statistics for a market research project.”

Ascertain how directly research skills relate to the job you’re applying for. How strongly you highlight your research skills should depend on the nature of the job the resume is for. If research looks to be a strong component of it, then showcase all of your experience.

If research looks to be tangential, then be sure to mention it — it’s a valuable skill — but don’t put it front and center.

Example #1: Academic Research

Simon Marks 767 Brighton Blvd. | Brooklyn, NY, 27368 | (683)-262-8883 | [email protected] Diligent and hardworking recent graduate seeking a position to develop professional experience and utilize research skills. B.A. in Biological Sciences from New York University. PROFESSIONAL EXPERIENCE Lixus Publishing , Brooklyn, NY Office Assistant- September 2018-present Scheduling and updating meetings Managing emails and phone calls Reading entries Worked on a science fiction campaign by researching target demographic Organizing calendars Promoted to office assistant after one year internship Mitch’s Burgers and Fries , Brooklyn, NY Restaurant Manager , June 2014-June 2018 Managed a team of five employees Responsible for coordinating the weekly schedule Hired and trained two employees Kept track of inventory Dealt with vendors Provided customer service Promoted to restaurant manager after two years as a waiter Awarded a $2.00/hr wage increase SKILLS Writing Scientific Research Data analysis Critical thinking Planning Communication RESEARCH Worked on an ecosystem biology project with responsibilities for algae collection and research (2019) Lead a group of freshmen in a research project looking into cell biology (2018) EDUCATION New York University Bachelors in Biological Sciences, September 2016-May 2020

Example #2: Professional Research

Angela Nichols 1111 Keller Dr. | San Francisco, CA | (663)-124-8827 |[email protected] Experienced and enthusiastic marketer with 7 years of professional experience. Seeking a position to apply my marketing and research knowledge. Skills in working on a team and flexibility. EXPERIENCE Apples amp; Oranges Marketing, San Francisco, CA Associate Marketer – April 2017-May 2020 Discuss marketing goals with clients Provide customer service Lead campaigns associated with women’s health Coordinating with a marketing team Quickly solving issues in service and managing conflict Awarded with two raises totaling $10,000 over three years Prestigious Marketing Company, San Francisco, CA Marketer – May 2014-April 2017 Working directly with clients Conducting market research into television streaming preferences Developing marketing campaigns related to television streaming services Report writing Analyzing campaign success statistics Promoted to Marketer from Junior Marketer after the first year Timberlake Public Relations, San Francisco, CA Public Relations Intern – September 2013–May 2014 Working cohesively with a large group of co-workers and supervisors Note-taking during meetings Running errands Managing email accounts Assisting in brainstorming Meeting work deadlines EDUCATION Golden Gate University, San Francisco, CA Bachelor of Arts in Marketing with a minor in Communications – September 2009 – May 2013 SKILLS Marketing Market research Record-keeping Teamwork Presentation. Flexibility

What research skills are important?

Goal-setting and data collection are important research skills. Additional important research skills include:

Using different sources to analyze information.

Finding information on the internet.

Interviewing sources.

Writing reports.

Critical thinking.

Planning and scheduling.

Note-taking.

Managing time.

How do you develop good research skills?

You develop good research skills by learning how to find information from multiple high-quality sources, by being wary of confirmation bias, and by starting broad and getting more specific as you go.

When you learn how to tell a reliable source from an unreliable one and get in the habit of finding multiple sources that back up a claim, you’ll have better quality research.

In addition, when you learn how to keep an open mind about what you’ll find, you’ll avoid falling into the trap of confirmation bias, and by staying organized and narrowing your focus as you go (rather than before you start), you’ll be able to gather quality information more efficiently.

What is the importance of research?

The importance of research is that it informs most decisions and strategies in a business. Whether it’s deciding which products to offer or creating a marketing strategy, research should be used in every part of a company.

Because of this, employers want employees who have strong research skills. They know that you’ll be able to put them to work bettering yourself and the organization as a whole.

Should you put research skills on your resume?

Yes, you should include research skills on your resume as they are an important professional skill. Where you include your research skills on your resume will depend on whether you have a lot of experience in research from a previous job or as part of getting your degree, or if you’ve just cultivated them on your own.

If your research skills are based on experience, you could put them down under the tasks you were expected to perform at the job in question. If not, then you should likely list it in your skills section.

University of the People – The Best Research Skills for Success

Association of Internet Research Specialists — What are Research Skills and Why Are They Important?

MasterClass — How to Improve Your Research Skills: 6 Research Tips

How useful was this post?

Click on a star to rate it!

Average rating / 5. Vote count:

No votes so far! Be the first to rate this post.

' src=

Sky Ariella is a professional freelance writer, originally from New York. She has been featured on websites and online magazines covering topics in career, travel, and lifestyle. She received her BA in psychology from Hunter College.

Recent Job Searches

  • Registered Nurse Jobs Resume Location
  • Truck Driver Jobs Resume Location
  • Call Center Representative Jobs Resume Location
  • Customer Service Representative Jobs Resume
  • Delivery Driver Jobs Resume Location
  • Warehouse Worker Jobs Resume Location
  • Account Executive Jobs Resume Location
  • Sales Associate Jobs Resume Location
  • Licensed Practical Nurse Jobs Resume Location
  • Company Driver Jobs Resume

Related posts

15 High Income Skills To Earn More In 2022

15 High Income Skills To Earn More In 2023

research methodology and writing skills

Job Order Costing: What It Is And Examples

What Are Hybrid Skills? (With Examples)

What Are Hybrid Skills? (With Examples)

research methodology and writing skills

50 Jobs That Use Visio The Most

  • Career Advice >
  • Hard Skills >
  • Research Skills
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

research methodology and writing skills

Home Market Research Research Tools and Apps

Research Skills: What they are and Benefits

research skills

Research skills play a vital role in the success of any research project, enabling individuals to navigate the vast sea of information, analyze data critically, and draw meaningful conclusions. Whether conducting academic research, professional investigations, or personal inquiries, strong research skills are essential for obtaining accurate and reliable results.

LEARN ABOUT:   Research Process Steps

By understanding and developing these skills, individuals can embark on their research endeavors with confidence, integrity, and the capability to make meaningful contributions in their chosen fields. This article will explore the importance of research skills and discuss critical competencies necessary for conducting a research project effectively.

Content Index

What are Research Skills?

Important research skills for research project, benefits of research skills.

  • Improving your Research Skills

Talk to Experts to Improve Skills

Research skills are the capability a person carries to create new concepts and understand the use of data collection. These skills include techniques, documentation, and interpretation of the collected data. Research is conducted to evaluate hypotheses and share the findings most appropriately. Research skills improve as we gain experience.

To conduct efficient research, specific research skills are essential. These skills are necessary for companies to develop new products and services or enhance existing products. To develop good research skills is important for both the individual as well as the company.

When undertaking a research project, one must possess specific important skills to ensure the project’s success and accuracy. Here are some essential research skills that are crucial for conducting a project effectively:

Time Management Skills:

Time management is an essential research skill; it helps you break down your project into parts and enables you to manage it easier. One can create a dead-line oriented plan for the research project and assign time for each task. Time management skills include setting goals for the project, planning and organizing functions as per their priority, and efficiently delegating these tasks.

Communication Skills:

These skills help you understand and receive important information and also allow you to share your findings with others in an effective manner. Active listening and speaking are critical skills for solid communication. A researcher must have good communication skills.

Problem-Solving:  

The ability to handle complex situations and business challenges and come up with solutions for them is termed problem-solving. To problem-solve, you should be able to fully understand the extent of the problem and then break it down into smaller parts. Once segregated into smaller chunks, you can start thinking about each element and analyze it to find a solution.

Information gathering and attention to detail:

Relevant information is the key to good research design . Searching for credible resources and collecting information from there will help you strengthen your research proposal and drive you to solutions faster. Once you have access to information, paying close attention to all the details and drawing conclusions based on the findings is essential.

Research Design and Methodology :

Understanding research design and methodology is essential for planning and conducting a project. Depending on the research question and objectives, researchers must select appropriate research methods, such as surveys, experiments, interviews, or case studies. Proficiency in designing research protocols, data collection instruments, and sampling strategies is crucial for obtaining reliable and valid results.

Data Collection and Analysis :

Researchers should be skilled in collecting and analyzing data accurately. It involves designing data collection instruments, collecting data through various methods, such as surveys or observations, and organizing and analyzing the collected data using appropriate statistical or qualitative analysis techniques. Proficiency in using software tools like SPSS, Excel, or qualitative analysis software can be beneficial.

By developing and strengthening these research skills, researchers can enhance the quality and impact of their research process, contributing to good research skills in their respective fields.

Research skills are invaluable assets that can benefit individuals in various aspects of their lives. Here are some key benefits of developing and honing research skills:

Boosts Curiosity :

Curiosity is a strong desire to know things and a powerful learning driver. Curious researchers will naturally ask questions that demand answers and will stop in the search for answers. Interested people are better listeners and are open to listening to other people’s ideas and perspectives, not just their own.

Cultivates Self-awareness :

As well as being aware of other people’s subjective opinions, one must develop the importance of research skills and be mindful of the benefits of awareness research; we are exposed to many things while researching. Once we start doing research, the benefit from it reflects on the beliefs and attitudes and encourages them to open their minds to other perspectives and ways of looking at things.

Effective Communication:

Research skills contribute to practical communication skills by enhancing one’s ability to articulate ideas, opinions, and findings clearly and coherently. Through research, individuals learn to organize their thoughts, present evidence-based arguments, and effectively convey complex information to different audiences. These skills are crucial in academic research settings, professional environments, and personal interactions.

Personal and Professional Growth :

Developing research skills fosters personal and professional growth by instilling a sense of curiosity, intellectual independence, and a lifelong learning mindset. Research encourages individuals to seek knowledge, challenge assumptions, and embrace intellectual growth. These skills also enhance adaptability as individuals become adept at navigating and assimilating new information, staying updated with the latest developments, and adjusting their perspectives and strategies accordingly.

Academic Success:

Research skills are essential for academic research success. They enable students to conduct thorough literature reviews, gather evidence to support their arguments, and critically evaluate existing research. By honing their research skills, students can produce well-structured, evidence-based essays, projects, and dissertations demonstrating high academic research rigor and analytical thinking.

Professional Advancement:

Research skills are highly valued in the professional world. They are crucial for conducting market research, analyzing trends, identifying opportunities, and making data-driven decisions. Employers appreciate individuals who can effectively gather and analyze information, solve complex problems, and provide evidence-based recommendations. Research skills also enable professionals to stay updated with advancements in their field, positioning themselves as knowledgeable and competent experts.

Developing and nurturing research skills can significantly benefit individuals in numerous aspects of their lives, enabling them to thrive in an increasingly information-driven world.

Improving Your Research Skills

There are many things you can do to improve your research skills and utilize them in your research or day job. Here are some examples:

  • Develop Information Literacy: Strengthening your information literacy skills is crucial for conducting thorough research. It involves identifying reliable sources, evaluating the credibility of information, and navigating different research databases.
  • Enhance Critical Thinking: Critical thinking is an essential skill for effective research. It involves analyzing information, questioning assumptions, and evaluating arguments. Practice critical analysis by analyzing thoughtfully, identifying biases, and considering alternative perspectives.
  • Master Research Methodologies: Familiarize yourself with different research methodologies relevant to your field. Whether it’s qualitative, quantitative, or mixed methods research, realizing the strengths and limitations of each approach is crucial.
  • Practice Effective Time Management: Research requires dedicated time and effort. Develop good time management skills to ensure that you allocate sufficient time for each stage of the research process, including planning, data collection, analysis, and writing.
  • Embrace Collaboration: Collaborating with peers and colleagues can provide a fresh perspective and enrich your research experience. Engage in discussions, share ideas, and seek feedback from others. Collaborative projects allow for exchanging knowledge and skills.
  • Continuously Update Your Knowledge: Stay informed about your field’s latest developments and advancements. Regularly read scholarly articles, attend conferences, and follow reputable sources of information to stay up to date with current research trends.

There is plenty of information available on the internet about every topic; hence, learning skills to know which information is relevant and credible is very important. Today most search engines have the feature of advanced search, and you can customize the search as per your preference. Once you learn this skill, it will help you find information. 

Experts possess a wealth of knowledge, experience, and insights that can significantly enhance your understanding and abilities in conducting research. Experts have often encountered numerous challenges and hurdles throughout their research journey and have developed effective problem-solving techniques. Engaging with experts is a highly effective approach to improving research skills.

Moreover, experts can provide valuable feedback and constructive criticism on your research work. They can offer fresh perspectives, identify areas for improvement, and help you refine your research questions, methodology, and analysis.

At QuestionPro, we can help you with the necessary tools to carry out your projects, and we have created the following free resources to help you in your professional growth:

  • Survey Templates

Research skills are invaluable assets that empower individuals to navigate the ever-expanding realm of information, make informed decisions, and contribute to advancing knowledge. With advanced research tools and technologies like QuestionPro Survey Software, researchers have potent resources to conduct comprehensive surveys, gather data, and analyze results efficiently.

Where data-driven decision-making is crucial, research skills supported by advanced tools like QuestionPro are essential for researchers to stay ahead and make impactful contributions to their fields. By embracing these research skills and leveraging the capabilities of powerful survey software, researchers can unlock new possibilities, gain deeper insights, and pave the way for meaningful discoveries.

Authors : Gargi Ghamandi & Sandeep Kokane

FREE TRIAL         LEARN MORE

MORE LIKE THIS

research methodology and writing skills

Why Multilingual 360 Feedback Surveys Provide Better Insights

Jun 3, 2024

Raked Weighting

Raked Weighting: A Key Tool for Accurate Survey Results

May 31, 2024

Data trends

Top 8 Data Trends to Understand the Future of Data

May 30, 2024

interactive presentation software

Top 12 Interactive Presentation Software to Engage Your User

May 29, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence
  • Academics /

Take a Course

Online and on-campus courses that fit your lifestyle.

Courses Designed for Impact

At Harvard Extension School, our courses are the cornerstone of our academic offerings.

You may choose to take a single course — perhaps to build a new skill, explore a passion, or prepare for graduate school. Or you may decide to take courses in pursuit of a degree or certificate . The choice is yours.

Our courses are open enrollment, requiring no application to enroll. Whatever your goal, you’ll find courses that balance academic rigor with flexibility and value.

800 courses in over 60 subjects

Harvard faculty and industry-leading professionals

Flexible course formats to fit your life

High-impact learning designed for real-world application

A global community of motivated lifelong learners just like you

Stackable pathways that can lead from a course to a certificate to a degree

Take a Course This Summer

You can explore over 400 online and on-campus courses offered during Harvard Summer School 2024.

Multiple Participation Options Offered Year-Round

We understand that you need flexible attendance options to balance school, career, and other life commitments.

We offer courses multiple times a year, with 3 participation options:

  • Online synchronous
  • Online asynchronous

Learn more about our course participations options.

Full (15-week) and half (7-week) term courses between August and mid-December

January Session

3-week intensive courses

Spring Term

Full (15 week) and half (7 week) term courses from late January to mid-May

Summer Session

3- and 7-week options from June to August

Course Tuition Rates

Simply enroll—no application required.

To get started, simply follow these steps:

  • Create a  MyDCE account .
  • Review our  Enrollment Policies .
  • Explore our  course catalog .
  • Understand our  Enrollment Requirements and complete those applicable to you and your course of interest.
  • Complete  preregistration in MyDCE .
  • Register for your course.
  • Submit your  payment by the payment deadline.
  • Learn and connect!

Has it been a few years since you were in a classroom?

Returning to school as an adult student can be overwhelming. Our Harvard Extension Ready tool and Career and Academic Resource Center can help you prepare.

Harvard Extension Ready

Harvard Extension Ready is a series of online lessons on core writing skills. It is free, self-guided, and self-paced.

Learn more and get started with Harvard Extension Ready !

Career and Academic Resource Center (CARC)

CARC provides academic webinars covering a wide variety of study and research skills you’ll need to thrive at Harvard Extension School.

Whether you want to learn some effective note-taking strategies, prepare to give a presentation, or understand how to properly cite your sources in a midterm paper, you’ll find what you need in the online CARC resource library.

Visit the CARC website to explore all of these valuable resources and more.

Experience all that Harvard Extension Has to Offer

  • Receive college credit. Harvard Extension courses are credit-bearing, can be applied to related Harvard Extension certificates and degrees , and may be transferable to other universities.
  • Gain access to skill-building and career webinars , student resources , and Harvard University libraries .
  • Develop a diverse network of peers like you—driven, experienced, and committed to growth.

Harvard Division of Continuing Education

The Division of Continuing Education (DCE) at Harvard University is dedicated to bringing rigorous academics and innovative teaching capabilities to those seeking to improve their lives through education. We make Harvard education accessible to lifelong learners from high school to retirement.

Harvard Division of Continuing Education Logo

A systematic literature review of empirical research on ChatGPT in education

  • Open access
  • Published: 26 May 2024
  • Volume 3 , article number  60 , ( 2024 )

Cite this article

You have full access to this open access article

research methodology and writing skills

  • Yazid Albadarin   ORCID: orcid.org/0009-0005-8068-8902 1 ,
  • Mohammed Saqr 1 ,
  • Nicolas Pope 1 &
  • Markku Tukiainen 1  

475 Accesses

Explore all metrics

Over the last four decades, studies have investigated the incorporation of Artificial Intelligence (AI) into education. A recent prominent AI-powered technology that has impacted the education sector is ChatGPT. This article provides a systematic review of 14 empirical studies incorporating ChatGPT into various educational settings, published in 2022 and before the 10th of April 2023—the date of conducting the search process. It carefully followed the essential steps outlined in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA 2020) guidelines, as well as Okoli’s (Okoli in Commun Assoc Inf Syst, 2015) steps for conducting a rigorous and transparent systematic review. In this review, we aimed to explore how students and teachers have utilized ChatGPT in various educational settings, as well as the primary findings of those studies. By employing Creswell’s (Creswell in Educational research: planning, conducting, and evaluating quantitative and qualitative research [Ebook], Pearson Education, London, 2015) coding techniques for data extraction and interpretation, we sought to gain insight into their initial attempts at ChatGPT incorporation into education. This approach also enabled us to extract insights and considerations that can facilitate its effective and responsible use in future educational contexts. The results of this review show that learners have utilized ChatGPT as a virtual intelligent assistant, where it offered instant feedback, on-demand answers, and explanations of complex topics. Additionally, learners have used it to enhance their writing and language skills by generating ideas, composing essays, summarizing, translating, paraphrasing texts, or checking grammar. Moreover, learners turned to it as an aiding tool to facilitate their directed and personalized learning by assisting in understanding concepts and homework, providing structured learning plans, and clarifying assignments and tasks. However, the results of specific studies (n = 3, 21.4%) show that overuse of ChatGPT may negatively impact innovative capacities and collaborative learning competencies among learners. Educators, on the other hand, have utilized ChatGPT to create lesson plans, generate quizzes, and provide additional resources, which helped them enhance their productivity and efficiency and promote different teaching methodologies. Despite these benefits, the majority of the reviewed studies recommend the importance of conducting structured training, support, and clear guidelines for both learners and educators to mitigate the drawbacks. This includes developing critical evaluation skills to assess the accuracy and relevance of information provided by ChatGPT, as well as strategies for integrating human interaction and collaboration into learning activities that involve AI tools. Furthermore, they also recommend ongoing research and proactive dialogue with policymakers, stakeholders, and educational practitioners to refine and enhance the use of AI in learning environments. This review could serve as an insightful resource for practitioners who seek to integrate ChatGPT into education and stimulate further research in the field.

Similar content being viewed by others

research methodology and writing skills

Empowering learners with ChatGPT: insights from a systematic literature exploration

research methodology and writing skills

Incorporating AI in foreign language education: An investigation into ChatGPT’s effect on foreign language learners

research methodology and writing skills

Large language models in education: A focus on the complementary relationship between human teachers and ChatGPT

Avoid common mistakes on your manuscript.

1 Introduction

Educational technology, a rapidly evolving field, plays a crucial role in reshaping the landscape of teaching and learning [ 82 ]. One of the most transformative technological innovations of our era that has influenced the field of education is Artificial Intelligence (AI) [ 50 ]. Over the last four decades, AI in education (AIEd) has gained remarkable attention for its potential to make significant advancements in learning, instructional methods, and administrative tasks within educational settings [ 11 ]. In particular, a large language model (LLM), a type of AI algorithm that applies artificial neural networks (ANNs) and uses massively large data sets to understand, summarize, generate, and predict new content that is almost difficult to differentiate from human creations [ 79 ], has opened up novel possibilities for enhancing various aspects of education, from content creation to personalized instruction [ 35 ]. Chatbots that leverage the capabilities of LLMs to understand and generate human-like responses have also presented the capacity to enhance student learning and educational outcomes by engaging students, offering timely support, and fostering interactive learning experiences [ 46 ].

The ongoing and remarkable technological advancements in chatbots have made their use more convenient, increasingly natural and effortless, and have expanded their potential for deployment across various domains [ 70 ]. One prominent example of chatbot applications is the Chat Generative Pre-Trained Transformer, known as ChatGPT, which was introduced by OpenAI, a leading AI research lab, on November 30th, 2022. ChatGPT employs a variety of deep learning techniques to generate human-like text, with a particular focus on recurrent neural networks (RNNs). Long short-term memory (LSTM) allows it to grasp the context of the text being processed and retain information from previous inputs. Also, the transformer architecture, a neural network architecture based on the self-attention mechanism, allows it to analyze specific parts of the input, thereby enabling it to produce more natural-sounding and coherent output. Additionally, the unsupervised generative pre-training and the fine-tuning methods allow ChatGPT to generate more relevant and accurate text for specific tasks [ 31 , 62 ]. Furthermore, reinforcement learning from human feedback (RLHF), a machine learning approach that combines reinforcement learning techniques with human-provided feedback, has helped improve ChatGPT’s model by accelerating the learning process and making it significantly more efficient.

This cutting-edge natural language processing (NLP) tool is widely recognized as one of today's most advanced LLMs-based chatbots [ 70 ], allowing users to ask questions and receive detailed, coherent, systematic, personalized, convincing, and informative human-like responses [ 55 ], even within complex and ambiguous contexts [ 63 , 77 ]. ChatGPT is considered the fastest-growing technology in history: in just three months following its public launch, it amassed an estimated 120 million monthly active users [ 16 ] with an estimated 13 million daily queries [ 49 ], surpassing all other applications [ 64 ]. This remarkable growth can be attributed to the unique features and user-friendly interface that ChatGPT offers. Its intuitive design allows users to interact seamlessly with the technology, making it accessible to a diverse range of individuals, regardless of their technical expertise [ 78 ]. Additionally, its exceptional performance results from a combination of advanced algorithms, continuous enhancements, and extensive training on a diverse dataset that includes various text sources such as books, articles, websites, and online forums [ 63 ], have contributed to a more engaging and satisfying user experience [ 62 ]. These factors collectively explain its remarkable global growth and set it apart from predecessors like Bard, Bing Chat, ERNIE, and others.

In this context, several studies have explored the technological advancements of chatbots. One noteworthy recent research effort, conducted by Schöbel et al. [ 70 ], stands out for its comprehensive analysis of more than 5,000 studies on communication agents. This study offered a comprehensive overview of the historical progression and future prospects of communication agents, including ChatGPT. Moreover, other studies have focused on making comparisons, particularly between ChatGPT and alternative chatbots like Bard, Bing Chat, ERNIE, LaMDA, BlenderBot, and various others. For example, O’Leary [ 53 ] compared two chatbots, LaMDA and BlenderBot, with ChatGPT and revealed that ChatGPT outperformed both. This superiority arises from ChatGPT’s capacity to handle a wider range of questions and generate slightly varied perspectives within specific contexts. Similarly, ChatGPT exhibited an impressive ability to formulate interpretable responses that were easily understood when compared with Google's feature snippet [ 34 ]. Additionally, ChatGPT was compared to other LLMs-based chatbots, including Bard and BERT, as well as ERNIE. The findings indicated that ChatGPT exhibited strong performance in the given tasks, often outperforming the other models [ 59 ].

Furthermore, in the education context, a comprehensive study systematically compared a range of the most promising chatbots, including Bard, Bing Chat, ChatGPT, and Ernie across a multidisciplinary test that required higher-order thinking. The study revealed that ChatGPT achieved the highest score, surpassing Bing Chat and Bard [ 64 ]. Similarly, a comparative analysis was conducted to compare ChatGPT with Bard in answering a set of 30 mathematical questions and logic problems, grouped into two question sets. Set (A) is unavailable online, while Set (B) is available online. The results revealed ChatGPT's superiority in Set (A) over Bard. Nevertheless, Bard's advantage emerged in Set (B) due to its capacity to access the internet directly and retrieve answers, a capability that ChatGPT does not possess [ 57 ]. However, through these varied assessments, ChatGPT consistently highlights its exceptional prowess compared to various alternatives in the ever-evolving chatbot technology.

The widespread adoption of chatbots, especially ChatGPT, by millions of students and educators, has sparked extensive discussions regarding its incorporation into the education sector [ 64 ]. Accordingly, many scholars have contributed to the discourse, expressing both optimism and pessimism regarding the incorporation of ChatGPT into education. For example, ChatGPT has been highlighted for its capabilities in enriching the learning and teaching experience through its ability to support different learning approaches, including adaptive learning, personalized learning, and self-directed learning [ 58 , 60 , 91 ]), deliver summative and formative feedback to students and provide real-time responses to questions, increase the accessibility of information [ 22 , 40 , 43 ], foster students’ performance, engagement and motivation [ 14 , 44 , 58 ], and enhance teaching practices [ 17 , 18 , 64 , 74 ].

On the other hand, concerns have been also raised regarding its potential negative effects on learning and teaching. These include the dissemination of false information and references [ 12 , 23 , 61 , 85 ], biased reinforcement [ 47 , 50 ], compromised academic integrity [ 18 , 40 , 66 , 74 ], and the potential decline in students' skills [ 43 , 61 , 64 , 74 ]. As a result, ChatGPT has been banned in multiple countries, including Russia, China, Venezuela, Belarus, and Iran, as well as in various educational institutions in India, Italy, Western Australia, France, and the United States [ 52 , 90 ].

Clearly, the advent of chatbots, especially ChatGPT, has provoked significant controversy due to their potential impact on learning and teaching. This indicates the necessity for further exploration to gain a deeper understanding of this technology and carefully evaluate its potential benefits, limitations, challenges, and threats to education [ 79 ]. Therefore, conducting a systematic literature review will provide valuable insights into the potential prospects and obstacles linked to its incorporation into education. This systematic literature review will primarily focus on ChatGPT, driven by the aforementioned key factors outlined above.

However, the existing literature lacks a systematic literature review of empirical studies. Thus, this systematic literature review aims to address this gap by synthesizing the existing empirical studies conducted on chatbots, particularly ChatGPT, in the field of education, highlighting how ChatGPT has been utilized in educational settings, and identifying any existing gaps. This review may be particularly useful for researchers in the field and educators who are contemplating the integration of ChatGPT or any chatbot into education. The following research questions will guide this study:

What are students' and teachers' initial attempts at utilizing ChatGPT in education?

What are the main findings derived from empirical studies that have incorporated ChatGPT into learning and teaching?

2 Methodology

To conduct this study, the authors followed the essential steps of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA 2020) and Okoli’s [ 54 ] steps for conducting a systematic review. These included identifying the study’s purpose, drafting a protocol, applying a practical screening process, searching the literature, extracting relevant data, evaluating the quality of the included studies, synthesizing the studies, and ultimately writing the review. The subsequent section provides an extensive explanation of how these steps were carried out in this study.

2.1 Identify the purpose

Given the widespread adoption of ChatGPT by students and teachers for various educational purposes, often without a thorough understanding of responsible and effective use or a clear recognition of its potential impact on learning and teaching, the authors recognized the need for further exploration of ChatGPT's impact on education in this early stage. Therefore, they have chosen to conduct a systematic literature review of existing empirical studies that incorporate ChatGPT into educational settings. Despite the limited number of empirical studies due to the novelty of the topic, their goal is to gain a deeper understanding of this technology and proactively evaluate its potential benefits, limitations, challenges, and threats to education. This effort could help to understand initial reactions and attempts at incorporating ChatGPT into education and bring out insights and considerations that can inform the future development of education.

2.2 Draft the protocol

The next step is formulating the protocol. This protocol serves to outline the study process in a rigorous and transparent manner, mitigating researcher bias in study selection and data extraction [ 88 ]. The protocol will include the following steps: generating the research question, predefining a literature search strategy, identifying search locations, establishing selection criteria, assessing the studies, developing a data extraction strategy, and creating a timeline.

2.3 Apply practical screen

The screening step aims to accurately filter the articles resulting from the searching step and select the empirical studies that have incorporated ChatGPT into educational contexts, which will guide us in answering the research questions and achieving the objectives of this study. To ensure the rigorous execution of this step, our inclusion and exclusion criteria were determined based on the authors' experience and informed by previous successful systematic reviews [ 21 ]. Table 1 summarizes the inclusion and exclusion criteria for study selection.

2.4 Literature search

We conducted a thorough literature search to identify articles that explored, examined, and addressed the use of ChatGPT in Educational contexts. We utilized two research databases: Dimensions.ai, which provides access to a large number of research publications, and lens.org, which offers access to over 300 million articles, patents, and other research outputs from diverse sources. Additionally, we included three databases, Scopus, Web of Knowledge, and ERIC, which contain relevant research on the topic that addresses our research questions. To browse and identify relevant articles, we used the following search formula: ("ChatGPT" AND "Education"), which included the Boolean operator "AND" to get more specific results. The subject area in the Scopus and ERIC databases were narrowed to "ChatGPT" and "Education" keywords, and in the WoS database was limited to the "Education" category. The search was conducted between the 3rd and 10th of April 2023, which resulted in 276 articles from all selected databases (111 articles from Dimensions.ai, 65 from Scopus, 28 from Web of Science, 14 from ERIC, and 58 from Lens.org). These articles were imported into the Rayyan web-based system for analysis. The duplicates were identified automatically by the system. Subsequently, the first author manually reviewed the duplicated articles ensured that they had the same content, and then removed them, leaving us with 135 unique articles. Afterward, the titles, abstracts, and keywords of the first 40 manuscripts were scanned and reviewed by the first author and were discussed with the second and third authors to resolve any disagreements. Subsequently, the first author proceeded with the filtering process for all articles and carefully applied the inclusion and exclusion criteria as presented in Table  1 . Articles that met any one of the exclusion criteria were eliminated, resulting in 26 articles. Afterward, the authors met to carefully scan and discuss them. The authors agreed to eliminate any empirical studies solely focused on checking ChatGPT capabilities, as these studies do not guide us in addressing the research questions and achieving the study's objectives. This resulted in 14 articles eligible for analysis.

2.5 Quality appraisal

The examination and evaluation of the quality of the extracted articles is a vital step [ 9 ]. Therefore, the extracted articles were carefully evaluated for quality using Fink’s [ 24 ] standards, which emphasize the necessity for detailed descriptions of methodology, results, conclusions, strengths, and limitations. The process began with a thorough assessment of each study's design, data collection, and analysis methods to ensure their appropriateness and comprehensive execution. The clarity, consistency, and logical progression from data to results and conclusions were also critically examined. Potential biases and recognized limitations within the studies were also scrutinized. Ultimately, two articles were excluded for failing to meet Fink’s criteria, particularly in providing sufficient detail on methodology, results, conclusions, strengths, or limitations. The review process is illustrated in Fig.  1 .

figure 1

The study selection process

2.6 Data extraction

The next step is data extraction, the process of capturing the key information and categories from the included studies. To improve efficiency, reduce variation among authors, and minimize errors in data analysis, the coding categories were constructed using Creswell's [ 15 ] coding techniques for data extraction and interpretation. The coding process involves three sequential steps. The initial stage encompasses open coding , where the researcher examines the data, generates codes to describe and categorize it, and gains a deeper understanding without preconceived ideas. Following open coding is axial coding , where the interrelationships between codes from open coding are analyzed to establish more comprehensive categories or themes. The process concludes with selective coding , refining and integrating categories or themes to identify core concepts emerging from the data. The first coder performed the coding process, then engaged in discussions with the second and third authors to finalize the coding categories for the first five articles. The first coder then proceeded to code all studies and engaged again in discussions with the other authors to ensure the finalization of the coding process. After a comprehensive analysis and capturing of the key information from the included studies, the data extraction and interpretation process yielded several themes. These themes have been categorized and are presented in Table  2 . It is important to note that open coding results were removed from Table  2 for aesthetic reasons, as it included many generic aspects, such as words, short phrases, or sentences mentioned in the studies.

2.7 Synthesize studies

In this stage, we will gather, discuss, and analyze the key findings that emerged from the selected studies. The synthesis stage is considered a transition from an author-centric to a concept-centric focus, enabling us to map all the provided information to achieve the most effective evaluation of the data [ 87 ]. Initially, the authors extracted data that included general information about the selected studies, including the author(s)' names, study titles, years of publication, educational levels, research methodologies, sample sizes, participants, main aims or objectives, raw data sources, and analysis methods. Following that, all key information and significant results from the selected studies were compiled using Creswell’s [ 15 ] coding techniques for data extraction and interpretation to identify core concepts and themes emerging from the data, focusing on those that directly contributed to our research questions and objectives, such as the initial utilization of ChatGPT in learning and teaching, learners' and educators' familiarity with ChatGPT, and the main findings of each study. Finally, the data related to each selected study were extracted into an Excel spreadsheet for data processing. The Excel spreadsheet was reviewed by the authors, including a series of discussions to ensure the finalization of this process and prepare it for further analysis. Afterward, the final result being analyzed and presented in various types of charts and graphs. Table 4 presents the extracted data from the selected studies, with each study labeled with a capital 'S' followed by a number.

This section consists of two main parts. The first part provides a descriptive analysis of the data compiled from the reviewed studies. The second part presents the answers to the research questions and the main findings of these studies.

3.1 Part 1: descriptive analysis

This section will provide a descriptive analysis of the reviewed studies, including educational levels and fields, participants distribution, country contribution, research methodologies, study sample size, study population, publication year, list of journals, familiarity with ChatGPT, source of data, and the main aims and objectives of the studies. Table 4 presents a comprehensive overview of the extracted data from the selected studies.

3.1.1 The number of the reviewed studies and publication years

The total number of the reviewed studies was 14. All studies were empirical studies and published in different journals focusing on Education and Technology. One study was published in 2022 [S1], while the remaining were published in 2023 [S2]-[S14]. Table 3 illustrates the year of publication, the names of the journals, and the number of reviewed studies published in each journal for the studies reviewed.

3.1.2 Educational levels and fields

The majority of the reviewed studies, 11 studies, were conducted in higher education institutions [S1]-[S10] and [S13]. Two studies did not specify the educational level of the population [S12] and [S14], while one study focused on elementary education [S11]. However, the reviewed studies covered various fields of education. Three studies focused on Arts and Humanities Education [S8], [S11], and [S14], specifically English Education. Two studies focused on Engineering Education, with one in Computer Engineering [S2] and the other in Construction Education [S3]. Two studies focused on Mathematics Education [S5] and [S12]. One study focused on Social Science Education [S13]. One study focused on Early Education [S4]. One study focused on Journalism Education [S9]. Finally, three studies did not specify the field of education [S1], [S6], and [S7]. Figure  2 represents the educational levels in the reviewed studies, while Fig.  3 represents the context of the reviewed studies.

figure 2

Educational levels in the reviewed studies

figure 3

Context of the reviewed studies

3.1.3 Participants distribution and countries contribution

The reviewed studies have been conducted across different geographic regions, providing a diverse representation of the studies. The majority of the studies, 10 in total, [S1]-[S3], [S5]-[S9], [S11], and [S14], primarily focused on participants from single countries such as Pakistan, the United Arab Emirates, China, Indonesia, Poland, Saudi Arabia, South Korea, Spain, Tajikistan, and the United States. In contrast, four studies, [S4], [S10], [S12], and [S13], involved participants from multiple countries, including China and the United States [S4], China, the United Kingdom, and the United States [S10], the United Arab Emirates, Oman, Saudi Arabia, and Jordan [S12], Turkey, Sweden, Canada, and Australia [ 13 ]. Figures  4 and 5 illustrate the distribution of participants, whether from single or multiple countries, and the contribution of each country in the reviewed studies, respectively.

figure 4

The reviewed studies conducted in single or multiple countries

figure 5

The Contribution of each country in the studies

3.1.4 Study population and sample size

Four study populations were included: university students, university teachers, university teachers and students, and elementary school teachers. Six studies involved university students [S2], [S3], [S5] and [S6]-[S8]. Three studies focused on university teachers [S1], [S4], and [S6], while one study specifically targeted elementary school teachers [S11]. Additionally, four studies included both university teachers and students [S10] and [ 12 , 13 , 14 ], and among them, study [S13] specifically included postgraduate students. In terms of the sample size of the reviewed studies, nine studies included a small sample size of less than 50 participants [S1], [S3], [S6], [S8], and [S10]-[S13]. Three studies had 50–100 participants [S2], [S9], and [S14]. Only one study had more than 100 participants [S7]. It is worth mentioning that study [S4] adopted a mixed methods approach, including 10 participants for qualitative analysis and 110 participants for quantitative analysis.

3.1.5 Participants’ familiarity with using ChatGPT

The reviewed studies recruited a diverse range of participants with varying levels of familiarity with ChatGPT. Five studies [S2], [S4], [S6], [S8], and [S12] involved participants already familiar with ChatGPT, while eight studies [S1], [S3], [S5], [S7], [S9], [S10], [S13] and [S14] included individuals with differing levels of familiarity. Notably, one study [S11] had participants who were entirely unfamiliar with ChatGPT. It is important to note that four studies [S3], [S5], [S9], and [S11] provided training or guidance to their participants before conducting their studies, while ten studies [S1], [S2], [S4], [S6]-[S8], [S10], and [S12]-[S14] did not provide training due to the participants' existing familiarity with ChatGPT.

3.1.6 Research methodology approaches and source(S) of data

The reviewed studies adopted various research methodology approaches. Seven studies adopted qualitative research methodology [S1], [S4], [S6], [S8], [S10], [S11], and [S12], while three studies adopted quantitative research methodology [S3], [S7], and [S14], and four studies employed mixed-methods, which involved a combination of both the strengths of qualitative and quantitative methods [S2], [S5], [S9], and [S13].

In terms of the source(s) of data, the reviewed studies obtained their data from various sources, such as interviews, questionnaires, and pre-and post-tests. Six studies relied on interviews as their primary source of data collection [S1], [S4], [S6], [S10], [S11], and [S12], four studies relied on questionnaires [S2], [S7], [S13], and [S14], two studies combined the use of pre-and post-tests and questionnaires for data collection [S3] and [S9], while two studies combined the use of questionnaires and interviews to obtain the data [S5] and [S8]. It is important to note that six of the reviewed studies were quasi-experimental [S3], [S5], [S8], [S9], [S12], and [S14], while the remaining ones were experimental studies [S1], [S2], [S4], [S6], [S7], [S10], [S11], and [S13]. Figures  6 and 7 illustrate the research methodologies and the source (s) of data used in the reviewed studies, respectively.

figure 6

Research methodologies in the reviewed studies

figure 7

Source of data in the reviewed studies

3.1.7 The aim and objectives of the studies

The reviewed studies encompassed a diverse set of aims, with several of them incorporating multiple primary objectives. Six studies [S3], [S6], [S7], [S8], [S11], and [S12] examined the integration of ChatGPT in educational contexts, and four studies [S4], [S5], [S13], and [S14] investigated the various implications of its use in education, while three studies [S2], [S9], and [S10] aimed to explore both its integration and implications in education. Additionally, seven studies explicitly explored attitudes and perceptions of students [S2] and [S3], educators [S1] and [S6], or both [S10], [S12], and [S13] regarding the utilization of ChatGPT in educational settings.

3.2 Part 2: research questions and main findings of the reviewed studies

This part will present the answers to the research questions and the main findings of the reviewed studies, classified into two main categories (learning and teaching) according to AI Education classification by [ 36 ]. Figure  8 summarizes the main findings of the reviewed studies in a visually informative diagram. Table 4 provides a detailed list of the key information extracted from the selected studies that led to generating these themes.

figure 8

The main findings in the reviewed studies

4 Students' initial attempts at utilizing ChatGPT in learning and main findings from students' perspective

4.1 virtual intelligent assistant.

Nine studies demonstrated that ChatGPT has been utilized by students as an intelligent assistant to enhance and support their learning. Students employed it for various purposes, such as answering on-demand questions [S2]-[S5], [S8], [S10], and [S12], providing valuable information and learning resources [S2]-[S5], [S6], and [S8], as well as receiving immediate feedback [S2], [S4], [S9], [S10], and [S12]. In this regard, students generally were confident in the accuracy of ChatGPT's responses, considering them relevant, reliable, and detailed [S3], [S4], [S5], and [S8]. However, some students indicated the need for improvement, as they found that answers are not always accurate [S2], and that misleading information may have been provided or that it may not always align with their expectations [S6] and [S10]. It was also observed by the students that the accuracy of ChatGPT is dependent on several factors, including the quality and specificity of the user's input, the complexity of the question or topic, and the scope and relevance of its training data [S12]. Many students felt that ChatGPT's answers were not always accurate and most of them believed that it requires good background knowledge to work with.

4.2 Writing and language proficiency assistant

Six of the reviewed studies highlighted that ChatGPT has been utilized by students as a valuable assistant tool to improve their academic writing skills and language proficiency. Among these studies, three mainly focused on English education, demonstrating that students showed sufficient mastery in using ChatGPT for generating ideas, summarizing, paraphrasing texts, and completing writing essays [S8], [S11], and [S14]. Furthermore, ChatGPT helped them in writing by making students active investigators rather than passive knowledge recipients and facilitated the development of their writing skills [S11] and [S14]. Similarly, ChatGPT allowed students to generate unique ideas and perspectives, leading to deeper analysis and reflection on their journalism writing [S9]. In terms of language proficiency, ChatGPT allowed participants to translate content into their home languages, making it more accessible and relevant to their context [S4]. It also enabled them to request changes in linguistic tones or flavors [S8]. Moreover, participants used it to check grammar or as a dictionary [S11].

4.3 Valuable resource for learning approaches

Five studies demonstrated that students used ChatGPT as a valuable complementary resource for self-directed learning. It provided learning resources and guidance on diverse educational topics and created a supportive home learning environment [S2] and [S4]. Moreover, it offered step-by-step guidance to grasp concepts at their own pace and enhance their understanding [S5], streamlined task and project completion carried out independently [S7], provided comprehensive and easy-to-understand explanations on various subjects [S10], and assisted in studying geometry operations, thereby empowering them to explore geometry operations at their own pace [S12]. Three studies showed that students used ChatGPT as a valuable learning resource for personalized learning. It delivered age-appropriate conversations and tailored teaching based on a child's interests [S4], acted as a personalized learning assistant, adapted to their needs and pace, which assisted them in understanding mathematical concepts [S12], and enabled personalized learning experiences in social sciences by adapting to students' needs and learning styles [S13]. On the other hand, it is important to note that, according to one study [S5], students suggested that using ChatGPT may negatively affect collaborative learning competencies between students.

4.4 Enhancing students' competencies

Six of the reviewed studies have shown that ChatGPT is a valuable tool for improving a wide range of skills among students. Two studies have provided evidence that ChatGPT led to improvements in students' critical thinking, reasoning skills, and hazard recognition competencies through engaging them in interactive conversations or activities and providing responses related to their disciplines in journalism [S5] and construction education [S9]. Furthermore, two studies focused on mathematical education have shown the positive impact of ChatGPT on students' problem-solving abilities in unraveling problem-solving questions [S12] and enhancing the students' understanding of the problem-solving process [S5]. Lastly, one study indicated that ChatGPT effectively contributed to the enhancement of conversational social skills [S4].

4.5 Supporting students' academic success

Seven of the reviewed studies highlighted that students found ChatGPT to be beneficial for learning as it enhanced learning efficiency and improved the learning experience. It has been observed to improve students' efficiency in computer engineering studies by providing well-structured responses and good explanations [S2]. Additionally, students found it extremely useful for hazard reporting [S3], and it also enhanced their efficiency in solving mathematics problems and capabilities [S5] and [S12]. Furthermore, by finding information, generating ideas, translating texts, and providing alternative questions, ChatGPT aided students in deepening their understanding of various subjects [S6]. It contributed to an increase in students' overall productivity [S7] and improved efficiency in composing written tasks [S8]. Regarding learning experiences, ChatGPT was instrumental in assisting students in identifying hazards that they might have otherwise overlooked [S3]. It also improved students' learning experiences in solving mathematics problems and developing abilities [S5] and [S12]. Moreover, it increased students' successful completion of important tasks in their studies [S7], particularly those involving average difficulty writing tasks [S8]. Additionally, ChatGPT increased the chances of educational success by providing students with baseline knowledge on various topics [S10].

5 Teachers' initial attempts at utilizing ChatGPT in teaching and main findings from teachers' perspective

5.1 valuable resource for teaching.

The reviewed studies showed that teachers have employed ChatGPT to recommend, modify, and generate diverse, creative, organized, and engaging educational contents, teaching materials, and testing resources more rapidly [S4], [S6], [S10] and [S11]. Additionally, teachers experienced increased productivity as ChatGPT facilitated quick and accurate responses to questions, fact-checking, and information searches [S1]. It also proved valuable in constructing new knowledge [S6] and providing timely answers to students' questions in classrooms [S11]. Moreover, ChatGPT enhanced teachers' efficiency by generating new ideas for activities and preplanning activities for their students [S4] and [S6], including interactive language game partners [S11].

5.2 Improving productivity and efficiency

The reviewed studies showed that participants' productivity and work efficiency have been significantly enhanced by using ChatGPT as it enabled them to allocate more time to other tasks and reduce their overall workloads [S6], [S10], [S11], [S13], and [S14]. However, three studies [S1], [S4], and [S11], indicated a negative perception and attitude among teachers toward using ChatGPT. This negativity stemmed from a lack of necessary skills to use it effectively [S1], a limited familiarity with it [S4], and occasional inaccuracies in the content provided by it [S10].

5.3 Catalyzing new teaching methodologies

Five of the reviewed studies highlighted that educators found the necessity of redefining their teaching profession with the assistance of ChatGPT [S11], developing new effective learning strategies [S4], and adapting teaching strategies and methodologies to ensure the development of essential skills for future engineers [S5]. They also emphasized the importance of adopting new educational philosophies and approaches that can evolve with the introduction of ChatGPT into the classroom [S12]. Furthermore, updating curricula to focus on improving human-specific features, such as emotional intelligence, creativity, and philosophical perspectives [S13], was found to be essential.

5.4 Effective utilization of CHATGPT in teaching

According to the reviewed studies, effective utilization of ChatGPT in education requires providing teachers with well-structured training, support, and adequate background on how to use ChatGPT responsibly [S1], [S3], [S11], and [S12]. Establishing clear rules and regulations regarding its usage is essential to ensure it positively impacts the teaching and learning processes, including students' skills [S1], [S4], [S5], [S8], [S9], and [S11]-[S14]. Moreover, conducting further research and engaging in discussions with policymakers and stakeholders is indeed crucial for the successful integration of ChatGPT in education and to maximize the benefits for both educators and students [S1], [S6]-[S10], and [S12]-[S14].

6 Discussion

The purpose of this review is to conduct a systematic review of empirical studies that have explored the utilization of ChatGPT, one of today’s most advanced LLM-based chatbots, in education. The findings of the reviewed studies showed several ways of ChatGPT utilization in different learning and teaching practices as well as it provided insights and considerations that can facilitate its effective and responsible use in future educational contexts. The results of the reviewed studies came from diverse fields of education, which helped us avoid a biased review that is limited to a specific field. Similarly, the reviewed studies have been conducted across different geographic regions. This kind of variety in geographic representation enriched the findings of this review.

In response to RQ1 , "What are students' and teachers' initial attempts at utilizing ChatGPT in education?", the findings from this review provide comprehensive insights. Chatbots, including ChatGPT, play a crucial role in supporting student learning, enhancing their learning experiences, and facilitating diverse learning approaches [ 42 , 43 ]. This review found that this tool, ChatGPT, has been instrumental in enhancing students' learning experiences by serving as a virtual intelligent assistant, providing immediate feedback, on-demand answers, and engaging in educational conversations. Additionally, students have benefited from ChatGPT’s ability to generate ideas, compose essays, and perform tasks like summarizing, translating, paraphrasing texts, or checking grammar, thereby enhancing their writing and language competencies. Furthermore, students have turned to ChatGPT for assistance in understanding concepts and homework, providing structured learning plans, and clarifying assignments and tasks, which fosters a supportive home learning environment, allowing them to take responsibility for their own learning and cultivate the skills and approaches essential for supportive home learning environment [ 26 , 27 , 28 ]. This finding aligns with the study of Saqr et al. [ 68 , 69 ] who highlighted that, when students actively engage in their own learning process, it yields additional advantages, such as heightened motivation, enhanced achievement, and the cultivation of enthusiasm, turning them into advocates for their own learning.

Moreover, students have utilized ChatGPT for tailored teaching and step-by-step guidance on diverse educational topics, streamlining task and project completion, and generating and recommending educational content. This personalization enhances the learning environment, leading to increased academic success. This finding aligns with other recent studies [ 26 , 27 , 28 , 60 , 66 ] which revealed that ChatGPT has the potential to offer personalized learning experiences and support an effective learning process by providing students with customized feedback and explanations tailored to their needs and abilities. Ultimately, fostering students' performance, engagement, and motivation, leading to increase students' academic success [ 14 , 44 , 58 ]. This ultimate outcome is in line with the findings of Saqr et al. [ 68 , 69 ], which emphasized that learning strategies are important catalysts of students' learning, as students who utilize effective learning strategies are more likely to have better academic achievement.

Teachers, too, have capitalized on ChatGPT's capabilities to enhance productivity and efficiency, using it for creating lesson plans, generating quizzes, providing additional resources, generating and preplanning new ideas for activities, and aiding in answering students’ questions. This adoption of technology introduces new opportunities to support teaching and learning practices, enhancing teacher productivity. This finding aligns with those of Day [ 17 ], De Castro [ 18 ], and Su and Yang [ 74 ] as well as with those of Valtonen et al. [ 82 ], who revealed that emerging technological advancements have opened up novel opportunities and means to support teaching and learning practices, and enhance teachers’ productivity.

In response to RQ2 , "What are the main findings derived from empirical studies that have incorporated ChatGPT into learning and teaching?", the findings from this review provide profound insights and raise significant concerns. Starting with the insights, chatbots, including ChatGPT, have demonstrated the potential to reshape and revolutionize education, creating new, novel opportunities for enhancing the learning process and outcomes [ 83 ], facilitating different learning approaches, and offering a range of pedagogical benefits [ 19 , 43 , 72 ]. In this context, this review found that ChatGPT could open avenues for educators to adopt or develop new effective learning and teaching strategies that can evolve with the introduction of ChatGPT into the classroom. Nonetheless, there is an evident lack of research understanding regarding the potential impact of generative machine learning models within diverse educational settings [ 83 ]. This necessitates teachers to attain a high level of proficiency in incorporating chatbots, such as ChatGPT, into their classrooms to create inventive, well-structured, and captivating learning strategies. In the same vein, the review also found that teachers without the requisite skills to utilize ChatGPT realized that it did not contribute positively to their work and could potentially have adverse effects [ 37 ]. This concern could lead to inequity of access to the benefits of chatbots, including ChatGPT, as individuals who lack the necessary expertise may not be able to harness their full potential, resulting in disparities in educational outcomes and opportunities. Therefore, immediate action is needed to address these potential issues. A potential solution is offering training, support, and competency development for teachers to ensure that all of them can leverage chatbots, including ChatGPT, effectively and equitably in their educational practices [ 5 , 28 , 80 ], which could enhance accessibility and inclusivity, and potentially result in innovative outcomes [ 82 , 83 ].

Additionally, chatbots, including ChatGPT, have the potential to significantly impact students' thinking abilities, including retention, reasoning, analysis skills [ 19 , 45 ], and foster innovation and creativity capabilities [ 83 ]. This review found that ChatGPT could contribute to improving a wide range of skills among students. However, it found that frequent use of ChatGPT may result in a decrease in innovative capacities, collaborative skills and cognitive capacities, and students' motivation to attend classes, as well as could lead to reduced higher-order thinking skills among students [ 22 , 29 ]. Therefore, immediate action is needed to carefully examine the long-term impact of chatbots such as ChatGPT, on learning outcomes as well as to explore its incorporation into educational settings as a supportive tool without compromising students' cognitive development and critical thinking abilities. In the same vein, the review also found that it is challenging to draw a consistent conclusion regarding the potential of ChatGPT to aid self-directed learning approach. This finding aligns with the recent study of Baskara [ 8 ]. Therefore, further research is needed to explore the potential of ChatGPT for self-directed learning. One potential solution involves utilizing learning analytics as a novel approach to examine various aspects of students' learning and support them in their individual endeavors [ 32 ]. This approach can bridge this gap by facilitating an in-depth analysis of how learners engage with ChatGPT, identifying trends in self-directed learning behavior, and assessing its influence on their outcomes.

Turning to the significant concerns, on the other hand, a fundamental challenge with LLM-based chatbots, including ChatGPT, is the accuracy and quality of the provided information and responses, as they provide false information as truth—a phenomenon often referred to as "hallucination" [ 3 , 49 ]. In this context, this review found that the provided information was not entirely satisfactory. Consequently, the utilization of chatbots presents potential concerns, such as generating and providing inaccurate or misleading information, especially for students who utilize it to support their learning. This finding aligns with other findings [ 6 , 30 , 35 , 40 ] which revealed that incorporating chatbots such as ChatGPT, into education presents challenges related to its accuracy and reliability due to its training on a large corpus of data, which may contain inaccuracies and the way users formulate or ask ChatGPT. Therefore, immediate action is needed to address these potential issues. One possible solution is to equip students with the necessary skills and competencies, which include a background understanding of how to use it effectively and the ability to assess and evaluate the information it generates, as the accuracy and the quality of the provided information depend on the input, its complexity, the topic, and the relevance of its training data [ 28 , 49 , 86 ]. However, it's also essential to examine how learners can be educated about how these models operate, the data used in their training, and how to recognize their limitations, challenges, and issues [ 79 ].

Furthermore, chatbots present a substantial challenge concerning maintaining academic integrity [ 20 , 56 ] and copyright violations [ 83 ], which are significant concerns in education. The review found that the potential misuse of ChatGPT might foster cheating, facilitate plagiarism, and threaten academic integrity. This issue is also affirmed by the research conducted by Basic et al. [ 7 ], who presented evidence that students who utilized ChatGPT in their writing assignments had more plagiarism cases than those who did not. These findings align with the conclusions drawn by Cotton et al. [ 13 ], Hisan and Amri [ 33 ] and Sullivan et al. [ 75 ], who revealed that the integration of chatbots such as ChatGPT into education poses a significant challenge to the preservation of academic integrity. Moreover, chatbots, including ChatGPT, have increased the difficulty in identifying plagiarism [ 47 , 67 , 76 ]. The findings from previous studies [ 1 , 84 ] indicate that AI-generated text often went undetected by plagiarism software, such as Turnitin. However, Turnitin and other similar plagiarism detection tools, such as ZeroGPT, GPTZero, and Copyleaks, have since evolved, incorporating enhanced techniques to detect AI-generated text, despite the possibility of false positives, as noted in different studies that have found these tools still not yet fully ready to accurately and reliably identify AI-generated text [ 10 , 51 ], and new novel detection methods may need to be created and implemented for AI-generated text detection [ 4 ]. This potential issue could lead to another concern, which is the difficulty of accurately evaluating student performance when they utilize chatbots such as ChatGPT assistance in their assignments. Consequently, the most LLM-driven chatbots present a substantial challenge to traditional assessments [ 64 ]. The findings from previous studies indicate the importance of rethinking, improving, and redesigning innovative assessment methods in the era of chatbots [ 14 , 20 , 64 , 75 ]. These methods should prioritize the process of evaluating students' ability to apply knowledge to complex cases and demonstrate comprehension, rather than solely focusing on the final product for assessment. Therefore, immediate action is needed to address these potential issues. One possible solution would be the development of clear guidelines, regulatory policies, and pedagogical guidance. These measures would help regulate the proper and ethical utilization of chatbots, such as ChatGPT, and must be established before their introduction to students [ 35 , 38 , 39 , 41 , 89 ].

In summary, our review has delved into the utilization of ChatGPT, a prominent example of chatbots, in education, addressing the question of how ChatGPT has been utilized in education. However, there remain significant gaps, which necessitate further research to shed light on this area.

7 Conclusions

This systematic review has shed light on the varied initial attempts at incorporating ChatGPT into education by both learners and educators, while also offering insights and considerations that can facilitate its effective and responsible use in future educational contexts. From the analysis of 14 selected studies, the review revealed the dual-edged impact of ChatGPT in educational settings. On the positive side, ChatGPT significantly aided the learning process in various ways. Learners have used it as a virtual intelligent assistant, benefiting from its ability to provide immediate feedback, on-demand answers, and easy access to educational resources. Additionally, it was clear that learners have used it to enhance their writing and language skills, engaging in practices such as generating ideas, composing essays, and performing tasks like summarizing, translating, paraphrasing texts, or checking grammar. Importantly, other learners have utilized it in supporting and facilitating their directed and personalized learning on a broad range of educational topics, assisting in understanding concepts and homework, providing structured learning plans, and clarifying assignments and tasks. Educators, on the other hand, found ChatGPT beneficial for enhancing productivity and efficiency. They used it for creating lesson plans, generating quizzes, providing additional resources, and answers learners' questions, which saved time and allowed for more dynamic and engaging teaching strategies and methodologies.

However, the review also pointed out negative impacts. The results revealed that overuse of ChatGPT could decrease innovative capacities and collaborative learning among learners. Specifically, relying too much on ChatGPT for quick answers can inhibit learners' critical thinking and problem-solving skills. Learners might not engage deeply with the material or consider multiple solutions to a problem. This tendency was particularly evident in group projects, where learners preferred consulting ChatGPT individually for solutions over brainstorming and collaborating with peers, which negatively affected their teamwork abilities. On a broader level, integrating ChatGPT into education has also raised several concerns, including the potential for providing inaccurate or misleading information, issues of inequity in access, challenges related to academic integrity, and the possibility of misusing the technology.

Accordingly, this review emphasizes the urgency of developing clear rules, policies, and regulations to ensure ChatGPT's effective and responsible use in educational settings, alongside other chatbots, by both learners and educators. This requires providing well-structured training to educate them on responsible usage and understanding its limitations, along with offering sufficient background information. Moreover, it highlights the importance of rethinking, improving, and redesigning innovative teaching and assessment methods in the era of ChatGPT. Furthermore, conducting further research and engaging in discussions with policymakers and stakeholders are essential steps to maximize the benefits for both educators and learners and ensure academic integrity.

It is important to acknowledge that this review has certain limitations. Firstly, the limited inclusion of reviewed studies can be attributed to several reasons, including the novelty of the technology, as new technologies often face initial skepticism and cautious adoption; the lack of clear guidelines or best practices for leveraging this technology for educational purposes; and institutional or governmental policies affecting the utilization of this technology in educational contexts. These factors, in turn, have affected the number of studies available for review. Secondly, the utilization of the original version of ChatGPT, based on GPT-3 or GPT-3.5, implies that new studies utilizing the updated version, GPT-4 may lead to different findings. Therefore, conducting follow-up systematic reviews is essential once more empirical studies on ChatGPT are published. Additionally, long-term studies are necessary to thoroughly examine and assess the impact of ChatGPT on various educational practices.

Despite these limitations, this systematic review has highlighted the transformative potential of ChatGPT in education, revealing its diverse utilization by learners and educators alike and summarized the benefits of incorporating it into education, as well as the forefront critical concerns and challenges that must be addressed to facilitate its effective and responsible use in future educational contexts. This review could serve as an insightful resource for practitioners who seek to integrate ChatGPT into education and stimulate further research in the field.

Data availability

The data supporting our findings are available upon request.

Abbreviations

  • Artificial intelligence

AI in education

Large language model

Artificial neural networks

Chat Generative Pre-Trained Transformer

Recurrent neural networks

Long short-term memory

Reinforcement learning from human feedback

Natural language processing

Preferred Reporting Items for Systematic Reviews and Meta-Analyses

AlAfnan MA, Dishari S, Jovic M, Lomidze K. ChatGPT as an educational tool: opportunities, challenges, and recommendations for communication, business writing, and composition courses. J Artif Intell Technol. 2023. https://doi.org/10.37965/jait.2023.0184 .

Article   Google Scholar  

Ali JKM, Shamsan MAA, Hezam TA, Mohammed AAQ. Impact of ChatGPT on learning motivation. J Engl Stud Arabia Felix. 2023;2(1):41–9. https://doi.org/10.56540/jesaf.v2i1.51 .

Alkaissi H, McFarlane SI. Artificial hallucinations in ChatGPT: implications in scientific writing. Cureus. 2023. https://doi.org/10.7759/cureus.35179 .

Anderson N, Belavý DL, Perle SM, Hendricks S, Hespanhol L, Verhagen E, Memon AR. AI did not write this manuscript, or did it? Can we trick the AI text detector into generated texts? The potential future of ChatGPT and AI in sports & exercise medicine manuscript generation. BMJ Open Sport Exerc Med. 2023;9(1): e001568. https://doi.org/10.1136/bmjsem-2023-001568 .

Ausat AMA, Massang B, Efendi M, Nofirman N, Riady Y. Can chat GPT replace the role of the teacher in the classroom: a fundamental analysis. J Educ. 2023;5(4):16100–6.

Google Scholar  

Baidoo-Anu D, Ansah L. Education in the Era of generative artificial intelligence (AI): understanding the potential benefits of ChatGPT in promoting teaching and learning. Soc Sci Res Netw. 2023. https://doi.org/10.2139/ssrn.4337484 .

Basic Z, Banovac A, Kruzic I, Jerkovic I. Better by you, better than me, chatgpt3 as writing assistance in students essays. 2023. arXiv preprint arXiv:2302.04536 .‏

Baskara FR. The promises and pitfalls of using chat GPT for self-determined learning in higher education: an argumentative review. Prosiding Seminar Nasional Fakultas Tarbiyah dan Ilmu Keguruan IAIM Sinjai. 2023;2:95–101. https://doi.org/10.47435/sentikjar.v2i0.1825 .

Behera RK, Bala PK, Dhir A. The emerging role of cognitive computing in healthcare: a systematic literature review. Int J Med Inform. 2019;129:154–66. https://doi.org/10.1016/j.ijmedinf.2019.04.024 .

Chaka C. Detecting AI content in responses generated by ChatGPT, YouChat, and Chatsonic: the case of five AI content detection tools. J Appl Learn Teach. 2023. https://doi.org/10.37074/jalt.2023.6.2.12 .

Chiu TKF, Xia Q, Zhou X, Chai CS, Cheng M. Systematic literature review on opportunities, challenges, and future research recommendations of artificial intelligence in education. Comput Educ Artif Intell. 2023;4:100118. https://doi.org/10.1016/j.caeai.2022.100118 .

Choi EPH, Lee JJ, Ho M, Kwok JYY, Lok KYW. Chatting or cheating? The impacts of ChatGPT and other artificial intelligence language models on nurse education. Nurse Educ Today. 2023;125:105796. https://doi.org/10.1016/j.nedt.2023.105796 .

Cotton D, Cotton PA, Shipway JR. Chatting and cheating: ensuring academic integrity in the era of ChatGPT. Innov Educ Teach Int. 2023. https://doi.org/10.1080/14703297.2023.2190148 .

Crawford J, Cowling M, Allen K. Leadership is needed for ethical ChatGPT: Character, assessment, and learning using artificial intelligence (AI). J Univ Teach Learn Pract. 2023. https://doi.org/10.53761/1.20.3.02 .

Creswell JW. Educational research: planning, conducting, and evaluating quantitative and qualitative research [Ebook]. 4th ed. London: Pearson Education; 2015.

Curry D. ChatGPT Revenue and Usage Statistics (2023)—Business of Apps. 2023. https://www.businessofapps.com/data/chatgpt-statistics/

Day T. A preliminary investigation of fake peer-reviewed citations and references generated by ChatGPT. Prof Geogr. 2023. https://doi.org/10.1080/00330124.2023.2190373 .

De Castro CA. A Discussion about the Impact of ChatGPT in education: benefits and concerns. J Bus Theor Pract. 2023;11(2):p28. https://doi.org/10.22158/jbtp.v11n2p28 .

Deng X, Yu Z. A meta-analysis and systematic review of the effect of Chatbot technology use in sustainable education. Sustainability. 2023;15(4):2940. https://doi.org/10.3390/su15042940 .

Eke DO. ChatGPT and the rise of generative AI: threat to academic integrity? J Responsib Technol. 2023;13:100060. https://doi.org/10.1016/j.jrt.2023.100060 .

Elmoazen R, Saqr M, Tedre M, Hirsto L. A systematic literature review of empirical research on epistemic network analysis in education. IEEE Access. 2022;10:17330–48. https://doi.org/10.1109/access.2022.3149812 .

Farrokhnia M, Banihashem SK, Noroozi O, Wals AEJ. A SWOT analysis of ChatGPT: implications for educational practice and research. Innov Educ Teach Int. 2023. https://doi.org/10.1080/14703297.2023.2195846 .

Fergus S, Botha M, Ostovar M. Evaluating academic answers generated using ChatGPT. J Chem Educ. 2023;100(4):1672–5. https://doi.org/10.1021/acs.jchemed.3c00087 .

Fink A. Conducting research literature reviews: from the Internet to Paper. Incorporated: SAGE Publications; 2010.

Firaina R, Sulisworo D. Exploring the usage of ChatGPT in higher education: frequency and impact on productivity. Buletin Edukasi Indonesia (BEI). 2023;2(01):39–46. https://doi.org/10.56741/bei.v2i01.310 .

Firat, M. (2023). How chat GPT can transform autodidactic experiences and open education.  Department of Distance Education, Open Education Faculty, Anadolu Unive .‏ https://orcid.org/0000-0001-8707-5918

Firat M. What ChatGPT means for universities: perceptions of scholars and students. J Appl Learn Teach. 2023. https://doi.org/10.37074/jalt.2023.6.1.22 .

Fuchs K. Exploring the opportunities and challenges of NLP models in higher education: is Chat GPT a blessing or a curse? Front Educ. 2023. https://doi.org/10.3389/feduc.2023.1166682 .

García-Peñalvo FJ. La percepción de la inteligencia artificial en contextos educativos tras el lanzamiento de ChatGPT: disrupción o pánico. Educ Knowl Soc. 2023;24: e31279. https://doi.org/10.14201/eks.31279 .

Gilson A, Safranek CW, Huang T, Socrates V, Chi L, Taylor A, Chartash D. How does ChatGPT perform on the United States medical Licensing examination? The implications of large language models for medical education and knowledge assessment. JMIR Med Educ. 2023;9: e45312. https://doi.org/10.2196/45312 .

Hashana AJ, Brundha P, Ayoobkhan MUA, Fazila S. Deep Learning in ChatGPT—A Survey. In   2023 7th international conference on trends in electronics and informatics (ICOEI) . 2023. (pp. 1001–1005). IEEE. https://doi.org/10.1109/icoei56765.2023.10125852

Hirsto L, Saqr M, López-Pernas S, Valtonen T. (2022). A systematic narrative review of learning analytics research in K-12 and schools.  Proceedings . https://ceur-ws.org/Vol-3383/FLAIEC22_paper_9536.pdf

Hisan UK, Amri MM. ChatGPT and medical education: a double-edged sword. J Pedag Educ Sci. 2023;2(01):71–89. https://doi.org/10.13140/RG.2.2.31280.23043/1 .

Hopkins AM, Logan JM, Kichenadasse G, Sorich MJ. Artificial intelligence chatbots will revolutionize how cancer patients access information: ChatGPT represents a paradigm-shift. JNCI Cancer Spectr. 2023. https://doi.org/10.1093/jncics/pkad010 .

Househ M, AlSaad R, Alhuwail D, Ahmed A, Healy MG, Latifi S, Sheikh J. Large Language models in medical education: opportunities, challenges, and future directions. JMIR Med Educ. 2023;9: e48291. https://doi.org/10.2196/48291 .

Ilkka T. The impact of artificial intelligence on learning, teaching, and education. Minist de Educ. 2018. https://doi.org/10.2760/12297 .

Iqbal N, Ahmed H, Azhar KA. Exploring teachers’ attitudes towards using CHATGPT. Globa J Manag Adm Sci. 2022;3(4):97–111. https://doi.org/10.46568/gjmas.v3i4.163 .

Irfan M, Murray L, Ali S. Integration of Artificial intelligence in academia: a case study of critical teaching and learning in Higher education. Globa Soc Sci Rev. 2023;8(1):352–64. https://doi.org/10.31703/gssr.2023(viii-i).32 .

Jeon JH, Lee S. Large language models in education: a focus on the complementary relationship between human teachers and ChatGPT. Educ Inf Technol. 2023. https://doi.org/10.1007/s10639-023-11834-1 .

Khan RA, Jawaid M, Khan AR, Sajjad M. ChatGPT—Reshaping medical education and clinical management. Pak J Med Sci. 2023. https://doi.org/10.12669/pjms.39.2.7653 .

King MR. A conversation on artificial intelligence, Chatbots, and plagiarism in higher education. Cell Mol Bioeng. 2023;16(1):1–2. https://doi.org/10.1007/s12195-022-00754-8 .

Kooli C. Chatbots in education and research: a critical examination of ethical implications and solutions. Sustainability. 2023;15(7):5614. https://doi.org/10.3390/su15075614 .

Kuhail MA, Alturki N, Alramlawi S, Alhejori K. Interacting with educational chatbots: a systematic review. Educ Inf Technol. 2022;28(1):973–1018. https://doi.org/10.1007/s10639-022-11177-3 .

Lee H. The rise of ChatGPT: exploring its potential in medical education. Anat Sci Educ. 2023. https://doi.org/10.1002/ase.2270 .

Li L, Subbareddy R, Raghavendra CG. AI intelligence Chatbot to improve students learning in the higher education platform. J Interconnect Netw. 2022. https://doi.org/10.1142/s0219265921430325 .

Limna P. A Review of Artificial Intelligence (AI) in Education during the Digital Era. 2022. https://ssrn.com/abstract=4160798

Lo CK. What is the impact of ChatGPT on education? A rapid review of the literature. Educ Sci. 2023;13(4):410. https://doi.org/10.3390/educsci13040410 .

Luo W, He H, Liu J, Berson IR, Berson MJ, Zhou Y, Li H. Aladdin’s genie or pandora’s box For early childhood education? Experts chat on the roles, challenges, and developments of ChatGPT. Early Educ Dev. 2023. https://doi.org/10.1080/10409289.2023.2214181 .

Meyer JG, Urbanowicz RJ, Martin P, O’Connor K, Li R, Peng P, Moore JH. ChatGPT and large language models in academia: opportunities and challenges. Biodata Min. 2023. https://doi.org/10.1186/s13040-023-00339-9 .

Mhlanga D. Open AI in education, the responsible and ethical use of ChatGPT towards lifelong learning. Soc Sci Res Netw. 2023. https://doi.org/10.2139/ssrn.4354422 .

Neumann, M., Rauschenberger, M., & Schön, E. M. (2023). “We Need To Talk About ChatGPT”: The Future of AI and Higher Education.‏ https://doi.org/10.1109/seeng59157.2023.00010

Nolan B. Here are the schools and colleges that have banned the use of ChatGPT over plagiarism and misinformation fears. Business Insider . 2023. https://www.businessinsider.com

O’Leary DE. An analysis of three chatbots: BlenderBot, ChatGPT and LaMDA. Int J Intell Syst Account, Financ Manag. 2023;30(1):41–54. https://doi.org/10.1002/isaf.1531 .

Okoli C. A guide to conducting a standalone systematic literature review. Commun Assoc Inf Syst. 2015. https://doi.org/10.17705/1cais.03743 .

OpenAI. (2023). https://openai.com/blog/chatgpt

Perkins M. Academic integrity considerations of AI large language models in the post-pandemic era: ChatGPT and beyond. J Univ Teach Learn Pract. 2023. https://doi.org/10.53761/1.20.02.07 .

Plevris V, Papazafeiropoulos G, Rios AJ. Chatbots put to the test in math and logic problems: A preliminary comparison and assessment of ChatGPT-3.5, ChatGPT-4, and Google Bard. arXiv (Cornell University) . 2023. https://doi.org/10.48550/arxiv.2305.18618

Rahman MM, Watanobe Y (2023) ChatGPT for education and research: opportunities, threats, and strategies. Appl Sci 13(9):5783. https://doi.org/10.3390/app13095783

Ram B, Verma P. Artificial intelligence AI-based Chatbot study of ChatGPT, google AI bard and baidu AI. World J Adv Eng Technol Sci. 2023;8(1):258–61. https://doi.org/10.30574/wjaets.2023.8.1.0045 .

Rasul T, Nair S, Kalendra D, Robin M, de Oliveira Santini F, Ladeira WJ, Heathcote L. The role of ChatGPT in higher education: benefits, challenges, and future research directions. J Appl Learn Teach. 2023. https://doi.org/10.37074/jalt.2023.6.1.29 .

Ratnam M, Sharm B, Tomer A. ChatGPT: educational artificial intelligence. Int J Adv Trends Comput Sci Eng. 2023;12(2):84–91. https://doi.org/10.30534/ijatcse/2023/091222023 .

Ray PP. ChatGPT: a comprehensive review on background, applications, key challenges, bias, ethics, limitations and future scope. Internet Things Cyber-Phys Syst. 2023;3:121–54. https://doi.org/10.1016/j.iotcps.2023.04.003 .

Roumeliotis KI, Tselikas ND. ChatGPT and Open-AI models: a preliminary review. Future Internet. 2023;15(6):192. https://doi.org/10.3390/fi15060192 .

Rudolph J, Tan S, Tan S. War of the chatbots: Bard, Bing Chat, ChatGPT, Ernie and beyond. The new AI gold rush and its impact on higher education. J Appl Learn Teach. 2023. https://doi.org/10.37074/jalt.2023.6.1.23 .

Ruiz LMS, Moll-López S, Nuñez-Pérez A, Moraño J, Vega-Fleitas E. ChatGPT challenges blended learning methodologies in engineering education: a case study in mathematics. Appl Sci. 2023;13(10):6039. https://doi.org/10.3390/app13106039 .

Sallam M, Salim NA, Barakat M, Al-Tammemi AB. ChatGPT applications in medical, dental, pharmacy, and public health education: a descriptive study highlighting the advantages and limitations. Narra J. 2023;3(1): e103. https://doi.org/10.52225/narra.v3i1.103 .

Salvagno M, Taccone FS, Gerli AG. Can artificial intelligence help for scientific writing? Crit Care. 2023. https://doi.org/10.1186/s13054-023-04380-2 .

Saqr M, López-Pernas S, Helske S, Hrastinski S. The longitudinal association between engagement and achievement varies by time, students’ profiles, and achievement state: a full program study. Comput Educ. 2023;199:104787. https://doi.org/10.1016/j.compedu.2023.104787 .

Saqr M, Matcha W, Uzir N, Jovanović J, Gašević D, López-Pernas S. Transferring effective learning strategies across learning contexts matters: a study in problem-based learning. Australas J Educ Technol. 2023;39(3):9.

Schöbel S, Schmitt A, Benner D, Saqr M, Janson A, Leimeister JM. Charting the evolution and future of conversational agents: a research agenda along five waves and new frontiers. Inf Syst Front. 2023. https://doi.org/10.1007/s10796-023-10375-9 .

Shoufan A. Exploring students’ perceptions of CHATGPT: thematic analysis and follow-up survey. IEEE Access. 2023. https://doi.org/10.1109/access.2023.3268224 .

Sonderegger S, Seufert S. Chatbot-mediated learning: conceptual framework for the design of Chatbot use cases in education. Gallen: Institute for Educational Management and Technologies, University of St; 2022. https://doi.org/10.5220/0010999200003182 .

Book   Google Scholar  

Strzelecki A. To use or not to use ChatGPT in higher education? A study of students’ acceptance and use of technology. Interact Learn Environ. 2023. https://doi.org/10.1080/10494820.2023.2209881 .

Su J, Yang W. Unlocking the power of ChatGPT: a framework for applying generative AI in education. ECNU Rev Educ. 2023. https://doi.org/10.1177/20965311231168423 .

Sullivan M, Kelly A, McLaughlan P. ChatGPT in higher education: Considerations for academic integrity and student learning. J ApplLearn Teach. 2023;6(1):1–10. https://doi.org/10.37074/jalt.2023.6.1.17 .

Szabo A. ChatGPT is a breakthrough in science and education but fails a test in sports and exercise psychology. Balt J Sport Health Sci. 2023;1(128):25–40. https://doi.org/10.33607/bjshs.v127i4.1233 .

Taecharungroj V. “What can ChatGPT do?” analyzing early reactions to the innovative AI chatbot on Twitter. Big Data Cognit Comput. 2023;7(1):35. https://doi.org/10.3390/bdcc7010035 .

Tam S, Said RB. User preferences for ChatGPT-powered conversational interfaces versus traditional methods. Biomed Eng Soc. 2023. https://doi.org/10.58496/mjcsc/2023/004 .

Tedre M, Kahila J, Vartiainen H. (2023). Exploration on how co-designing with AI facilitates critical evaluation of ethics of AI in craft education. In: Langran E, Christensen P, Sanson J (Eds).  Proceedings of Society for Information Technology and Teacher Education International Conference . 2023. pp. 2289–2296.

Tlili A, Shehata B, Adarkwah MA, Bozkurt A, Hickey DT, Huang R, Agyemang B. What if the devil is my guardian angel: ChatGPT as a case study of using chatbots in education. Smart Learn Environ. 2023. https://doi.org/10.1186/s40561-023-00237-x .

Uddin SMJ, Albert A, Ovid A, Alsharef A. Leveraging CHATGPT to aid construction hazard recognition and support safety education and training. Sustainability. 2023;15(9):7121. https://doi.org/10.3390/su15097121 .

Valtonen T, López-Pernas S, Saqr M, Vartiainen H, Sointu E, Tedre M. The nature and building blocks of educational technology research. Comput Hum Behav. 2022;128:107123. https://doi.org/10.1016/j.chb.2021.107123 .

Vartiainen H, Tedre M. Using artificial intelligence in craft education: crafting with text-to-image generative models. Digit Creat. 2023;34(1):1–21. https://doi.org/10.1080/14626268.2023.2174557 .

Ventayen RJM. OpenAI ChatGPT generated results: similarity index of artificial intelligence-based contents. Soc Sci Res Netw. 2023. https://doi.org/10.2139/ssrn.4332664 .

Wagner MW, Ertl-Wagner BB. Accuracy of information and references using ChatGPT-3 for retrieval of clinical radiological information. Can Assoc Radiol J. 2023. https://doi.org/10.1177/08465371231171125 .

Wardat Y, Tashtoush MA, AlAli R, Jarrah AM. ChatGPT: a revolutionary tool for teaching and learning mathematics. Eurasia J Math, Sci Technol Educ. 2023;19(7):em2286. https://doi.org/10.29333/ejmste/13272 .

Webster J, Watson RT. Analyzing the past to prepare for the future: writing a literature review. Manag Inf Syst Quart. 2002;26(2):3.

Xiao Y, Watson ME. Guidance on conducting a systematic literature review. J Plan Educ Res. 2017;39(1):93–112. https://doi.org/10.1177/0739456x17723971 .

Yan D. Impact of ChatGPT on learners in a L2 writing practicum: an exploratory investigation. Educ Inf Technol. 2023. https://doi.org/10.1007/s10639-023-11742-4 .

Yu H. Reflection on whether Chat GPT should be banned by academia from the perspective of education and teaching. Front Psychol. 2023;14:1181712. https://doi.org/10.3389/fpsyg.2023.1181712 .

Zhu C, Sun M, Luo J, Li T, Wang M. How to harness the potential of ChatGPT in education? Knowl Manag ELearn. 2023;15(2):133–52. https://doi.org/10.34105/j.kmel.2023.15.008 .

Download references

The paper is co-funded by the Academy of Finland (Suomen Akatemia) Research Council for Natural Sciences and Engineering for the project Towards precision education: Idiographic learning analytics (TOPEILA), Decision Number 350560.

Author information

Authors and affiliations.

School of Computing, University of Eastern Finland, 80100, Joensuu, Finland

Yazid Albadarin, Mohammed Saqr, Nicolas Pope & Markku Tukiainen

You can also search for this author in PubMed   Google Scholar

Contributions

YA contributed to the literature search, data analysis, discussion, and conclusion. Additionally, YA contributed to the manuscript’s writing, editing, and finalization. MS contributed to the study’s design, conceptualization, acquisition of funding, project administration, allocation of resources, supervision, validation, literature search, and analysis of results. Furthermore, MS contributed to the manuscript's writing, revising, and approving it in its finalized state. NP contributed to the results, and discussions, and provided supervision. NP also contributed to the writing process, revisions, and the final approval of the manuscript in its finalized state. MT contributed to the study's conceptualization, resource management, supervision, writing, revising the manuscript, and approving it.

Corresponding author

Correspondence to Yazid Albadarin .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

See Table  4

The process of synthesizing the data presented in Table  4 involved identifying the relevant studies through a search process of databases (ERIC, Scopus, Web of Knowledge, Dimensions.ai, and lens.org) using specific keywords "ChatGPT" and "education". Following this, inclusion/exclusion criteria were applied, and data extraction was performed using Creswell's [ 15 ] coding techniques to capture key information and identify common themes across the included studies.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Albadarin, Y., Saqr, M., Pope, N. et al. A systematic literature review of empirical research on ChatGPT in education. Discov Educ 3 , 60 (2024). https://doi.org/10.1007/s44217-024-00138-2

Download citation

Received : 22 October 2023

Accepted : 10 May 2024

Published : 26 May 2024

DOI : https://doi.org/10.1007/s44217-024-00138-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Large language models
  • Educational technology
  • Systematic review

Advertisement

  • Find a journal
  • Publish with us
  • Track your research

The Library is open on the King's Birthday, Monday 10 June 2024. For details

The Children’s Library will be temporarily closed from Tuesday 4 June to Thursday 6 June 2024. 

hsc student in blue room painting gallery looking at ipad

English Extension 1: critical and imaginative writing

An English Extension 1 excursion that targets imaginative writing and independent research skills.

This English Extension 1 excursion features two sessions to target two different areas of the course.  

Session 1 involves students using the Library’s collections as writing stimulus and, using a series of guided writing prompts, crafting their own imaginative responses.  

These prompts allow students to compose texts that experiment with different stylistic features, including narrative voice and point of view. Devices will be provided to each student so they can compose their responses in the gallery, which will then be collated electronically and emailed through to the organising teacher.

In Session 2, a librarian will help students to explore Library HSC resources, including online databases and journals. 

This session seeks to introduce students to skills that help them undertake effective independent investigation, ideal for students preparing for the related research project and for approaching the rigors of the Extension course. 

Curriculum outcomes

English extension 1:.

EE11-2 analyses and experiments with language forms, features and structures of complex texts, evaluating their effects on meaning in familiar and new contexts

EE11-4 develops skills in research methodology to undertake effective independent investigation 

Before you visit

research methodology and writing skills

Crane Center For Early Childhood Research and Policy

The Crane Center for Early Childhood Research and Policy is a multidisciplinary research center conducting research related to children’s learning and well-being, and seeking to impact early childhood policy and practice.

Quick Links

Our Staff Our Work Partner With Us Diversity, Equity, and Inclusion Current Partners

research methodology and writing skills

  • News and Events

Three young children stand around a circular table. One child places a paper cutout in the shape of the continent of Australia on a round light blue circle representing the eastern hemisphere. The continents of Asia, Africa, and Europe are already in place on the light blue circle. Each of the continent cutouts displays the name of the continent.

Preschool Classroom Age Composition, the Physical Literacy Environment, and Children’s Emergent Literacy Skills

AUTHORS: Qingqing Yang, Ph.D.; Kathryn Zimmermann, M.S.; Kelly M. Purtell, Ph.D.; Arya Ansari, Ph.D.

In early childhood, the development of emergent literacy skills, namely receptive vocabulary, expressive vocabulary, phonological awareness, and print knowledge, is critical (Pullen & Justice, 2003; Storch & Whitehurst, 2002). Receptive and expressive vocabulary (the ability to understand and express oneself using words); phonological awareness (noticing and manipulating the sounds in words), and print knowledge (recognizing the rules and forms of written language), are all important for learning to read and write well (Dickinson et al., 2019; Kendeou et al., 2009; Levy et al., 2006). Struggling in any of these areas may lead to lower academic growth (Pullen & Justice, 2003). High-quality preschool programs can play a critical role in promoting these emergent literacy skills, setting the stage for future school success (Pullen & Justice, 2003).

One factor that shapes children’s emergent literacy skills is the way that preschool teachers structure and arrange, in their classrooms, the display of items with writing on them — what researchers call the physical literacy environment (Guo et al., 2012). A high-quality physical literacy environment features a diverse selection of books, including books of varying difficulty levels and genres (e.g., rhyming texts, alphabet books, lift-the-flap books), related to different topics of instruction, and in good condition.

This environment also includes a dedicated book area, intentional book placement in various activity centers (e.g., pretend play areas, the block center, the science table), and easy accessibility for children (Justice, 2006). In addition, classrooms with a high-quality physical literacy environment provide designated areas with writing materials that promote and model writing (e.g., newspapers, maps; Guo et al., 2012; Neuman & Roskos, 1990), as well as writing displays around the room showing teacher- and child-directed writing and print products used to guide daily learning (e.g., signs, posters, writing samples; Guo et al., 2012; Phillips et al., 2008).

Despite the promising evidence regarding the importance of the physical literacy environment for children’s emergent literacy skills, there is little research on the factors that influence the quality of the physical literacy environment. Many children in the U.S. are enrolled in mixed-age preschool classrooms, which can include 2-, 3-, 4-, and 5-years-olds (Moiduddin et al., 2012). Teachers’ beliefs about the skill levels and developmental needs of differently aged children in these mixed-age classrooms may influence the way they set up the physical literacy environment (Lynch, 2009). For example, teachers who believe that younger children need less literacy-related instruction (Powell et al., 2008) may provide fewer literacy-related materials and spaces when teaching in classrooms with a higher percentage of younger children.

Although previous studies have found that older children in classrooms with a higher proportion of younger peers may gain less in emergent literacy skills (Ansari et al., 2016; Purtell & Ansari, 2018), the reasons behind these associations are not clear. Therefore, this study investigated whether the physical literacy environment is set up differently in mixed-age classrooms where there are more younger children (ages 2 and 3) compared to classrooms with a higher proportion of older children (ages 4 and 5) and whether these differences shape 4-year-olds’ emergent literacy development. We looked at five aspects of the literacy environment: the book area, book selection, book use, writing materials, and writing displays around the room. A visual model of the study is shown in Figure 1. Better understanding of these associations is critical to ensure that preschool programs with mixed-age classrooms effectively support the development of early skills necessary for successful reading and writing.

The cover of the PDF of the research brief "Preschool Classroom Age Composition, the Physical Literacy Environment, and Children's Emergent Literacy Skills," from the Crane Center for Early Childhood Research and Policy at The Ohio State University

DATA & METHODS

We used data from the Professional Development Study (PDS) by the National Center for Research on Early Childhood Education (NCRECE; Hamre et al., 2012; Pianta et al., 2017). The PDS is a longitudinal, randomized controlled trial assessing early childhood education teacher professional development interventions. Details of the study are available here .

The current study involved 895 preschool children (mean age = 4.11 years) and 223 lead teachers (mean age = 42.56 years). These participants were recruited from multiple Head Start and publicly funded preschool programs across 10 sites in 8 states. The majority of participating children were 4 years old. Nearly half of children (47%) were identified as Black/African American, 14% as white, 35% as Hispanic/Latine, and 9% as other. Children’s families had an average annual household income of approximately $23,948, in a range from $2,500 to $87,500. Participating teachers were also diverse in terms of race/ethnicity (47% Black/African American, 33% white, 12% Hispanic/Latine, and 8% other). More than half of the classrooms (55%) were Head Start programs, and 35% were public pre-kindergartens. The majority of the classrooms (91.5%) contained more than one age group (2-3-year-olds, 4-year-olds, 5-year-olds).

Teacher reports of the number of 2-, 3-, 4-, and 5-year-old children in their classrooms was used to calculate the percentages of each age group per classroom. Each classroom was observed using the literacy environment checklist to assess the language-and-literacy-related materials and spaces children were exposed to in their classroom environments. This checklist assesses the classroom physical literacy environment in terms of the book area, book selection, book use, writing materials, and writing around the room. Details on the checklist can be found in Table 1. Children completed assessments of receptive vocabulary, expressive vocabulary, phonological awareness, and print knowledge in the fall and spring of their preschool year.

Table 1. Detailed information on the literacy environment checklist of the Early Language and Literacy Classroom Observation

KEY FINDINGS

Classrooms with more 2- and 3-year-olds provide less language and literacy materials and spaces.

In this study, children in classrooms with a higher percentage of 2- and 3-year-olds had access to fewer books in different activity centers, fewer writing materials, and fewer writing tools and props on display. One possible explanation for these findings is that teachers in these classrooms may design the physical literacy environment according to their understanding of the needs of younger children. However, such beliefs may not be developmentally appropriate, as studies have shown that children as young as 3 have the capacity to develop writing knowledge and skills, including organizing writing units/marks in straight lines, using spaces to separate words, and applying accurate directionality while writing (Puranik & Lonigan, 2011).

Lack of writing on display around the room explains children’s lower gains in expressive vocabulary in classrooms with more 2- and 3-year-olds

Our findings also show that children in classrooms with a higher proportion of younger peers, compared with same-age or older peers, were less likely to be exposed to writing around the classroom, which in turn, was associated with smaller gains in their expressive vocabulary. The role of writing around the classroom can be understood from two perspectives. First, seeing more writing (e.g., posters, signs, teacher and child writing samples) around the classroom may create more prompts for children to practice and learn expressive vocabulary. This is because these writing displays are usually designed to enrich children’s learning experiences, relating either to the classroom theme or to children’s daily life. Second, writing around the room, especially child-directed writing displays, can be viewed as evidence of writing-related activities that occur in the classroom (Quinn et al., 2022). Participating in these activities also provides children with opportunities to learn different vocabulary (Zhang et al., 2015). This finding suggests that one or both of these mechanisms may be particularly important to young children’s vocabulary development.

When taken together, our findings indicate that classrooms with a higher proportion of younger children may provide less book use, fewer writing materials, and less writing around the room. The lower amounts of writing displayed around the room may be one potential reason why 4-year-olds in these classrooms have smaller expressive vocabulary gains. These findings highlight the importance of enhancing the physical literacy environment to meet the needs of all children in mixed-age classrooms.

Three young children and a teacher sit on the floor surrounding a large relief map. All are crouched over the map. The children use their hands to touch the map and point to details on it.

RECOMMENDATIONS

Teachers and practitioners.

Rethink the design of the physical literacy environment, ensuring that high-quality materials are available to all children regardless of the age composition of the classroom. Our study indicates that older children lack an adequate physical literacy environment in classrooms with a higher percentage of 2- and 3-year-olds, hindering their emergent literacy development. To address this issue, it is essential to furnish these classrooms with more enriching resources such as books, writing materials, and writing displays to support the development of emergent literacy skills. Although we mainly looked at the emergent literacy skills of 4-year-olds, improvements in the physical literacy environment are likely to benefit children of all ages.

Researchers

Continue to investigate the reasons classroom age composition affects children’s language and literacy skills, as this may suggest other potential targets for promoting children’s language and literacy learning in mixed-age classrooms.

Explore how teachers and children interact with the physical literacy environment. This may provide more in-depth information on children’s emergent literacy learning experiences and illustrate how children of different ages shape their own interactive learning experiences.

Administrators and Policymakers

Prioritize the provision of resources to ensure all programs/classrooms have access to materials needed to create a high-quality learning environment. This may include increasing access to materials related to emergent literacy to support teachers in developing their physical literacy environments.

Provide professional development focused on the design and arrangement of the classroom physical literacy environment. Our study suggests that classrooms with a higher concentration of 2- and 3-year-olds tend to have fewer language and literacy materials and spaces. Accordingly, it is important to provide training on how to create a literacy environment that will benefit children of all ages. This training may cover designing an enriching reading environment, providing a variety of books in different genres and on different topics, ensuring children have access to books in different play areas, and providing enough writing materials and writing props.

AUTHOR NOTE:

The activities of the Crane Center for Early Childhood Research and Policy are supported in part by a generous gift of the Crane family to The Ohio State University. Correspondence about this work may be addressed to Kelly Purtell. Email: [email protected] .

The recommended citation for this paper is: Yang, Q., Zimmermann, K., Purtell, K.M., Ansari, A. (2024). Preschool Classroom Age Composition, the Physical Literacy Environment, and Children’s Emergent Literacy Skills. Columbus, Ohio: Crane Center for Early Childhood Research and Policy & The Ohio State University.

ACKNOWLEDGMENT:

The authors would like to extend a very special thank you to the teachers of the A. Sophie Rogers School for Early Learning for providing the images of high-quality early learning environments that were used in this report. They would also like to thank to Rebecca Dore for brief edits, Michael Meckler for copy edits and dissemination, and Cathy Kupsky for designing this brief.

Two children stand over a small table, each writing on a sheet of white paper. One child writes with a blue pencil. The other child writes with a marker. A wooden box on the table has a sign that reads "CURIOSITY" in capital letters, then "Curiosity" with the first letter capitalized and the remaining letters in lower case.

REFERENCES:

Ansari, A., Purtell, K., & Gershoff, E. (2016). Classroom age composition and the school readiness of 3- and 4-year-olds in the Head Start program. Psychological Science, 27 (1), 53–63. https://doi.org/10.1177/0956797615610882

Dickinson, D. K., Nesbitt, K. T., & Hofer, K. G. (2019). Effects of language on initial reading: Direct and indirect associations between code and language from preschool to first grade. Early Childhood Research Quarterly, 49, 122–137. https://doi.org/10.1016/j.ecresq.2019.04.005

Guo, Y., Justice, L. M., Kaderavek, J. N., & McGinty, A. (2012). The literacy environment of preschool classrooms: Contributions to children’s emergent literacy growth: CLASSROOM LITERACY ENVIRONMENT. Journal of Research in Reading, 35 (3), 308–327. https://doi.org/10.1111/j.1467-9817.2010.01467.x

Hamre, B. K., Pianta, R. C., Burchinal, M., Field, S., LoCasale-Crouch, J., Downer, J. T., Howes, C., LaParo, K., & Scott-Little, C. (2012). A Course on Effective Teacher-Child Interactions: Effects on Teacher Beliefs, Knowledge, and Observed Practice. American Educational Research Journal, 49 (1), 88–123. https://doi.org/10.3102/0002831211434596

Justice, L. M. (2006). Evidence-based practice, response to intervention, and the prevention of reading difficulties. Language, Speech, and Hearing Services in Schools, 37 (4), 284–297. https://doi.org/10.1044/0161-1461

Kendeou, P., van den Broek, P., White, M. J., & Lynch, J. S. (20091102). Predicting reading comprehension in early elementary school: The independent contributions of oral language and decoding skills. Journal of Educational Psychology, 101 (4), 765. https://doi.org/10.1037/a0015956

Levy, B. A., Gong, Z., Hessels, S., Evans, M. A., & Jared, D. (2006). Understanding print: Early reading development and the contributions of home literacy experiences. Journal of Experimental Child Psychology, 93 (1), 63–93. https://doi.org/10.1016/j.jecp.2005.07.003

Lynch, J. (2009). Preschool teachers’ beliefs about children’s print literacy development. Early Years, 29 (2), 191–203. https://doi.org/10.1080/09575140802628743

Moiduddin, E., Aikens, N., Tarullo, L., West, J., & Xue, Y. (2012). Child Outcomes and Classroom Quality in FACES 2009. Office of Planning, Research, and Evaluation, U.S. Department of Health and Human Services.

Neuman, S. B., & Roskos, K. (1990). Play, Print, and Purpose: Enriching Play Environments for Literacy Development. The Reading Teacher, 44 (3), 214–221.

Phillips, B. M., Clancy-Menchetti, J., & Lonigan, C. J. (2008). Successful Phonological Awareness Instruction With Preschool Children: Lessons From the Classroom. Topics in Early Childhood Special Education, 28 (1), 3–17. https://doi.org/10.1177/0271121407313813

Pianta, R., Hamre, B., Downer, J., Burchinal, M., Williford, A., LoCasale-Crouch, J., Howes, C., Paro, K. L., & Scott-Little, C. (2017). Early Childhood Professional Development: Coaching and Coursework Effects on Indicators of Children’s School Readiness. Early Education and Development, 28 (8), 956–975. https://doi.org/10.1080/10409289.2017.1319783

Powell, D. R., Burchinal, M. R., File, N., & Kontos, S. (2008). An ecobehavioral analysis of children’s engagement in urban public school preschool classrooms. Early Childhood Research Quarterly, 23 (1), 108–123. https://doi.org/10.1016/j.ecresq.2007.04.001

Pullen, P. C., & Justice, L. M. (2003). Enhancing Phonological Awareness, Print Awareness, and Oral Language Skills in Preschool Children. Intervention in School and Clinic, 39 (2), 87–98. https://doi.org/10.1177/10534512030390020401

Puranik, C. S., & Lonigan, C. J. (2011). From Scribbles to Scrabble: Preschool Children’s Developing Knowledge of Written Language. Reading and Writing, 24 (5), 567–589. https://doi.org/10.1007/s11145-009-9220-8

Purtell, K. M., & Ansari, A. (2018). Classroom Age Composition and Preschoolers’ School Readiness: The Implications of Classroom Quality and Teacher Qualifications. AERA Open, 4 (1), 2332858418758300. https://doi.org/10.1177/2332858418758300

Quinn, M. F., Gerde, H. K., & Bingham, G. E. (2022). Who, What, and Where: Classroom Contexts for Preschool Writing Experiences. Early Education and Development, 33 (8), 1439–1460. https://doi.org/10.1080/10409289.2021.1979834

Storch, S. A., & Whitehurst, G. J. (2002). Oral language and code-related precursors to reading: Evidence from a longitudinal structural model. Developmental Psychology, 38 (6), 934–947. https://doi.org/10.1037/0012-1649.38.6.934

Zhang, C., Hur, J., Diamond, K. E., & Powell, D. (2015). Classroom writing environments and children’s early writing skills: An observational study in Head Start classrooms. Early Childhood Education Journal, 43 (4), 307–315. https://doi.org/10.1007/s10643-014-0655-4

A new future of work: The race to deploy AI and raise skills in Europe and beyond

At a glance.

Amid tightening labor markets and a slowdown in productivity growth, Europe and the United States face shifts in labor demand, spurred by AI and automation. Our updated modeling of the future of work finds that demand for workers in STEM-related, healthcare, and other high-skill professions would rise, while demand for occupations such as office workers, production workers, and customer service representatives would decline. By 2030, in a midpoint adoption scenario, up to 30 percent of current hours worked could be automated, accelerated by generative AI (gen AI). Efforts to achieve net-zero emissions, an aging workforce, and growth in e-commerce, as well as infrastructure and technology spending and overall economic growth, could also shift employment demand.

By 2030, Europe could require up to 12 million occupational transitions, double the prepandemic pace. In the United States, required transitions could reach almost 12 million, in line with the prepandemic norm. Both regions navigated even higher levels of labor market shifts at the height of the COVID-19 period, suggesting that they can handle this scale of future job transitions. The pace of occupational change is broadly similar among countries in Europe, although the specific mix reflects their economic variations.

Businesses will need a major skills upgrade. Demand for technological and social and emotional skills could rise as demand for physical and manual and higher cognitive skills stabilizes. Surveyed executives in Europe and the United States expressed a need not only for advanced IT and data analytics but also for critical thinking, creativity, and teaching and training—skills they report as currently being in short supply. Companies plan to focus on retraining workers, more than hiring or subcontracting, to meet skill needs.

Workers with lower wages face challenges of redeployment as demand reweights toward occupations with higher wages in both Europe and the United States. Occupations with lower wages are likely to see reductions in demand, and workers will need to acquire new skills to transition to better-paying work. If that doesn’t happen, there is a risk of a more polarized labor market, with more higher-wage jobs than workers and too many workers for existing lower-wage jobs.

Choices made today could revive productivity growth while creating better societal outcomes. Embracing the path of accelerated technology adoption with proactive worker redeployment could help Europe achieve an annual productivity growth rate of up to 3 percent through 2030. However, slow adoption would limit that to 0.3 percent, closer to today’s level of productivity growth in Western Europe. Slow worker redeployment would leave millions unable to participate productively in the future of work.

Businessman and skilled worker in high tech enterprise, using VR glasses - stock photo

Demand will change for a range of occupations through 2030, including growth in STEM- and healthcare-related occupations, among others

This report focuses on labor markets in nine major economies in the European Union along with the United Kingdom, in comparison with the United States. Technology, including most recently the rise of gen AI, along with other factors, will spur changes in the pattern of labor demand through 2030. Our study, which uses an updated version of the McKinsey Global Institute future of work model, seeks to quantify the occupational transitions that will be required and the changing nature of demand for different types of jobs and skills.

Our methodology

We used methodology consistent with other McKinsey Global Institute reports on the future of work to model trends of job changes at the level of occupations, activities, and skills. For this report, we focused our analysis on the 2022–30 period.

Our model estimates net changes in employment demand by sector and occupation; we also estimate occupational transitions, or the net number of workers that need to change in each type of occupation, based on which occupations face declining demand by 2030 relative to current employment in 2022. We included ten countries in Europe: nine EU members—the Czech Republic, Denmark, France, Germany, Italy, Netherlands, Poland, Spain, and Sweden—and the United Kingdom. For the United States, we build on estimates published in our 2023 report Generative AI and the future of work in America.

We included multiple drivers in our modeling: automation potential, net-zero transition, e-commerce growth, remote work adoption, increases in income, aging populations, technology investments, and infrastructure investments.

Two scenarios are used to bookend the work-automation model: “late” and “early.” For Europe, we modeled a “faster” scenario and a “slower” one. For the faster scenario, we use the midpoint—the arithmetical average between our late and early scenarios. For the slower scenario, we use a “mid late” trajectory, an arithmetical average between a late adoption scenario and the midpoint scenario. For the United States, we use the midpoint scenario, based on our earlier research.

We also estimate the productivity effects of automation, using GDP per full-time-equivalent (FTE) employee as the measure of productivity. We assumed that workers displaced by automation rejoin the workforce at 2022 productivity levels, net of automation, and in line with the expected 2030 occupational mix.

Amid tightening labor markets and a slowdown in productivity growth, Europe and the United States face shifts in labor demand, spurred not only by AI and automation but also by other trends, including efforts to achieve net-zero emissions, an aging population, infrastructure spending, technology investments, and growth in e-commerce, among others (see sidebar, “Our methodology”).

Our analysis finds that demand for occupations such as health professionals and other STEM-related professionals would grow by 17 to 30 percent between 2022 and 2030, (Exhibit 1).

By contrast, demand for workers in food services, production work, customer services, sales, and office support—all of which declined over the 2012–22 period—would continue to decline until 2030. These jobs involve a high share of repetitive tasks, data collection, and elementary data processing—all activities that automated systems can handle efficiently.

Up to 30 percent of hours worked could be automated by 2030, boosted by gen AI, leading to millions of required occupational transitions

By 2030, our analysis finds that about 27 percent of current hours worked in Europe and 30 percent of hours worked in the United States could be automated, accelerated by gen AI. Our model suggests that roughly 20 percent of hours worked could still be automated even without gen AI, implying a significant acceleration.

These trends will play out in labor markets in the form of workers needing to change occupations. By 2030, under the faster adoption scenario we modeled, Europe could require up to 12.0 million occupational transitions, affecting 6.5 percent of current employment. That is double the prepandemic pace (Exhibit 2). Under a slower scenario we modeled for Europe, the number of occupational transitions needed would amount to 8.5 million, affecting 4.6 percent of current employment. In the United States, required transitions could reach almost 12.0 million, affecting 7.5 percent of current employment. Unlike Europe, this magnitude of transitions is broadly in line with the prepandemic norm.

Both regions navigated even higher levels of labor market shifts at the height of the COVID-19 period. While these were abrupt and painful to many, given the forced nature of the shifts, the experience suggests that both regions have the ability to handle this scale of future job transitions.

Smiling female PhD student discussing with man at desk in innovation lab - stock photo

Businesses will need a major skills upgrade

The occupational transitions noted above herald substantial shifts in workforce skills in a future in which automation and AI are integrated into the workplace (Exhibit 3). Workers use multiple skills to perform a given task, but for the purposes of our quantification, we identified the predominant skill used.

Demand for technological skills could see substantial growth in Europe and in the United States (increases of 25 percent and 29 percent, respectively, in hours worked by 2030 compared to 2022) under our midpoint scenario of automation adoption (which is the faster scenario for Europe).

Demand for social and emotional skills could rise by 11 percent in Europe and by 14 percent in the United States. Underlying this increase is higher demand for roles requiring interpersonal empathy and leadership skills. These skills are crucial in healthcare and managerial roles in an evolving economy that demands greater adaptability and flexibility.

Conversely, demand for work in which basic cognitive skills predominate is expected to decline by 14 percent. Basic cognitive skills are required primarily in office support or customer service roles, which are highly susceptible to being automated by AI. Among work characterized by these basic cognitive skills experiencing significant drops in demand are basic data processing and literacy, numeracy, and communication.

Demand for work in which higher cognitive skills predominate could also decline slightly, according to our analysis. While creativity is expected to remain highly sought after, with a potential increase of 12 percent by 2030, work activities characterized by other advanced cognitive skills such as advanced literacy and writing, along with quantitative and statistical skills, could decline by 19 percent.

Demand for physical and manual skills, on the other hand, could remain roughly level with the present. These skills remain the largest share of workforce skills, representing about 30 percent of total hours worked in 2022. Growth in demand for these skills between 2022 and 2030 could come from the build-out of infrastructure and higher investment in low-emissions sectors, while declines would be in line with continued automation in production work.

Business executives report skills shortages today and expect them to worsen

A survey we conducted of C-suite executives in five countries shows that companies are already grappling with skills challenges, including a skills mismatch, particularly in technological, higher cognitive, and social and emotional skills: about one-third of the more than 1,100 respondents report a shortfall in these critical areas. At the same time, a notable number of executives say they have enough employees with basic cognitive skills and, to a lesser extent, physical and manual skills.

Within technological skills, companies in our survey reported that their most significant shortages are in advanced IT skills and programming, advanced data analysis, and mathematical skills. Among higher cognitive skills, significant shortfalls are seen in critical thinking and problem structuring and in complex information processing. About 40 percent of the executives surveyed pointed to a shortage of workers with these skills, which are needed for working alongside new technologies (Exhibit 4).

Two IT co-workers code on laptop or technology for testing, web design or online startup - stock photo

Companies see retraining as key to acquiring needed skills and adapting to the new work landscape

Surveyed executives expect significant changes to their workforce skill levels and worry about not finding the right skills by 2030. More than one in four survey respondents said that failing to capture the needed skills could directly harm financial performance and indirectly impede their efforts to leverage the value from AI.

To acquire the skills they need, companies have three main options: retraining, hiring, and contracting workers. Our survey suggests that executives are looking at all three options, with retraining the most widely reported tactic planned to address the skills mismatch: on average, out of companies that mentioned retraining as one of their tactics to address skills mismatch, executives said they would retrain 32 percent of their workforce. The scale of retraining needs varies in degree. For example, respondents in the automotive industry expect 36 percent of their workforce to be retrained, compared with 28 percent in the financial services industry. Out of those who have mentioned hiring or contracting as their tactics to address the skills mismatch, executives surveyed said they would hire an average of 23 percent of their workforce and contract an average of 18 percent.

Occupational transitions will affect high-, medium-, and low-wage workers differently

All ten European countries we examined for this report may see increasing demand for top-earning occupations. By contrast, workers in the two lowest-wage-bracket occupations could be three to five times more likely to have to change occupations compared to the top wage earners, our analysis finds. The disparity is much higher in the United States, where workers in the two lowest-wage-bracket occupations are up to 14 times more likely to face occupational shifts than the highest earners. In Europe, the middle-wage population could be twice as affected by occupational transitions as the same population in United States, representing 7.3 percent of the working population who might face occupational transitions.

Enhancing human capital at the same time as deploying the technology rapidly could boost annual productivity growth

About quantumblack, ai by mckinsey.

QuantumBlack, McKinsey’s AI arm, helps companies transform using the power of technology, technical expertise, and industry experts. With thousands of practitioners at QuantumBlack (data engineers, data scientists, product managers, designers, and software engineers) and McKinsey (industry and domain experts), we are working to solve the world’s most important AI challenges. QuantumBlack Labs is our center of technology development and client innovation, which has been driving cutting-edge advancements and developments in AI through locations across the globe.

Organizations and policy makers have choices to make; the way they approach AI and automation, along with human capital augmentation, will affect economic and societal outcomes.

We have attempted to quantify at a high level the potential effects of different stances to AI deployment on productivity in Europe. Our analysis considers two dimensions. The first is the adoption rate of AI and automation technologies. We consider the faster scenario and the late scenario for technology adoption. Faster adoption would unlock greater productivity growth potential but also, potentially, more short-term labor disruption than the late scenario.

The second dimension we consider is the level of automated worker time that is redeployed into the economy. This represents the ability to redeploy the time gained by automation and productivity gains (for example, new tasks and job creation). This could vary depending on the success of worker training programs and strategies to match demand and supply in labor markets.

We based our analysis on two potential scenarios: either all displaced workers would be able to fully rejoin the economy at a similar productivity level as in 2022 or only some 80 percent of the automated workers’ time will be redeployed into the economy.

Exhibit 5 illustrates the various outcomes in terms of annual productivity growth rate. The top-right quadrant illustrates the highest economy-wide productivity, with an annual productivity growth rate of up to 3.1 percent. It requires fast adoption of technologies as well as full redeployment of displaced workers. The top-left quadrant also demonstrates technology adoption on a fast trajectory and shows a relatively high productivity growth rate (up to 2.5 percent). However, about 6.0 percent of total hours worked (equivalent to 10.2 million people not working) would not be redeployed in the economy. Finally, the two bottom quadrants depict the failure to adopt AI and automation, leading to limited productivity gains and translating into limited labor market disruptions.

Managers discussing work while futuristic AI computer vision analyzing, ccanning production line - stock photo

Four priorities for companies

The adoption of automation technologies will be decisive in protecting businesses’ competitive advantage in an automation and AI era. To ensure successful deployment at a company level, business leaders can embrace four priorities.

Understand the potential. Leaders need to understand the potential of these technologies, notably including how AI and gen AI can augment and automate work. This includes estimating both the total capacity that these technologies could free up and their impact on role composition and skills requirements. Understanding this allows business leaders to frame their end-to-end strategy and adoption goals with regard to these technologies.

Plan a strategic workforce shift. Once they understand the potential of automation technologies, leaders need to plan the company’s shift toward readiness for the automation and AI era. This requires sizing the workforce and skill needs, based on strategically identified use cases, to assess the potential future talent gap. From this analysis will flow details about the extent of recruitment of new talent, upskilling, or reskilling of the current workforce that is needed, as well as where to redeploy freed capacity to more value-added tasks.

Prioritize people development. To ensure that the right talent is on hand to sustain the company strategy during all transformation phases, leaders could consider strengthening their capabilities to identify, attract, and recruit future AI and gen AI leaders in a tight market. They will also likely need to accelerate the building of AI and gen AI capabilities in the workforce. Nontechnical talent will also need training to adapt to the changing skills environment. Finally, leaders could deploy an HR strategy and operating model to fit the post–gen AI workforce.

Pursue the executive-education journey on automation technologies. Leaders also need to undertake their own education journey on automation technologies to maximize their contributions to their companies during the coming transformation. This includes empowering senior managers to explore automation technologies implications and subsequently role model to others, as well as bringing all company leaders together to create a dedicated road map to drive business and employee value.

AI and the toolbox of advanced new technologies are evolving at a breathtaking pace. For companies and policy makers, these technologies are highly compelling because they promise a range of benefits, including higher productivity, which could lift growth and prosperity. Yet, as this report has sought to illustrate, making full use of the advantages on offer will also require paying attention to the critical element of human capital. In the best-case scenario, workers’ skills will develop and adapt to new technological challenges. Achieving this goal in our new technological age will be highly challenging—but the benefits will be great.

Eric Hazan is a McKinsey senior partner based in Paris; Anu Madgavkar and Michael Chui are McKinsey Global Institute partners based in New Jersey and San Francisco, respectively; Sven Smit is chair of the McKinsey Global Institute and a McKinsey senior partner based in Amsterdam; Dana Maor is a McKinsey senior partner based in Tel Aviv; Gurneet Singh Dandona is an associate partner and a senior expert based in New York; and Roland Huyghues-Despointes is a consultant based in Paris.

Explore a career with us

Related articles.

""

Generative AI and the future of work in America

McKinsey partners Lareina Yee and Michael Chui

The economic potential of generative AI: The next productivity frontier

What every CEO should know about generative AI

What every CEO should know about generative AI

IMAGES

  1. Your Step-by-Step Guide to Writing a Good Research Methodology

    research methodology and writing skills

  2. How to Write Research Methodology: Overview, Tips, and Techniques

    research methodology and writing skills

  3. Modern Research Methodology and Writing Skills

    research methodology and writing skills

  4. How to write a methods section of a research paper

    research methodology and writing skills

  5. Research Paper Methodology

    research methodology and writing skills

  6. how to write methodology step by step

    research methodology and writing skills

VIDEO

  1. Ph. D.

  2. RESEARCH METHODOLOGY ( Writing a research proposal)

  3. Writing a Methodology and Discussion Sections for Review Article

  4. Metho 4: Good Research Qualities / Research Process / Research Methods Vs Research Methodology

  5. Research Methodology for surgeons : Dr.Sudeep Shah; Prof.Vikram Kate; Dr.Priya Rangarajan

  6. How to write dissertation in methodology of econometric modelling

COMMENTS

  1. Research Methodology

    Qualitative Research Methodology. This is a research methodology that involves the collection and analysis of non-numerical data such as words, images, and observations. This type of research is often used to explore complex phenomena, to gain an in-depth understanding of a particular topic, and to generate hypotheses.

  2. Your Step-by-Step Guide to Writing a Good Research Methodology

    Provide the rationality behind your chosen approach. Based on logic and reason, let your readers know why you have chosen said research methodologies. Additionally, you have to build strong arguments supporting why your chosen research method is the best way to achieve the desired outcome. 3. Explain your mechanism.

  3. Research Methodology and Scientific Writing

    This book presents a guide for research methodology and scientific writing covering various elements such as finding research problems, writing research proposals, obtaining funds for research, selecting research designs, searching the literature and review, collection of data and analysis, preparation of thesis, writing research papers for journals, citation and listing of references ...

  4. Fundamental Writing Skills for Researchers

    Part 1 Introduction and Snapshot of Writing (6:31) Everyone is capable of being a good writer, even without any innate skill. A snapshot of research writing is given, from presenting a research question in context of current knowledge to interpreting your findings. In other words, moving from general to specific, then specific to general.

  5. What Is a Research Methodology?

    Step 1: Explain your methodological approach. Step 2: Describe your data collection methods. Step 3: Describe your analysis method. Step 4: Evaluate and justify the methodological choices you made. Tips for writing a strong methodology chapter. Other interesting articles.

  6. Scientific Writing Made Easy: A Step‐by‐Step Guide to Undergraduate

    Clear scientific writing generally follows a specific format with key sections: an introduction to a particular topic, hypotheses to be tested, a description of methods, key results, and finally, a discussion that ties these results to our broader knowledge of the topic (Day and Gastel 2012). This general format is inherent in most scientific ...

  7. 11.1 The Purpose of Research Writing

    Step 4: Organizing Research and the Writer's Ideas. When your research is complete, you will organize your findings and decide which sources to cite in your paper. You will also have an opportunity to evaluate the evidence you have collected and determine whether it supports your thesis, or the focus of your paper.

  8. How to Write Research Methodology in 2024: Overview, Tips, and

    Methodology in research is defined as the systematic method to resolve a research problem through data gathering using various techniques, providing an interpretation of data gathered and drawing conclusions about the research data. Essentially, a research methodology is the blueprint of a research or study (Murthy & Bhojanna, 2009, p. 32).

  9. Understanding Research Methods

    There are 4 modules in this course. This MOOC is about demystifying research and research methods. It will outline the fundamentals of doing research, aimed primarily, but not exclusively, at the postgraduate level. It places the student experience at the centre of our endeavours by engaging learners in a range of robust and challenging ...

  10. Research Methods

    Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design. When planning your methods, there are two key decisions you will make. First, decide how you will collect data. Your methods depend on what type of data you need to answer your research question:

  11. (PDF) Research Methodology and Scientific Writing

    The book pre sents a guide for research. methodology and scientific writing cover ing various elements such as finding research problems, writing research proposals, obtaining funds for research ...

  12. How to Improve Your Research Skills: 6 Research Tips

    How to Improve Your Research Skills: 6 Research Tips. Written by MasterClass. Last updated: Aug 18, 2021 • 3 min read. Whether you're writing a blog post or a short story, you'll likely reach a point in your first draft where you don't have enough information to go forward—and that's where research comes in. Whether you're writing ...

  13. (Pdf) a Guide to Research Writing

    5. Select the research methodology. The researcher has to begin to formulate one or more hypotheses, research questions and. research objectives, decide on the type of data needed, and select the ...

  14. (Pdf) Handbook of Research Methodology

    This textbook provides students with an understanding of the concepts and techniques of qualitative and quantitative research, grants for research, report writing, data collection etc. It uses ...

  15. PDF Research and Writing Skills for Academic and Graduate Researchers

    To provide a foundation for the author's research. The literature review should: help the researcher define a hypothesis or a research question, and how answering the question will contribute to the body of knowledge. provide a rationale for investigating the problem and the selected methodology.

  16. Research methodology and writing skills

    Some suggested resources on Research methodology and writing skills. Thomas W. Edgar and David O. Manz, Research Methods for Cyber Security (Elsevier Inc. 2017). Patrick Dunleavy, Authoring a PhD: How to plan, draft, write and finish a doctoral thesis or dissertation (Patrick Dunleavy 2003). Cynthia Grant and Azadeh Osanloo, 'Understanding ...

  17. PDF J380 Introduction to Research Methods Course Description and Objectives

    1. Define research; explain and apply research terms; describe the research process and the principle activities, skills and ethics associated with the research process. 2. Explain the relationship between theory and research. 3. Describe and compare the major quantitative and qualitative research methods in mass communication research. 4.

  18. Research Skills: What They Are and Why They're Important

    Critical thinking. Critical thinking refers to a person's ability to think rationally and analyze and interpret information and make connections. This skill is important in research because it allows individuals to better gather and evaluate data and establish significance. Common critical thinking skills include: Open-mindedness.

  19. The Most Important Research Skills (With Examples)

    Research skills are the ability to find out accurate information on a topic. They include being able to determine the data you need, find and interpret those findings, and then explain that to others. Being able to do effective research is a beneficial skill in any profession, as data and research inform how businesses operate.

  20. Research Skills: What they are and Benefits

    Research skills are the capability a person carries to create new concepts and understand the use of data collection. These skills include techniques, documentation, and interpretation of the collected data. Research is conducted to evaluate hypotheses and share the findings most appropriately. Research skills improve as we gain experience.

  21. Boost Your Research Writing Skills for Career Success

    Here's how you can enhance your ability to communicate research findings through strong writing skills. Powered by AI and the LinkedIn community. 1. Clarity First. Be the first to add your ...

  22. Learning Practical Research Skills Using An Academic ...

    1. Introduction. The nature and effectiveness of research training including the place of generic skills development and academic writing, is currently much debated in high-income countries. 1, 2 Less is known about research training in low and middle-income countries in Asia, including the Philippines 3 It is clear that universities in the Philippines are 'at a critical stage in their ...

  23. Research and teaching writing

    Writing is an essential but complex skill that students must master if they are to take full advantage of educational, occupational, and civic responsibilities. Schools, and the teachers who work in them, are tasked with teaching students how to write. Knowledge about how to teach writing can be obtained from many different sources, including one's experience teaching or being taught to ...

  24. Take a Course

    Harvard Extension Ready is a series of online lessons on core writing skills. It is free, self-guided, and self-paced. ... CARC provides academic webinars covering a wide variety of study and research skills you'll need to thrive at Harvard Extension School. Whether you want to learn some effective note-taking strategies, prepare to give a ...

  25. Cripqueering Method in Posthuman Educational Research: Diffractive

    Richardson L., St. Pierre E.A. (2003) Writing a method of inquiry. In Denzin N. K., Lincoln Y. S. (Eds.), The Sage handbook of qualitative research (3rd ed., pp. 959-978). Sage. ... Sage Research Methods Supercharging research opens in new tab; Sage Video Streaming knowledge opens in new tab; Technology from Sage Library digital services ...

  26. A systematic literature review of empirical research on ChatGPT in

    Additionally, learners have used it to enhance their writing and language skills by generating ideas, composing essays, summarizing, translating, paraphrasing texts, or checking grammar. ... Seven studies adopted qualitative research methodology [S1], [S4], [S6], [S8], [S10], [S11], and [S12], while three studies adopted quantitative research ...

  27. (PDF) Enhancing Writing Skills: A Review

    review of methods, approaches, and strategies employed in the research done on English language teaching to develop writing skills. Keywords Writing skills, methods, approaches, strategies

  28. English Extension 1: critical and imaginative writing

    Session 1 involves students using the Library's collections as writing stimulus and, using a series of guided writing prompts, crafting their own imaginative responses. These prompts allow students to compose texts that experiment with different stylistic features, including narrative voice and point of view. Devices will be provided to each ...

  29. Preschool Classroom Age Composition, the Physical Literacy Environment

    In addition, classrooms with a high-quality physical literacy environment provide designated areas with writing materials that promote and model writing (e.g., newspapers, maps; Guo et al., 2012; Neuman & Roskos, 1990), as well as writing displays around the room showing teacher- and child-directed writing and print products used to guide daily ...

  30. The race to deploy generative AI and raise skills

    These skills remain the largest share of workforce skills, representing about 30 percent of total hours worked in 2022. Growth in demand for these skills between 2022 and 2030 could come from the build-out of infrastructure and higher investment in low-emissions sectors, while declines would be in line with continued automation in production work.