Best Organic Chemistry Programs

Ranked in 2023, part of Best Science Schools

Organic chemistry involves carbon molecules and their

Organic chemistry involves carbon molecules and their structure, properties and behavior. Organic chemists work in research and development, teaching and industry positions. These are the best science schools for organic chemistry. Read the methodology »

  • Clear Filters

PhD Program

phd organic chemistry

Professor Wender discusses chemistry with his graduate students.

Doctoral study in chemistry at Stanford University prepares students for research and teaching careers with diverse emphases in basic, life, medical, physical, energy, materials, and environmental sciences.

The Department of Chemistry offers opportunities for graduate study spanning contemporary subfields, including theoretical, organic, inorganic, physical, biophysical and biomedical chemistry and more. Much of the research defies easy classification along traditional divisions; cross-disciplinary collaborations with Stanford's many vibrant research departments and institutes is among factors distinguishing this world-class graduate program.

The Department of Chemistry is committed to providing academic advising in support of graduate student scholarly and professional development.  This advising relationship entails collaborative and sustained engagement with mutual respect by both the adviser and advisee.

  • The adviser is expected to meet at least monthly with the graduate student to discuss on-going research.
  • There should be a yearly independent development plan (IDP) meeting between the graduate student and adviser. Topics include research progress, expectations for completion of PhD, areas for both the student and adviser to improve in their joint research effort.
  • A research adviser should provide timely feedback on manuscripts and thesis chapters.
  • Graduate students are active contributors to the advising relationship, proactively seeking academic and professional guidance and taking responsibility for informing themselves of policies and degree requirements for their graduate program.
  • If there is a significant issue concerning the graduate student’s progress in research, the adviser must communicate this to the student and to the Graduate Studies Committee in writing.  This feedback should include the issues, what needs to be done to overcome these issues and by when.

Academic advising by Stanford faculty is a critical component of all graduate students' education and additional resources can be found in the  Policies and Best Practices for Advising Relationships at Stanford  and the  Guidelines for Faculty-Student Advising at Stanford .

Learn more about the program through the links below, and by exploring the research interests of the  Chemistry Faculty  and  Courtesy Faculty .

PhD in Chemistry

The PhD in chemistry is primarily a research degree. It is awarded to students who have displayed competence in planning and conducting original research in the field of chemistry, demonstrated a broad familiarity with the science of chemistry, understanding in the application of the scientific method, and gained a thorough knowledge of their field of specialization.

Students build a solid foundation in all four core areas of chemistry (analytical, inorganic, organic, and physical), and a thorough knowledge of their chosen field of specialization. In the first part of the PhD program, students take at least one formal classroom course in each the core areas of chemistry as outlined in the course requirements below. The courses must be completed successfully (B- or better) by the end of the third semester.

Since original research is the primary requirement for the PhD degree, a student selects a research supervisor and begins research before the end the first year. The student and research supervisor then select two faculty members to serve as the student's Doctoral Research Committee. The Committee, in conjunction with the student's research adviser, take over the advisory function from the graduate committee and guides the student's work to promote development as an independent investigator.

Thus, in addition to research each student must complete the following requirements:

  • Service as a teaching assistant
  • Regular progress updates with a faculty Research Committee
  • A departmental seminar
  • Defense of an original research proposal.
  • Completion of a dissertation reporting significant work of publishable quality

Course Requirements

At least one of the following analytical chemistry courses:

  • Chem 141: Instrumental Analysis
  • Chem 142: Advanced Analytical Methods
  • Chem 144: Spectroscopic Methods of Analysis
  • Chem 145: Separation Science
  • Chem 146: Electroanalytical Chemistry

At least one of the following inorganic chemistry courses: 

  • Chem 161: Advanced Inorganic Chemistry
  • Chem 162: Chemistry of Transition Elements
  • Chem 164: Bioinorganic Chemistry
  • Chem 165: Physical Methods In Inorganic Chemistry

At least one of the following organic chemistry courses:

  • Chem 150: Intermediate Organic Chemistry
  • Chem 151: Physical Organic Chemistry
  • Chem 152: Advanced Organic Synthesis

At least one of the following physical chemistry courses: 

  • Chem 131: Statistical Thermodynamics
  • Chem 132: Chemical Kinetics and Dynamics
  • Chem 133: Quantum Mechanics
  • Chem 134: Biophysical Chemistry
  • Chem 136: Spectroscopy and Molecular Structure
  • Chem 138: Atomic Scale Structure and Properties of Surfaces  
  • Two additional classroom courses, exclusive of research, must be completed satisfactorily by the end of the fourth semester

Chemistry, PhD

Zanvyl krieger school of arts and sciences.

Johns Hopkins University was the first American institution to emphasize graduate education and to establish a PhD program in chemistry. Founding Chair Ira Remsen initiated a tradition of excellence in research and education that has continued until this day. The Hopkins graduate program is designed for students who desire a PhD in chemistry while advancing scientific knowledge for humankind.

The graduate program provides students with the background and technical expertise required to be leaders in their field and to pursue independent research.

Graduate students’ advancement is marked by entrance exams, coursework, teaching, seminars, oral examinations, and an individual research project that culminates in a thesis dissertation. The thesis research project represents an opportunity for graduate students to make a mark on the world. Working in conjunction with a faculty member or team, individually tailored thesis projects enable students to think independently about cutting-edge research areas that are of critical importance. Thesis research is the most important step toward becoming a PhD scientist, and our program provides an outstanding base with a proven track record of success.

Graduate students make up the heart of the Chemistry Department, and the department strives to support students’ individual needs. Each student is carefully advised and classes are traditionally quite small. Multidisciplinary research and course offerings that increase scientific breadth and innovation are hallmarks of the program.  In addition to academic and technical development, our department also offers several outlets for professional and social development.

Admission Requirements

Application materials include:

  • Academic transcripts
  • Three letters of recommendation
  • Statement of Purpose
  • The GRE General Test is required.  However, this requirement can be waived for individuals for whom personal circumstances make it difficult or impossible to access the GRE General Test at this present time.  If so, please let the Academic Affairs Administrator (information below) be aware of these circumstances, and the application will be given full consideration.
  • The GRE Chemistry Subject is Test is recommended, but not required.
  • The application fee is $75. However, fee waivers may be requested for applicants that have documentation showing they are a part of SACNAS, MARCC, oSTEM and many other organizations. To access the full list to see if you qualify, go to the  Krieger Graduate Admission and Enrollment  page.

Assistance with the application process is available. Candidates with questions about the application process, or requests for a GRE General Test waiver (or on other matters related to the application) should contact the Admissions Committee’s Academic Affairs Administrator ( [email protected] ).

There are no fixed requirements for admission. Undergraduate majors in chemistry, biology, earth sciences, mathematics, or physics may apply as well as all well-qualified individuals who will have received a BA degree before matriculation. A select number of applicants will be invited to visit campus to tour our facilities and interact with our faculty members and their lab members over a weekend in March.

For further information about graduate study in chemistry visit the Chemistry Department website . 

Program Requirements

Normally, the minimum course requirement for both the M.A. and the Ph.D. degrees is six one-semester graduate courses in chemistry and related sciences. Exceptionally well-prepared students may ask for a reduction of these requirements.

Requirements for the Ph.D. degree include a research dissertation worthy of publication, and a knowledge of chemistry and related material as demonstrated in an oral examination. Each student must teach for at least one year.

Below is a list of the core Chemistry courses for graduate level students.

Request Info

  • Admissions Overview
  • Visit UMass Boston
  • Financial Aid
  • First-Year Students
  • Transfer Students
  • Graduate Students
  • International Students
  • Academics Overview
  • Majors & Programs
  • Online Learning
  • Colleges & Schools
  • Academic Calendar
  • Healey Library
  • Student Equity, Access & Success
  • Global Programs
  • Study Abroad
  • Fellowships
  • Campus Life Overview
  • Student Groups & Activities
  • Housing & Dining
  • Health & Wellness
  • Diversity & Inclusion
  • Safety & Security
  • Orientation & New Students
  • Research Overview
  • Community-Driven Research
  • Recognizing Excellence
  • Student Research
  • Centers & Institutes
  • Core Facilities
  • Research & Sponsored Programs
  • About Overview
  • Leadership & Administration
  • Mission & Vision
  • Facts & Figures
  • Accreditation & Rankings
  • History of UMass Boston
  • Student Consumer Information
  • Athletics Overview
  • Recreation at UMass Boston
  • Current Students
  • Parents & Families
  • Faculty & Staff

UMass Boston

phd organic chemistry

  • Chemistry PhD

Pursue the highest level of academic achievement in chemistry and become an accomplished scientist.

UMass Boston's Chemistry Department offers a comprehensive Doctor of Philosophy degree, dedicated to cultivating creative and conscientious scientists. The department offers educational opportunities in six doctoral tracks: Biological Chemistry, Chemistry Education Research, Green Chemistry, Inorganic Chemistry, Organic Chemistry, and Physical/Analytical Chemistry, with a special emphasis on interdisciplinary research. Students immerse themselves in research labs early in the program and tailor their academic plan in accordance with their research interests.

Students are required to complete 60 credits of coursework, consisting of two core courses, three elective courses, a graduate seminar course and a dissertation research course. The set of core courses is dictated by the student’s track. In addition, the department’s emphasis on Green Chemistry permeates the curricula of all of its doctoral tracks. Our PhD program culminates in a public defense of the student’s research and the publication of the dissertation.

The specialty of the Department is in the field of Green Chemistry, and we are proud to be the first school in the country to offer a doctoral degree via the PhD in Chemistry/Green Chemistry Track. It focuses specifically on preparing chemistry doctoral students to direct, design, and implement chemical research using strategies that reduce or eliminate the impact on human health or the environment. It provides experiences, tools, and skills needed for conducting research in a more environmentally sustainable fashion. The strength of the green chemistry curriculum lies in its overlapping interdisciplinary themes of research. Our faculty is committed to research designed to benefit society, and this emphasis is reflected in our course selections at all levels of education.

Start Your Application

Chemistry PhD (Biological Track)

Students in the Biological Chemistry PhD track are required to take one core course, two core biological chemistry track courses, three elective courses, and at least six credits of Graduate Seminar and twenty credits of dissertation research. Of the three elective courses, one must be in the Chemistry Department, whereas up to two can be from other departments upon approval from the student's dissertation committee.

View the Curriculum

Chemistry PhD (Chemistry Education Research Track)

Students in the Chemistry Education PhD track are required to take one core course, two core chemistry education track courses, three elective courses, and at least six credits of Graduate Seminar and twenty credits of dissertation research. Of the three elective courses, one must be in the Chemistry Department, whereas up to two can be from other departments upon approval from the student's dissertation committee.

Chemistry PhD (Green Track)

The Green Chemistry Track in the Chemistry PhD Program is the first such program in the world. Students obtaining a degree from this program will be prepared for conventional chemistry jobs in industry, government, and academia. In addition to traditional training in the chemical sciences, required and elective courses in the Biology Department and School for the Environment provide graduates with the tools and experience to assess human impact on health and the environment.

Green chemistry involves an ecologically sustainable view of chemical research, development, and manufacture. Toxicological understanding and environmental fate are necessary components to understanding the entire "molecular life cycle" of any commercial endeavor.

Typically, universities and academic departments lack the appropriate personnel and facilities to pursue a program of this kind. The unique complement of Chemistry, the School for the Environment, and Biology Department faculty has allowed the University of Massachusetts Boston to create such a program.

Chemistry PhD (Inorganic Track)

Students in the Inorganic Chemistry PhD track are required to take one core course, two core inorganic chemistry track courses, three elective courses, and at least six credits of Graduate Seminar and twenty credits of dissertation research. Of the three elective courses, one must be in the Chemistry Department, whereas up to two can be from other departments upon approval from the student's dissertation committee.

Chemistry PhD (Organic Track)

Students in the Organic Chemistry PhD track are required to take one core course, two core organic chemistry track courses, three elective courses, and at least six credits of Graduate Seminar and twenty credits of dissertation research. Of the three elective courses, one must be in the Chemistry Department, whereas up to two can be from other departments upon approval from the student's dissertation committee.

Chemistry PhD (Physical/Analytical Track)

Students in the Physical/Analytical Chemistry PhD track are required to take one core course, two core physical/analytical chemistry track courses, three elective courses, and at least six credits of Graduate Seminar and twenty credits of dissertation research. Of the three elective courses, one must be in the Chemistry Department, whereas up to two can be from other departments upon approval from the student's dissertation committee.

Plan Your Education

How to apply.

Applicants must meet general graduate admission requirements in addition to the following program-specific requirements:

  • Test Scores: GRE recommended
  • Two Letters of Recommendation
  • Statement of Purpose

Deadlines & Cost

Deadlines: January 15 (priority deadline) or June 1 (final deadline, if space available) for fall, October 1 (priority deadline) or November 1 (final deadline, if space available) for spring

Application Fee: The nonrefundable application fee is $75. UMass Boston alumni and current students that plan to complete degree requirements prior to graduate enrollment can submit the application without paying the application fee.

Program Cost Information: Bursar's website

Curriculum - Biological Track

Coursework  (complete 60 credits.), core course in chemistry phd for all tracks (choose one.).

CHEM 631 – Chemical Toxicology CHEM 671 – Introduction to Green Chemistry

CORE COURSES IN BIOLOGICAL CHEMISTRY TRACK (Choose two from list.)

CHEM 658 – Medicinal Chemistry CHEM 680 – Physical Biochemistry CHEM 681 – Medical Biochemistry

ELECTIVE COURSES  (Choose three from list.)

CHEM 601 – Thermodynamics and Kinetics CHEM 602 – Quantum Mechanics CHEM 611 – Organometallic Catalysis CHEM 612 – Physical Inorganic Chemistry CHEM 621 – Synthetic Organic Chemistry CHEM 622 – Physical Organic Chemistry CHEM 631 – Chemical Toxicology CHEM 641 – Chemistry and Biochemistry Education Research CHEM 651 – Spectroscopic Identification of Organic Compounds CHEM 654 – Biological Chemistry CHEM 658 – Medicinal Chemistry CHEM 661 – Analytical Instrumentation CHEM 662 – Applied Chemometrics CHEM 666 – Electrochemistry CHEM 671 – Introduction to Green Chemistry CHEM 680 – Physical Biochemistry CHEM 681 – Medical Biochemistry CHEM 687 – Topics in Chemistry CHEM 688 – Topics in Physical Chemistry CHEM 689 – Topics in Organic Chemistry CHEM 690 – Topics in Inorganic Chemistry CHEM 696 – Independent Study CHEM 697 – Special Topics in Chemistry

EXTRA-DEPARTMENTAL ELECTIVES

Students may choose electives from external departments if they are relevant to their course of study and research. Students choose courses with the permission of the advisor and Graduate Program Director.

Biology Department

BIOL 614 – Advanced Cell Chemistry BIOL 678 – Protein Chemistry and Enzymology BIOL 679 – Protein Chemistry and Enzymology Lecture BIOL 685 – Biomedical Tracers

Physics Department

PHYSIC 601 – Electronic Instrumentation II: Digital PHYSIC 612 – Electromagnetic Theory PHYSIC 632 – Advanced Laser Optics (with lab) PHYSIC 609 – Physics of Medical Imaging PHYSIC 615 – Solid State Physics PHYSIC 621 – Physics of Semiconductor Materials

School for the Environment

EEOS 611 – Applied Statistics EEOS 640 – The Chemistry of Natural Waters EEOS 710 – Environmental Biogeochemistry EEOS 715 – Isotope Geochemistry

SEMINAR COURSES (Minimum of 6 credits)

CHEM 691 – Seminar I (fall) CHEM 692 – Seminar II (spring)

DISSERTATION RESEARCH (Complete 20 credits.)

CHEM 899 – Dissertation Research

Curriculum - Chemistry Education Research Track

Coursework (complete 60 credits.), core course in chemistry phd for all tracks (choose one.), core courses in chemistry education research track (three courses.).

CHEM 641 – Chemistry and Biochemistry Education Research

At least two courses selected from the following three options: * Quantitative Methods: EEOS 611 (Applied Statistics) or BIOL 607 (Computational Data Analysis for Biology) * Qualitative Methods: HIGHED 752 (Research Methods in Higher Education: Qualitative Analysis) or PSYCLN 775 (Qualitative Methods in Clinical Psychology) * Cognition: PSYDBS 762 (Knowledge Acquisition) or PSYDBS 620 (Cognitive Neuroscience)

ELECTIVE COURSES (Choose two from list.)

CHEM 601 – Thermodynamics and Kinetics CHEM 602 – Quantum Mechanics CHEM 611 – Organometallic Catalysis CHEM 612 – Physical Inorganic Chemistry CHEM 621 – Synthetic Organic Chemistry CHEM 622 – Physical Organic Chemistry CHEM 631 – Chemical Toxicology CHEM 641 – Chemistry and Biochemistry Education Research CHEM 651 – Spectroscopic Identification of Organic Compounds CHEM 654 – Biological Chemistry CHEM 658 – Medicinal Chemistry CHEM 661 – Analytical Instrumentation CHEM 662 – Applied Chemometrics CHEM 666 – Electrochemistry CHEM 671 – Introduction to Green Chemistry CHEM 680 – Physical Biochemistry CHEM 681 – Medical Biochemistry CHEM 687 – Topics in Chemistry CHEM 688 – Topics in Physical Chemistry CHEM 689 – Topics in Organic Chemistry CHEM 690 – Topics in Inorganic Chemistry CHEM 696 – Independent Study CHEM 697 – Special Topics in Chemistry

Education Departments

EDCG 606 – Sociocultural Foundations of Education HIGHED 612 – Impact of College on Students HIGHED 620 – Teaching, Learning and Curriculum in Urban Contexts HIGHED 636 – Sociological Perspectives on Higher Education EDCG 663 – Assessment in Teaching EDCG 665 – Secondary Science Teaching Methods

ENVSCI 611 – Applied Statistics ENVSCI 635 – Environmental Toxicology ENVSCI 640 – The Chemistry of Natural Waters ENVSCI 710 – Environmental Biogeochemistry ENVSCI 715 – Isotope Geochemistry

SEMINAR COURSES (Enroll in seminar every semester.)

Curriculum - green track.

Students in the Green Chemistry PhD track are required to take two core courses, four elective courses, and at least six credits of Graduate Seminar and twenty credits of dissertation research. Of the four elective courses, at least two must be in the Chemistry Department, whereas up to the two remaining courses can be from other departments upon approval from the student's dissertation committee.

CORE COURSES (Both core courses are required.)

Elective courses (choose four from list.).

Students may choose electives from external departments if they are relevant to their course of study and research. Students choose courses with the permission of the advisor and graduate program director.

SEMINAR COURSES (Minimum of 6 credits.)

Curriculum - inorganic track.

Students in the Inorganic Chemistry PhD track are required to take one core course, two core inorganic chemistry track courses, three elective courses, and at least six credits of Graduate Seminar and twenty credits of dissertation research. Of the three elective courses, one must be in the Chemistry Department, whereas up to two can be from other departments upon approval from the student's dissertation committee. For all courses see the university's Course Listings .

CORE COURSES IN THE INORGANIC CHEMISTRY TRACK (Choose two from list.)

CHEM 611 – Organometallic Catalysis CHEM 612 – Physical Inorganic Chemistry CHEM 690 – Topics in Inorganic Chemistry

ELECTIVE COURSES (Choose three from list.)

Curriculum - organic track, core courses in organic chemistry track (choose two from list.).

CHEM 621 – Synthetic Organic Chemistry CHEM 622 – Physical Organic Chemistry CHEM 658 – Medicinal Chemistry CHEM 689 – Topics in Organic Chemistry

Curriculum - Physical/Analytical Track

Core courses in physical/analytical track (choose two from list.).

CHEM 601 – Thermodynamics and Kinetics CHEM 602 – Quantum Mechanics CHEM 661 – Analytical Instrumentation CHEM 688 – Topics in Physical Chemistry

Graduation Criteria

Complete a minimum of 60 credits from at least 15 courses including one core course, five track courses, six graduate seminars, and a minimum of 20 credits in dissertation courses.

Students must pass a literature seminar in the first year of study.

Track: Students must select a track from green chemistry, biological chemistry, chemistry education research, organic chemistry, inorganic chemistry, or physical/analytical chemistry. Doctoral candidacy: Pass four written qualifying exams (at least two of which are in the track), and an oral qualifying exam. Dissertation: Candidates must complete and defend a dissertation based on original research.

Statute of limitations: Seven years.

Plan of Study

Graduate Program Director Wei Zhang (Green Chemistry) wei2.zhang [at] umb.edu (617) 287-6147

Graduate Program Director Neil Reilly (Physical/Analytical Chemistry) neil.reilly [at] umb.edu (617) 287-4065

Graduate Program Assistant Rita Lam graduate.chemistry [at] umb.edu (617) 287-6190

Students hold test tubes.

Learn more about UMass Boston's Chemistry department, our research, and our faculty.

phd organic chemistry

College of Science & Mathematics

Learn more about the faculty, research, and programs that make up our College of Science and Mathematics.

  • College of Arts & Sciences
  • Graduate Division
  • College of Liberal and Professional Studies

Home

  • PhD Program

Chemistry PhD Program

The University of Pennsylvania is an internationally renowned research institution that attracts the best students from the United States and around the globe. The Graduate Program is designed for students who wish to earn a Ph.D. in Chemistry while undertaking cutting edge research. The program provides students with the necessary theoretical background and hands-on training to become independent and highly successful scientists.  Graduate students achieve mastery of advanced chemistry topics through courses in different subdisciplines. Broad exposure to current research also occurs via four weekly departmental seminar programs and many interdisciplinary, university-wide lecture series.

Currently, faculty, students, and postdoctoral associates in Chemistry work in the fields of bioinorganic chemistry, bioorganic chemistry, chemical biology, biophysical chemistry, bioinformatics, materials science, laser chemistry, health related chemistry, structural and dynamical studies of biological systems, X-ray scattering/diffraction, NMR spectroscopy, applications of computing and computer graphics, as well as investigations of chemical communication and hormone-receptor interactions. Many research groups combine different techniques to explore frontier areas, such as nanomaterials applied to biology, photoactive biomolecules, and single-molecule imaging. Novel synthetic procedures are under constant development for targets ranging from super-emissive nanoparticles to highly specialized drug molecules and giant dendrimers, which are being explored, for example, as drug-delivery systems. The Research Facilities in the Department of Chemistry provide a strong technology base to enable the highest level of innovation. Graduate students are a driving, integral force at Penn Chemistry.

Department of Chemistry

Professor Rebekka Klausen in discussion with grad student at bench in her lab.

  • PhD Requirements
  • Pathways to Your Career
  • Professional Societies
  • Student Groups
  • Chemistry-Biology Interface Program

Johns Hopkins University was the first American institution to emphasize graduate education and to establish a PhD program in chemistry. Founding Chair Ira Remsen initiated a tradition of excellence in research and education that has continued until this day. The Hopkins graduate program is designed for students who desire a PhD in chemistry while advancing scientific knowledge for humankind.

The graduate program provides students with the background and technical expertise required to be leaders in their field and to pursue independent research.

Graduate students’ advancement is marked by entrance exams, coursework, teaching, seminars, oral examinations, and an individual research project that culminates in a thesis dissertation. The thesis research project represents an opportunity for graduate students to make a mark on the world. Working in conjunction with a faculty member or team, individually tailored thesis projects enable students to think independently about cutting-edge research areas that are of critical importance. Thesis research is the most important step toward becoming a PhD scientist, and our program provides an outstanding base with a proven track record of success.

Graduate students make up the heart of the Chemistry Department, and the department strives to support students’ individual needs. Each student is carefully advised and classes are traditionally quite small. Multidisciplinary research and course offerings that increase scientific breadth and innovation are hallmarks of the program.  In addition to academic and technical development, our department also offers several outlets for professional and social development.

For more information, contact the Director of Graduate Studies. Dr. Art Bragg Office: Remsen 221 410-516-5616 [email protected]

  • Skip to Content
  • Berkeley Academic Guide Home
  • Institution Home

Berkeley Berkeley Academic Guide: Academic Guide 2023-24

University of California, Berkeley

About the Program

The Chemistry PhD program is designed towards developing the ability to do creative scientific research. Accordingly, the single most important facet of the curriculum for an individual is his or her own research project. In keeping with the goal of fostering an atmosphere of scholarly, independent study, formal course requirements are minimal and vary among disciplines. Advisers tailor course requirements to best prepare the student for the chosen research field.

The doctoral program includes the following concentrations, each of which has specific degree requirements:

  • Physical Chemistry: In general, the Physical Chemistry Graduate Program encompasses experimental physical, analytical, nuclear, biophysical, and theoretical chemistry.
  • Synthetic Chemistry: The Synthetic Chemistry Graduate Program includes emphases in preparation of organic or inorganic compounds, development of methods for their synthesis, and their characterization and use.
  • Chemical Biology: The Chemical Biology Graduate Program covers research areas at the interface of chemistry and biology, ranging from the synthesis of bioactive materials to the characterization of living systems.

Visit Department Website

Admission to the University

Applying for graduate admission.

Thank you for considering UC Berkeley for graduate study! UC Berkeley offers more than 120 graduate programs representing the breadth and depth of interdisciplinary scholarship. A complete list of graduate academic departments, degrees offered, and application deadlines can be found on the Graduate Division website .

Prospective students must submit an online application to be considered for admission, in addition to any supplemental materials specific to the program for which they are applying. The online application can be found on the Graduate Division website .

Admission Requirements

The minimum graduate admission requirements are:

A bachelor’s degree or recognized equivalent from an accredited institution;

A satisfactory scholastic average, usually a minimum grade-point average (GPA) of 3.0 (B) on a 4.0 scale; and

Enough undergraduate training to do graduate work in your chosen field.

For a list of requirements to complete your graduate application, please see the Graduate Division’s Admissions Requirements page . It is also important to check with the program or department of interest, as they may have additional requirements specific to their program of study and degree. Department contact information can be found here .

Where to apply?

Visit the Berkeley Graduate Division application page .

Doctoral Degree Requirements

The requirements for a phd degree in chemistry.

Coursework: There is no formal coursework requirement, however, the equivalent of four semester-long courses is normally taken. Courses you will take will depend on your background and research interests.

Graduate student instructor service: A total of two semesters of graduate student instructor service is required with a third semester as optional. Graduate Student Instruction is usually fulfilled in the first semester and one semester in each of the next two years.

First-year report (synthetic and chemical biology division): An original, journal-quality research proposal no more than 10 pages read by two chemistry faculty.

Second-year seminar (all divisions): A 25-minute presentation to the department on your research progress.

Qualifying examination (all divisions): An oral examination with a committee of three chemistry faculty and one outside department faculty member on your research and defense of an original research proposal (synthetic) or critical analysis of a recent outside paper (non-synthetic).

Dissertation (all divisions): Submission of your dissertation approved by a committee of your research adviser, a second chemistry faculty member, and one outside department faculty member. No dissertation defense.

CHEM 200 Chemistry Fundamentals 1 Unit

Terms offered: Fall 2024, Fall 2023, Fall 2022 Review of bonding, structure, stereochemistry, conformation, thermodynamics and kinetics, and arrow-pushing formalisms. Chemistry Fundamentals: Read More [+]

Rules & Requirements

Prerequisites: Graduate standing or consent of instructor

Hours & Format

Fall and/or spring: 6 weeks - 3 hours of lecture and 0 hours of voluntary per week

Additional Format: Three hours of lecture and zero hour of voluntary per week for 6 weeks.

Additional Details

Subject/Course Level: Chemistry/Graduate

Grading: Letter grade.

Chemistry Fundamentals: Read Less [-]

CHEM 201 Fundamentals of Inorganic Chemistry 1 Unit

Terms offered: Fall 2024, Fall 2023, Fall 2022 Review of bonding, structure, MO theory, thermodynamics, and kinetics. Fundamentals of Inorganic Chemistry: Read More [+]

Fall and/or spring: 6 weeks - 3 hours of lecture per week

Additional Format: Three hours of lecture per week for five weeks.

Fundamentals of Inorganic Chemistry: Read Less [-]

CHEM 208 Structure Analysis by X-Ray Diffraction 4 Units

Terms offered: Spring 2024, Spring 2023, Spring 2022 The theory and practice of modern, single-crystal X-ray diffraction. Groups of four students determine the crystal and molecular structure of newly synthesized materials from the College of Chemistry. The laboratory work involves the mounting of crystals and initial evaluation by X-ray diffraction film techniques, the collection of intensity data by automated diffractometer procedures, and structure analysis and refinement. Structure Analysis by X-Ray Diffraction: Read More [+]

Prerequisites: Consent of instructor

Fall and/or spring: 15 weeks - 2 hours of lecture and 8 hours of laboratory per week

Additional Format: Two hours of Lecture and Eight hours of Laboratory per week for 15 weeks.

Structure Analysis by X-Ray Diffraction: Read Less [-]

CHEM 214 Heterocyclic Chemistry 3 Units

Terms offered: Spring 2024, Spring 2022, Spring 2020 Advanced topics in organic chemistry with a focus on the reactivity and synthesis of aromatic heterocycles. Classic and modern methods for the synthesis of indoles, pyridines, furans, pyrroles, and quinolines will be covered, as well as complex, multi-heteroatom ring systems. Applications to medicinal and bioorganic chemistry will be included where appropriate. Heterocyclic Chemistry: Read More [+]

Prerequisites: Graduate student standing or consent of instructor. A year of organic chemistry with a grade of B- or better is required for undergraduate enrollment

Fall and/or spring: 15 weeks - 3 hours of lecture per week

Additional Format: Three hours of lecture per week.

Instructor: Maimone

Heterocyclic Chemistry: Read Less [-]

CHEM 220A Thermodynamics and Statistical Mechanics 3 Units

Terms offered: Fall 2024, Fall 2023, Fall 2022 A rigorous presentation of classical thermodynamics followed by an introduction to statistical mechanics with the application to real systems. Thermodynamics and Statistical Mechanics: Read More [+]

Prerequisites: 120B

Fall and/or spring: 15 weeks - 3 hours of lecture and 0 hours of voluntary per week

Additional Format: Three hours of lecture and zero hour of voluntary per week.

Thermodynamics and Statistical Mechanics: Read Less [-]

CHEM 220B Statistical Mechanics 3 Units

Terms offered: Spring 2023, Spring 2022, Spring 2021 Principles of statistical mechanics and applications to complex systems. Statistical Mechanics: Read More [+]

Prerequisites: 220A

Additional Format: Three hours of Lecture per week for 15 weeks.

Statistical Mechanics: Read Less [-]

CHEM 221A Advanced Quantum Mechanics 3 Units

Terms offered: Fall 2024, Fall 2023, Fall 2022 Basic principles/postulates of quantum mechanics, Hilbert space and representation theory, quantum theory of measurements, advanced descriptions of harmonic oscillator and theory of angular momentum, time independent and time dependent approximation methods, applications to quantum mechanics of atoms and molecules. Advanced Quantum Mechanics: Read More [+]

Prerequisites: Chem120A or Physics137A, Chem120B and Chem122, or equivalents

Fall and/or spring: 15 weeks - 3-3 hours of lecture and 0-2 hours of voluntary per week

Additional Format: Three hours of lecture and zero to two hours of voluntary per week.

Advanced Quantum Mechanics: Read Less [-]

CHEM 221B Advanced Quantum Mechanics 3 Units

Terms offered: Spring 2024, Spring 2023, Spring 2022 Time dependence, interaction of matter with radiation, scattering theory. Molecular and many-body quantum mechanics. Advanced Quantum Mechanics: Read More [+]

Prerequisites: 221A

CHEM 222 Spectroscopy 3 Units

Terms offered: Fall 2017, Spring 2017, Spring 2015 This course presents a survey of experimental and theoretical methods of spectroscopy, and group theory as used in modern chemical research. The course topics include experimental methods, classical and quantum descriptions of the interaction of radiation and matter. Qualitative and quantitative aspects of the subject are illustrated with examples including application of linear and nonlinear spectroscopies to the study of molecular structure and dynamics and to quantitative analysis. This course is offered jointly with 122. Spectroscopy: Read More [+]

Spectroscopy: Read Less [-]

CHEM 223A Chemical Kinetics 3 Units

Terms offered: Spring 2024, Spring 2022, Spring 2021 Deduction of mechanisms of complex reactions. Collision and transition state theory. Potential energy surfaces. Unimolecular reaction rate theory. Molecular beam scattering studies. Chemical Kinetics: Read More [+]

Prerequisites: 220A (may be taken concurrently)

Chemical Kinetics: Read Less [-]

CHEM C230 Protein Chemistry, Enzymology, and Bio-organic Chemistry 2 Units

Terms offered: Spring 2020, Spring 2015, Spring 2014, Spring 2013 The topics covered will be chosen from the following: protein structure; protein-protein interactions; enzyme kinetics and mechanism; enzyme design. Intended for graduate students in chemistry, biochemistry, and molecular and cell biology. Protein Chemistry, Enzymology, and Bio-organic Chemistry: Read More [+]

Fall and/or spring: 10 weeks - 3 hours of lecture per week 15 weeks - 2 hours of lecture per week

Additional Format: At the instructor's discretion, this course may be taught over a 10 week period with three hours of lecture per week or over a 15 week period with two hours of lecture per week.

Also listed as: MCELLBI C214

Protein Chemistry, Enzymology, and Bio-organic Chemistry: Read Less [-]

CHEM C234 Green Chemistry: An Interdisciplinary Approach to Sustainability 3 Units

Terms offered: Spring 2016, Spring 2015, Spring 2014, Spring 2013 Meeting the challenge of global sustainability will require interdisciplinary approaches to research and education, as well as the integration of this new knowledge into society, policymaking, and business. Green Chemistry is an intellectual framework created to meet these challenges and guide technological development. It encourages the design and production of safer and more sustainable chemicals and products. Green Chemistry: An Interdisciplinary Approach to Sustainability: Read More [+]

Prerequisites: One year of chemistry, including a semester of organic chemistry, or consent of instructors based on previous experience

Summer: 6 weeks - 20 hours of lecture per week

Additional Format: Three hours of Lecture per week for 15 weeks. Twenty hours of Lecture per week for 6 weeks.

Instructors: Arnold, Bergman, Guth, Iles, Kokai, Mulvihill, Schwarzman, Wilson

Also listed as: ESPM C234/PB HLTH C234

Green Chemistry: An Interdisciplinary Approach to Sustainability: Read Less [-]

CHEM C236 Energy Solutions: Carbon Capture and Sequestration 3 Units

Terms offered: Fall 2018, Spring 2017, Spring 2015, Spring 2014, Spring 2013 After a brief overview of the chemistry of carbon dioxide in the land, ocean, and atmosphere, the course will survey the capture and sequestration of CO2 from anthropogenic sources. Emphasis will be placed on the integration of materials synthesis and unit operation design, including the chemistry and engineering aspects of sequestration. The course primarily addresses scientific and engineering challenges and aims to engage students in state-of-the-art research in global energy challenges. Energy Solutions: Carbon Capture and Sequestration: Read More [+]

Prerequisites: Chemistry 4B or 1B, Mathematics 1B, and Physics 7B, or equivalents

Instructors: Bourg, DePaolo, Long, Reimer, Smit

Also listed as: CHM ENG C295Z/EPS C295Z

Energy Solutions: Carbon Capture and Sequestration: Read Less [-]

CHEM C238 The Berkeley Lectures on Energy: Energy from Biomass 3 Units

Terms offered: Fall 2015, Fall 2014, Fall 2013 After an introduction to the different aspects of our global energy consumption, the course will focus on the role of biomass. The course will illustrate how the global scale of energy guides the biomass research. Emphasis will be places on the integration of the biological aspects (crop selection, harvesting, storage, and distribution, and chemical composition of biomass) with the chemical aspects to convert biomass to energy. The course aims to engage students in state-of-art research. The Berkeley Lectures on Energy: Energy from Biomass: Read More [+]

Prerequisites: Biology 1A; Chemistry 1B or 4B, Mathematics 1B

Repeat rules: Course may be repeated for credit under special circumstances: Repeatable when topic changes with consent of instructor.

Instructors: Bell, Blanch, Clark, Smit, C. Somerville

Also listed as: BIO ENG C281/CHM ENG C295A/PLANTBI C224

The Berkeley Lectures on Energy: Energy from Biomass: Read Less [-]

CHEM C242 Machine Learning, Statistical Models, and Optimization for Molecular Problems 4 Units

Terms offered: Spring 2024, Spring 2023 An introduction to mathematical optimization, statistical models, and advances in machine learning for the physical sciences. Machine learning prerequisites are introduced including local and global optimization, various statistical and clustering models, and early meta-heuristic methods such as genetic algorithms and artificial neural networks. Building on this foundation, current machine learning techniques are covered including deep learning artificial neural networks, Convolutional neural networks, Recurrent and long short term memory (LSTM) networks, graph neural networks, decision trees. Machine Learning, Statistical Models, and Optimization for Molecular Problems: Read More [+]

Objectives & Outcomes

Course Objectives: To build on optimization and statistical modeling to the field of machine learning techniques To introduce the basics of optimization and statistical modeling techniques relevant to chemistry students To utilize these concepts on problems relevant to the chemical sciences.

Student Learning Outcomes: Students will be able to understand the landscape and connections between numerical optimization, stand-alone statistical models, and machine learning techniques, and its relevance for chemical problems.

Prerequisites: Math 53 and Math 54; Chem 120A or 120B or BioE 103; or consent of intructor

Credit Restrictions: Students will receive no credit for BIO ENG C242 after completing BIO ENG 242. A deficient grade in BIO ENG C242 may be removed by taking BIO ENG 242.

Fall and/or spring: 15 weeks - 3 hours of lecture and 1 hour of discussion per week

Additional Format: Three hours of lecture and one hour of discussion per week.

Instructor: Teresa Head-Gordon

Formerly known as: Bioengineering C242/Chemistry C242

Also listed as: BIO ENG C242

Machine Learning, Statistical Models, and Optimization for Molecular Problems: Read Less [-]

CHEM 243 Advanced Nuclear Structure and Reactions 3 Units

Terms offered: Spring 2013, Fall 2009, Fall 2008 Selected topics on nuclear structure and nuclear reactions. Advanced Nuclear Structure and Reactions: Read More [+]

Prerequisites: 143 or equivalent and introductory quantum mechanics

Advanced Nuclear Structure and Reactions: Read Less [-]

CHEM 250A Introduction to Bonding Theory 1 Unit

Terms offered: Fall 2024, Fall 2023, Fall 2022 An introduction to group theory, symmetry, and representations as applied to chemical bonding. Introduction to Bonding Theory: Read More [+]

Prerequisites: 200 or 201 or consent of instructor and background in the use of matrices and linear algebra

Introduction to Bonding Theory: Read Less [-]

CHEM 250B Inorganic Spectroscopy 1 Unit

Terms offered: Spring 2015, Spring 2014, Spring 2013 The theory of vibrational analysis and spectroscopy as applied to inorganic compounds. Inorganic Spectroscopy: Read More [+]

Prerequisites: 250A or consent of instructor

Fall and/or spring: 6 weeks - 3 hours of lecture per week 15 weeks - 0 hours of lecture per week

Inorganic Spectroscopy: Read Less [-]

CHEM 251A Coordination Chemistry I 1 Unit

Terms offered: Fall 2018, Fall 2017, Fall 2016 Structure and bonding, synthesis, and reactions of the d-transition metals and their compounds. Coordination Chemistry I: Read More [+]

Coordination Chemistry I: Read Less [-]

CHEM 251B Coordination Chemistry II 1 Unit

Terms offered: Spring 2019, Spring 2018, Spring 2014 Synthesis, structure analysis, and reactivity patterns in terms of symmetry orbitals. Coordination Chemistry II: Read More [+]

Prerequisites: 251A or consent of instructor

Coordination Chemistry II: Read Less [-]

CHEM 252A Organometallic Chemistry I 1 Unit

Terms offered: Fall 2024, Fall 2022, Fall 2021 An introduction to organometallics, focusing on structure, bonding, and reactivity. Organometallic Chemistry I: Read More [+]

Prerequisites: 200 or 201 or consent of instructor

Organometallic Chemistry I: Read Less [-]

CHEM 252B Organometallic Chemistry II 1 Unit

Terms offered: Fall 2024, Fall 2022, Fall 2021 Applications of organometallic compounds in synthesis with an emphasis on catalysis. Organometallic Chemistry II: Read More [+]

Prerequisites: 252A or consent of instructor

Organometallic Chemistry II: Read Less [-]

CHEM 253A Materials Chemistry I 1 Unit

Terms offered: Spring 2023, Spring 2022, Fall 2019 Introduction to the descriptive crystal chemistry and electronic band structures of extended solids. Materials Chemistry I: Read More [+]

Prerequisites: 200 or 201, and 250A, or consent of instructor

Materials Chemistry I: Read Less [-]

CHEM 253B Materials Chemistry II 1 Unit

Terms offered: Spring 2023, Spring 2022, Fall 2019 General solid state synthesis and characterization techniques as well as a survey of important physical phenomena including optical, electrical, and magnetic properties. Materials Chemistry II: Read More [+]

Prerequisites: 253A or consent of instructor

Materials Chemistry II: Read Less [-]

CHEM 253C Materials Chemistry III 1 Unit

Terms offered: Spring 2023, Spring 2022, Fall 2019 Introduction to surface catalysis, organic solids, and nanoscience. Thermodynamics and kinetics of solid state diffusion and reaction will be covered. Materials Chemistry III: Read More [+]

Fall and/or spring: 5 weeks - 3 hours of lecture per week

Additional Format: Three hours of Lecture per week for 5 weeks.

Instructors: Somorjai, Yang

Materials Chemistry III: Read Less [-]

CHEM 254 Bioinorganic Chemistry 1 Unit

Terms offered: Spring 2015, Spring 2014, Spring 2013 A survey of the roles of metals in biology, taught as a tutorial involving class presentations. Bioinorganic Chemistry: Read More [+]

Bioinorganic Chemistry: Read Less [-]

CHEM 260 Reaction Mechanisms 2 Units

Terms offered: Fall 2024, Fall 2023, Fall 2022 Advanced methods for studying organic reaction mechanisms. Topics include kinetic isotope effects, behavior of reactive intermediates, chain reactions, concerted reactions, molecular orbital theory and aromaticity, solvent and substituent effects, linear free energy relationships, photochemistry. Reaction Mechanisms: Read More [+]

Prerequisites: 200 or consent of instructor

Fall and/or spring: 10 weeks - 3 hours of lecture and 0 hours of voluntary per week

Additional Format: Three hours of lecture and zero hour of voluntary per week for 10 weeks.

Formerly known as: 260A-260B

Reaction Mechanisms: Read Less [-]

CHEM 261A Organic Reactions I 1 Unit

Terms offered: Fall 2024, Fall 2023, Fall 2022 Features of the reactions that comprise the vocabulary of synthetic organic chemistry. Organic Reactions I: Read More [+]

Organic Reactions I: Read Less [-]

CHEM 261B Organic Reaction II 1 Unit

Terms offered: Fall 2024, Fall 2023, Fall 2022 More reactions that are useful to the practice of synthetic organic chemistry. Organic Reaction II: Read More [+]

Prerequisites: 261A or consent of instructor

Organic Reaction II: Read Less [-]

CHEM 261C Organic Reactions III 1 Unit

Terms offered: Fall 2013, Fall 2012, Fall 2011 This course will consider further reactions with an emphasis on pericyclic reactions such as cycloadditions, electrocyclizations, and sigmatropic rearrangements. Organic Reactions III: Read More [+]

Prerequisites: 261B or consent of instructor

Organic Reactions III: Read Less [-]

CHEM 262 Metals in Organic Synthesis 1 Unit

Terms offered: Spring 2024, Spring 2023, Spring 2022 Transition metal-mediated reactions occupy a central role in asymmetric catalysis and the synthesis of complex molecules. This course will describe the general principles of transition metal reactivity, coordination chemistry, and stereoselection. This module will also emphasize useful methods for the analysis of these reactions. Metals in Organic Synthesis: Read More [+]

Metals in Organic Synthesis: Read Less [-]

CHEM 263A Synthetic Design I 1 Unit

Terms offered: Spring 2024, Spring 2023, Spring 2022 This course will provide an exposure to the range of catalytic reactions of organometallic systems, the identity of the catalysts for these reactions, and the scope and limitations of these reactions. Emphasis will be placed on understanding the mechanisms of homogeneous catalytic processes. Students will see the types of molecular fragments generated by catalytic organometallic chemistry and see the synthetic disconnections made possible by these reactions. The scope of transformations will encompass those forming commodity chemicals on large scale, pharmaceuticals on small scale, and both commodity and specialty polymers Synthetic Design I: Read More [+]

Prerequisites: 262 or consent of instructor

Synthetic Design I: Read Less [-]

CHEM 263B Synthetic Design II 1 Unit

Terms offered: Spring 2024, Spring 2023, Spring 2022 This course will provide an exposure to the range of catalytic reactions of organometallic systems, the identity of the catalysts for these reactions, and the scope and limitations of these reactions. Emphasis will be placed on understanding the mechanisms of homogeneous catalytic processes. Students will see the types of molecular fragments generated by catalytic organometallic chemistry and see the synthetic disconnections made possible by these reactions. The scope of transformations will encompass those forming commodity chemicals on large scale, pharmaceuticals on small scale, and both commodity and specialty polymers. Synthetic Design II: Read More [+]

Prerequisites: 263A or consent of instructor

Synthetic Design II: Read Less [-]

CHEM 265 Nuclear Magnetic Resonance Theory and Application 1 Unit

Terms offered: Spring 2024, Spring 2023, Spring 2022 The theory behind practical nuclear magnetic resonance spectroscopy and a survey of its applications to chemical research. Nuclear Magnetic Resonance Theory and Application: Read More [+]

Nuclear Magnetic Resonance Theory and Application: Read Less [-]

CHEM 268 Mass Spectrometry 2 Units

Terms offered: Spring 2023, Spring 2022, Spring 2019 Principles, instrumentation, and application in mass spectrometry, including ionization methods, mass analyzers, spectral interpretation, multidimensional methods (GC/MS, HPLC/MS, MS/MS), with emphasis on small organic molcules and bioanalytical applications (proteins, peptides, nucleic acids, carbohydrates, noncovalent complexes); this will include the opportunity to be trained and checked out on several open-access mass spectrometers. Mass Spectrometry: Read More [+]

Fall and/or spring: 10 weeks - 3 hours of lecture per week

Additional Format: Three hours of Lecture per week for 10 weeks.

Mass Spectrometry: Read Less [-]

CHEM 270A Advanced Biophysical Chemistry I 1 Unit

Terms offered: Spring 2024, Spring 2023, Spring 2022 Underlying principles and applications of methods for biophysical analysis of biological macromolecules. Advanced Biophysical Chemistry I: Read More [+]

Fall and/or spring: 7.5 weeks - 2 hours of lecture per week

Advanced Biophysical Chemistry I: Read Less [-]

CHEM 270B Advanced Biophysical Chemistry II 1 Unit

Terms offered: Spring 2024, Spring 2023, Spring 2022 More applications of methods for biophysical analysis of biological macromolecules. Advanced Biophysical Chemistry II: Read More [+]

Prerequisites: 270A or consent of instructor

Additional Format: Two hours of Lecture per week for 7.5 weeks.

Advanced Biophysical Chemistry II: Read Less [-]

CHEM C271A Chemical Biology I - Structure, Synthesis and Function of Biomolecules 1 Unit

Terms offered: Spring 2024, Spring 2023, Spring 2022 This course will present the structure of proteins, nucleic acids, and oligosaccharides from the perspective of organic chemistry. Modern methods for the synthesis and purification of these molecules will also be presented. Chemical Biology I - Structure, Synthesis and Function of Biomolecules: Read More [+]

Also listed as: MCELLBI C212A

Chemical Biology I - Structure, Synthesis and Function of Biomolecules: Read Less [-]

CHEM C271B Chemical Biology II - Enzyme Reaction Mechanisms 1 Unit

Terms offered: Spring 2024, Spring 2023, Spring 2022 This course will focus on the principles of enzyme catalysis. The course will begin with an introduction of the general concepts of enzyme catalysis which will be followed by detailed examples that will examine the chemistry behind the reactions and the three-dimensional structures that carry out the transformations. Chemical Biology II - Enzyme Reaction Mechanisms: Read More [+]

Also listed as: MCELLBI C212B

Chemical Biology II - Enzyme Reaction Mechanisms: Read Less [-]

CHEM C271C Chemical Biology III - Contemporary Topics in Chemical Biology 1 Unit

Terms offered: Spring 2024, Spring 2023, Spring 2022 This course will build on the principles discussed in Chemical Biology I and II. The focus will consist of case studies where rigorous chemical approaches have been brought to bear on biological questions. Potential subject areas will include signal transduction, photosynthesis, immunology, virology, and cancer. For each topic, the appropriate bioanalytical techniques will be emphasized. Chemical Biology III - Contemporary Topics in Chemical Biology: Read More [+]

Also listed as: MCELLBI C212C

Chemical Biology III - Contemporary Topics in Chemical Biology: Read Less [-]

CHEM 274A Programming Languages for Molecular Sciences: Python and C++ 3 Units

Terms offered: Fall 2024, Fall 2023, Fall 2022 Course provides in-depth coverage of programming concepts and techniques required for scientific computing, data science, and high-performance computing using C++ and Python. Course will compare and contrast the functionalities of the two languages. Topics include classes, overloading, data abstraction, information hiding, encapsulation, file processing, exceptions, and low-level language features. Exercises based on molecular science problems will provide hands-on experience needed to learn these languages. Course serves as a prereq to later MSSE courses: Data Science, Machine Learning Algorithms, Software Engineering for Scientific Computing, Numerical Algorithms Applied to Computational Quantum Chemistry, and Applications Parallel Comp. Programming Languages for Molecular Sciences: Python and C++: Read More [+]

Prerequisites: Prior exposure to basic programming methodology or the consent of the instructor

Fall and/or spring: 15 weeks - 3-3 hours of lecture, 2-2 hours of discussion, and 0-2 hours of laboratory per week

Additional Format: Three hours of lecture and two hours of discussion and zero to two hours of laboratory per week.

Programming Languages for Molecular Sciences: Python and C++: Read Less [-]

CHEM 274B Software Engineering Fundamentals for Molecular Sciences 3 Units

Terms offered: Fall 2024, Fall 2023, Fall 2022 Course will advance students’ understanding of fundamental knowledge and techniques for developing complex software. Students will gain an in-depth view of computer system architecture as well as abstraction techniques as means to manage program complexity. Students will collaboratively develop a software engineering package, gaining experience in all aspects of the software development process. Course serves as a prerequisite to later MSSE courses: Data Science, Machine Learning Algorithms, Software Engineering for Scientific Computing, Numerical Algorithms Applied to Computational Quantum Chemistry, and Applications of Parallel Computers Software Engineering Fundamentals for Molecular Sciences: Read More [+]

Prerequisites: Chem 274A - MSSE’s Introduction to Programming Languages – C++ and Python -

Software Engineering Fundamentals for Molecular Sciences: Read Less [-]

CHEM 275A Introduction to Programming Languages C++ and Python 3 Units

Terms offered: Fall 2021, Fall 2020 This course provides in-depth coverage of programming concepts and techniques required for scientific computing, data science, and high-performance computing using C++ and Python. The course will compare and contrast the functionalities of the two languages. Topics include classes, overloading, data abstraction, information hiding, encapsulation, inheritance, polymorphism, file processing, templates, exceptions, container classes, and low-level language features. Numerous exercises based on molecular science problems will provide the hands-on experience needed to learn these languages Introduction to Programming Languages C++ and Python: Read More [+]

Student Learning Outcomes: Upon successfully completing this course, students will be able to A. Develop the necessary skills to effectively interact with machine learning environments. B. Acquire the skills needed to develop high-performance computing software.

Fall and/or spring: 8 weeks - 5 hours of web-based lecture and 6 hours of web-based discussion per week

Additional Format: Six hours of web-based discussion and five hours of web-based lecture per week for 8 weeks.

Introduction to Programming Languages C++ and Python: Read Less [-]

CHEM 275B Introduction to Software Engineering Best Practices 3 Units

Terms offered: Fall 2021, Fall 2020 This course will advance students’ understanding of the different steps involved in software design. Students will acquire hands-on experience in practical problems such as specifying, designing, building, testing, and delivering reliable software systems for scientific computing. Students will collaboratively develop a software engineering package, thus gaining experience in all aspects of the software development process from the feasibility study to the final delivery of the product. This course is a prerequisite to MSSE courses in Software Engineering for Scientific Computing, Computational Chemistry and Materials Science, and Parallel Computing. Introduction to Software Engineering Best Practices: Read More [+]

Student Learning Outcomes: Upon successfully completing this course, students will have the skills needed to develop high-performance computing software.

Prerequisites: Chem 275 - MSSE’s Introduction to Programming Languages – C++ and Python

Introduction to Software Engineering Best Practices: Read Less [-]

CHEM 277B Machine Learning Algorithms 3 Units

Terms offered: Fall 2024, Spring 2024, Fall 2023 An introduction to mathematical optimization and statistics and "non-algorithmic" computation using machine learning. Machine learning prerequisites are introduced including local and global optimization, various statistical and clustering models, and early meta-heuristic methods such as genetic algorithms and artificial neural networks. Building on this foundation, current machine learning techniques are covered including Deep Learning networks, Convolutional neural networks, Recurrent and long short term memory (LSTM) networks, and support vector machines and Gaussian ridge regression. Various case studies in applying optimization, statistical modeling, and machine learning methods as classification and regression task Machine Learning Algorithms: Read More [+]

Student Learning Outcomes: A. To introduce the basics of optimization and statistical modeling techniques relevant to machine learning B. To build on optimization and statistical modeling to the recent field of machine learning techniques. C. To understand data and algorithms relevant to machine learning

Prerequisites: The students will have had MSSE courses (1) Chem 270 - Intro to Programming, (2) Chem 271 - Software Best Practices, and (3) DS100 courses

Fall and/or spring: 15 weeks - 4 hours of lecture and 2 hours of discussion per week

Summer: 8 weeks - 4.5 hours of lecture and 5.5 hours of discussion per week

Additional Format: Four hours of lecture and two hours of discussion per week. Four and one-half hours of lecture and five and one-half hours of discussion per week for 8 weeks.

Machine Learning Algorithms: Read Less [-]

CHEM 278 Ethical Topics for Professional Software Engineering 1 Unit

Terms offered: Fall 2024, Fall 2023, Fall 2022 This course will expose students to applied ethics in professional ethics, information technology, intellectual property, and corporate ethics that are topic relevant to the MSSE degree. Ethical Topics for Professional Software Engineering: Read More [+]

Prerequisites: Acceptance into the MSSE program

Fall and/or spring: 5 weeks - 1 hour of web-based lecture and 1 hour of web-based discussion per week

Additional Format: One hour of web-based discussion and one hour of web-based lecture per week for five weeks.

Ethical Topics for Professional Software Engineering: Read Less [-]

CHEM 279 Numerical Algorithms applied to Computational Quantum Chemistry 3 Units

Terms offered: Fall 2024, Spring 2024, Fall 2023 Introduction to numerical algorithms, their application to computational quantum chemistry, and best practices for software implementation and reuse. This course covers a toolbox of useful algorithms from applied mathematics that are used in physical simulations. Illustrated via computer implementation of density functional theory for modeling chemical reaction mechanisms from quantum mechanics. Topics covered include local optimization, numerical derivatives and integration, dense linear algebra the symmetric eigenvalue problem, the singular value decomposition, and the fast Fourier transform. Students are guided through principles of procedural and object-oriented programming C++ and usage of efficient numerical libraries.. Numerical Algorithms applied to Computational Quantum Chemistry: Read More [+]

Course Objectives: 1. To introduce computer-based physical simulation via computational quantum chemistry. 2. To develop the core numerical algorithms needed to efficiently implement computational quantum chemistry methods, as well as other physical simulations. 3. To reinforce programming skills directed to sustainable software as well as intelligent use of optimized libraries to implement numerical kernels.

Prerequisites: Students will have had MSSE courses (1) Chem 275A Intro to Programming, (2) Chem 275B Software Best Practices, and (3) Data Science 100 courses. In addition, undergraduate physical chemistry (Chem 120A or equivalent) or permission of instructor is required

Repeat rules: Course may be repeated for credit without restriction.

Fall and/or spring: 15 weeks - 3 hours of lecture and 3 hours of discussion per week

Additional Format: Three hours of lecture and three hours of discussion per week.

Numerical Algorithms applied to Computational Quantum Chemistry: Read Less [-]

CHEM 280 Foundations of Programming and Software Engineering for Molecular Sciences 2 Units

Terms offered: Fall 2024, Fall 2023, Fall 2022 This course provides an overview of topics relevant to programming and creating software projects. The course will be taught in collaboration with members of the Molecular Sciences Software Institute (MolSII). Students will learn basic syntax, use cases, and ecosystems for Python and C++. Students will become familiar with tools and practices commonly used in software development such as version control, documentation, and testing. Central to this course is a hands on molecular simulation project where students work in groups to create a software package using concepts taught in the course. Foundations of Programming and Software Engineering for Molecular Sciences: Read More [+]

Prerequisites: Acceptance to MSSE program

Fall and/or spring: 2 weeks - 20 hours of lecture per week

Additional Format: Twenty hours of lecture per week for two weeks.

Foundations of Programming and Software Engineering for Molecular Sciences: Read Less [-]

CHEM 281 Software Engineering for Scientific Computing 3 Units

Terms offered: Fall 2024, Spring 2024, Fall 2023 The course covers computer architecture and software features that have the greatest impact on performance. It addresses debugging and performance tunning, detecting memory and stack overwrites, malloc corruption, hotspot, paging, cache misses. A toolbox with common algorithms: sorting, searching, hashing, trees, graph traversing, is followed by common patterns used in object-oriented design. It describes programming paradigms , dynamic libraries, distributed architectures, and services. Lectures on linear algebra and performance libraries are provided as background for future courses. HPC paradigms and GPU programming are introduced. Software packaging, extensibility, and interactivity is followed by team development, testing and hardening. Software Engineering for Scientific Computing: Read More [+]

Course Objectives: The objective of this recurrent course is to equip students with the skills and tools every software engineer must master for a successful professional career.

Prerequisites: Students will have had MSSE courses (1) C275A Intro to Programming, (2) C275B Software Best Practices. Students are expected to be familiar with programming in C++ and have a basic understanding of LINUX. Additional materials will be provided for students to peruse as necessary

Fall and/or spring: 15 weeks - 3 hours of lecture, 1 hour of discussion, and 1 hour of laboratory per week

Additional Format: Three hours of lecture and one hour of discussion and one hour of laboratory per week.

Software Engineering for Scientific Computing: Read Less [-]

CHEM 282 MSSE Leadership Bootcamp 2 Units

Terms offered: Spring 2024, Spring 2023, Spring 2022 This boot camp for the Master of Molecular Science and Software Engineering program is a two-week intensive course that introduces program participants to the leadership, management and entrepreneurial skills necessary in today’s professional environment. Using the capstone project as a baseline, this course aims to provide program participants an understanding of the key aspects of management and leadership disciplines; team and organization dynamics; leading and participating in cross functional teams; engineering economic, finance and accounting concepts; effective communication skills and project management. MSSE Leadership Bootcamp: Read More [+]

Prerequisites: Concurrent enrollment in Chem 283 Capstone Project Course

Fall and/or spring: 2 weeks - 17-17 hours of lecture and 25-25 hours of discussion per week

Additional Format: Course meets 9am - 5pm everyday (including weekends) for 2 weeks.

MSSE Leadership Bootcamp: Read Less [-]

CHEM 283 MSSE Capstone Project Course 3 Units

Terms offered: Spring 2024, Spring 2023, Spring 2022 This course provides students with a multifaceted experience managing a project involving the application and development of software for Computational Sciences. Students exercise leadership, team building, and critical thinking skills resulting in a Capstone project deliverables and final report. Capstone projects are an essential part of the MSSE program because students transfer skills learned in other MSSE courses to a real-world application in particular applying several software engineering, algorithmic and scientific concepts This course is also designed to be tightly integrated with MSSE’s Leadership Bootcamp. Capstone projects are developed with MSSE industrial and academic partners, individually or in cross-functional teams. MSSE Capstone Project Course: Read More [+]

Prerequisites: All courses in the MSSE program curriculum are prerequisite of the Capstone Project course. Concurrent enrollment in Chem 282-MSSE Leadership Bootcamp and CS267-Applications of Parallel Computers is required

Fall and/or spring: 15 weeks - 1-1 hours of lecture and 2-2 hours of discussion per week

Additional Format: One hour of lecture and two hours of discussion per week.

MSSE Capstone Project Course: Read Less [-]

CHEM 295 Special Topics 1 - 3 Units

Terms offered: Fall 2024, Spring 2024, Fall 2023 Lecture series on topics of current interest. Recently offered topics: Natural products synthesis, molecular dynamics, statistical mechanics, molecular spectroscopy, structural biophysics, organic polymers, electronic structure of molecules and bio-organic chemistry. Special Topics: Read More [+]

Fall and/or spring: 15 weeks - 1-3 hours of lecture per week

Additional Format: One to Three hour of Lecture per week for 15 weeks.

Grading: Offered for satisfactory/unsatisfactory grade only.

Special Topics: Read Less [-]

CHEM 298 Seminars for Graduate Students 1 - 3 Units

Terms offered: Fall 2024, Spring 2024, Fall 2023 In addition to the weekly Graduate Research Conference and weekly seminars on topics of interest in biophysical, organic, physical, nuclear, and inorganic chemistry, there are group seminars on specific fields of research. Seminars will be announced at the beginning of each semester. Seminars for Graduate Students: Read More [+]

Prerequisites: Graduate standing

Fall and/or spring: 15 weeks - 1-3 hours of colloquium per week

Additional Format: One to three hours of colloquium per week.

Seminars for Graduate Students: Read Less [-]

CHEM 299 Research for Graduate Students 1 - 9 Units

Terms offered: Fall 2024, Spring 2024, Fall 2023 Facilities are available to graduate students pursuing original investigations toward an advanced degree in Chemistry or related fields at the University of California, Berkeley. Investigations may include experiment, theory, data analysis, and dissemination of accomplishments or discoveries in the form of oral and written presentations or manuscripts submitted for peer-reviewed publication. Such work is done under the supervision and direction of a faculty member or their designee. Research for Graduate Students: Read More [+]

Course Objectives: Provide opportunities for graduate students to engage in original research under the direction, support, and mentorship of a faculty member in the chemistry department at UC Berkeley.

Student Learning Outcomes: Students will learn the skills and techniques necessary to complete a PhD in the field of Chemistry and ultimately become a world expert in their thesis research area. Students will show progress in the following areas related to their chosen field of study, including, but not limited to the following: Creativity, intellectual ownership, initiative, technical proficiency, resilience, communication both orally and in writing, ability to solve challenging problems, broad understanding of relevant disciplinary background (literature), the ability to initiate new research directions aimed toward solving important scientific challenges.

Prerequisites: Graduate standing. Consent of Instructor Required

Fall and/or spring: 15 weeks - 0-0 hours of independent study per week

Additional Format: Zero hour of independent study per week.

Research for Graduate Students: Read Less [-]

CHEM 300 Professional Preparation: Supervised Teaching of Chemistry 2 Units

Terms offered: Fall 2024, Spring 2024, Fall 2023 Discussion, curriculum development, class observation, and practice teaching in chemistry. Professional Preparation: Supervised Teaching of Chemistry: Read More [+]

Prerequisites: Graduate standing and appointment as a graduate student instructor

Fall and/or spring: 15 weeks - 2 hours of seminar per week

Additional Format: Two hours of Seminar per week for 15 weeks.

Subject/Course Level: Chemistry/Professional course for teachers or prospective teachers

Professional Preparation: Supervised Teaching of Chemistry: Read Less [-]

CHEM 301 Pre-High School Chemistry Classroom Immersion 1 Unit

Terms offered: Fall 2024, Fall 2023, Spring 2023 Provides training and opportunity for graduate students to make presentations in local public schools. Training ensures that presenters are aware of scientific information mandated by the State of California for particular grade levels, and that presentations are intellectually stimulating, relevant to the classroom students' interests, and age-appropriate. Time commitment an average of two to three hours/week, but actual time spent is concentrated during preparation and classroom delivery of presentations, which are coordinated between teachers' needs and volunteers' availability. Pre-High School Chemistry Classroom Immersion: Read More [+]

Fall and/or spring: 15 weeks - 1 hour of lecture per week

Additional Format: One hour of lecture per week (average).

Instructor: Bergman

Pre-High School Chemistry Classroom Immersion: Read Less [-]

CHEM 301A Undergraduate Lab Instruction 2 Units

Terms offered: Fall 2017, Spring 2017, Fall 2016 Tutoring of students in 1AL and 1B laboratory. Students attend one hour of the regular GSI preparatory meeting and hold one office hour per week to answer questions about laboratory assignments. Undergraduate Lab Instruction: Read More [+]

Prerequisites: Junior standing or consent of instructor; 1A, 1AL, and 1B with grades of B- or higher

Repeat rules: Course may be repeated for credit up to a total of 4 units.

Fall and/or spring: 15 weeks - 1 hour of lecture and 4 hours of tutorial per week

Additional Format: One hour of Lecture and Four hours of Tutorial per week for 15 weeks.

Grading: Offered for pass/not pass grade only.

Undergraduate Lab Instruction: Read Less [-]

CHEM 301B Undergraduate Chemistry Instruction 2 Units

Terms offered: Fall 2017, Spring 2017, Fall 2016 Tutoring of students in 1A-1B. Students attend a weekly meeting on tutoring methods at the Student Learning Center and attend 1A-1B lectures. Undergraduate Chemistry Instruction: Read More [+]

Prerequisites: Sophomore standing; 1A, 1AL, and 1B with grades of B- or higher

Fall and/or spring: 15 weeks - 1 hour of lecture and 5 hours of tutorial per week

Additional Format: One hour of lecture and five hours of tutoring per week.

Formerly known as: 301

Undergraduate Chemistry Instruction: Read Less [-]

CHEM 301C Chemistry Teacher Scholars 2 Units

Terms offered: Spring 2024, Spring 2020, Fall 2019 The Chemistry Undergraduate Teacher Scholar Program places undergraduate students as apprentice instructors in lower division laboratory and discussion sections. In a weekly meeting with instructors, participants learn about teaching, review chemistry knowledge, and are coached to mentor students. Chemistry Teacher Scholars: Read More [+]

Prerequisites: Chemistry 1A or Chemistry 4A or equivalent. Consent of instructor required

Fall and/or spring: 15 weeks - 1.5-1.5 hours of lecture and 1-1 hours of discussion per week

Additional Format: One and one-half hours of lecture and one hour of discussion per week.

Chemistry Teacher Scholars: Read Less [-]

CHEM 301D Undergraduate Chemistry Course Instruction 1 - 2 Units

Terms offered: Fall 2017, Spring 2017, Fall 2016 Tutoring of students enrolled in an undergraduate chemistry course. Undergraduate Chemistry Course Instruction: Read More [+]

Prerequisites: Junior standing or consent of instructor; completion of tutored course with a grade of B- or better

Fall and/or spring: 15 weeks - 2-4 hours of tutorial per week

Additional Format: Weekly meeting with instructor of tutored course and two to four hours of tutoring.

Undergraduate Chemistry Course Instruction: Read Less [-]

CHEM 301T Undergraduate Preparation for Teaching or Instruction in Teaching 2 Units

Terms offered: Spring 2015, Spring 2014, Spring 2013 Undergraduate Preparation for Teaching or Instruction in Teaching: Read More [+]

Prerequisites: Junior standing, overall GPA 3.1, and consent of instructor

Repeat rules: Course may be repeated for credit up to a total of 8 units.

Fall and/or spring: 15 weeks - 2-3 hours of lecture per week

Additional Format: Two or three hours of lecture and one hour of teacher training per week.

Undergraduate Preparation for Teaching or Instruction in Teaching: Read Less [-]

CHEM 301W Supervised Instruction of Chemistry Scholars 2 Units

Terms offered: Fall 2017, Spring 2017, Fall 2016 Tutoring of students in the College of Chemistry Scholars Program who are enrolled in general or organic chemistry. Students attend a weekly meeting with instructors. Supervised Instruction of Chemistry Scholars: Read More [+]

Prerequisites: Sophomore standing and consent of instructor

Fall and/or spring: 15 weeks - 1 hour of independent study and 4-5 hours of tutorial per week

Additional Format: One hour of lecture and three or four hours of tutoring per week.

Supervised Instruction of Chemistry Scholars: Read Less [-]

CHEM 375 Professional Preparation: Supervised Teaching of Chemistry 2 Units

Terms offered: Fall 2024, Fall 2023, Fall 2021 Discussion, curriculum development, class observation, and practice teaching in chemistry. Professional Preparation: Supervised Teaching of Chemistry: Read More [+]

CHEM 602 Individual Study for Doctoral Students 1 - 8 Units

Terms offered: Fall 2017, Spring 2017, Fall 2016 Individual study in consultation with the major field adviser, intended to provide an opportunity for qualified students to prepare themselves for the various examinations required of candidates for the Ph.D. degree. May not be used for unit or residence requirements for the doctoral degree. Individual Study for Doctoral Students: Read More [+]

Fall and/or spring: 15 weeks - 1-8 hours of independent study per week

Summer: 8 weeks - 1.5-15 hours of independent study per week

Additional Format: One to Eight hour of Independent study per week for 15 weeks. One and one-half to Fifteen hours of Independent study per week for 8 weeks.

Subject/Course Level: Chemistry/Graduate examination preparation

Individual Study for Doctoral Students: Read Less [-]

CHEM 700 QB3 Colloquium for Graduate Students 0.0 Units

Terms offered: Spring 2023, Spring 2022, Spring 2021 Weekly Graduate colloquium on topics of interest in QB3 research. QB3 Colloquium for Graduate Students: Read More [+]

Fall and/or spring: 15 weeks - 1-2 hours of colloquium per week

Additional Format: One to two hours of colloquium per week.

Formerly known as: Chemistry 999

QB3 Colloquium for Graduate Students: Read Less [-]

Contact Information

Department of chemistry.

419 Latimer Hall

Phone: 510-642-5882

Fax: 510-642-9675

Department Chair

Matthew Francis

724 Latimer Hall

Phone: 510-643-9915

[email protected]

Vice Chair of Biological Graduate Program

Michelle Chang

125 Lewis Hall

Phone: 510.642.8545

[email protected]

Sr. Vice Chair of Synthetic Graduate Program

Thomas Maimone

826 Latimer Hall

Phone: 510-642-4488

[email protected]

Vice Chair of Physical Graduate Program

David Limmer

210 Gilman Hall

[email protected]

Vice Chair of Synthetic Graduate Program

Felix Fischer

699 Tan Hall

[email protected]

Student Affairs Officer

Phone: 510-642-5884

[email protected]

Ellen Levitan

Phone: 510-642-5883

[email protected]

Deborah Gray

[email protected]

Print Options

When you print this page, you are actually printing everything within the tabs on the page you are on: this may include all the Related Courses and Faculty, in addition to the Requirements or Overview. If you just want to print information on specific tabs, you're better off downloading a PDF of the page, opening it, and then selecting the pages you really want to print.

The PDF will include all information unique to this page.

About the Chemistry Ph.D. Program

Ph.d. in chemistry faq's.

Trevor Lohrey, Arnold Research Group

The Chemistry PhD program is designed towards developing within each student the ability to do creative scientific research. Accordingly, the single most important facet of the curriculum for an individual is their own research project. In keeping with the goal of fostering an atmosphere of scholarly, independent study, formal course requirements are minimal and vary among disciplines; advisor's tailor course requirements to best prepare the student for the chosen research field.

The Doctoral program includes the following concentrations, each of which has specific degree requirements:

  • Physical Chemistry : In general, the Physical Chemistry Graduate Program encompasses analytical, nuclear, biophysical, and theoretical chemistry.
  • Synthetic Chemistry : The Synthetic Chemistry Graduate Program includes emphases in either organic or inorganic chemistry
  • Chemical Biology : The Chemical Biology Graduate Program covers a range of research areas at the interface of Chemistry and Biology.

Research. A graduate student spends a good deal of time during the first week of the first semester at Berkeley talking to various faculty members about possible research projects, studying pertinent literature references, and choosing an individual project. New graduate students meet shortly after their arrival with a faculty adviser. From the faculty adviser the student obtains a list of faculty members whose research may interest the student. After visiting these and additional faculty, if necessary, the student chooses a research director, with the consent of the faculty member and the graduate adviser. By the end of the first semester most students have made a choice and are full-fledged members of research group. Students in the Chemical Biology Graduate Program will select their thesis advisor after completion of three-ten week rotations. Thereafter, all students become involved in library research on their projects and many begin actual experimental or theoretical work.

Independent Study. A student who chooses to specialize in physical chemistry is normally expected to take two courses per semester during the first year and one or two additional semesters of coursework sometimes during the second year. These may include topics such Quantum Mechanics, Statistical Mechanics, Group Theory, Interactions of Radiation with Matter, and many more. At the other extreme, a student specializing in inorganic chemistry will concentrate more heavily on special topics seminars and take fewer courses. The course offerings in the University are varied so that individual students have the opportunity to take other courses which serve their own needs. Such as, a student working on nuclear chemistry will probably elect additional graduate physics courses, while a student working on biophysical or bio-organic problems may take courses offered by the Biochemistry Department. Students in the Chemical Biology program will take courses from both Chemistry and Molecular and Cell Biology departments.

Seminars. Because of the size and diversity of the Berkeley faculty, there are many seminars on a variety of topics which students may choose to attend. There are regular weekly seminars in several major areas, including biophysical, physical, nuclear, organic, theoretical, solid state, and inorganic chemistry. These seminars are presented by members of the Berkeley faculty, as well as distinguished visitors to the campus. These seminars allow the students to become aware of the most important current research going on in the field. In addition to these regular seminars, there are several regular department seminars devoted to presentations by graduate students. One of the doctoral program requirements is that each student delivers a departmental seminar known as a graduate research conference during the second year. Individual research groups also hold regular research seminars. The format of these small, informal seminars varies. In some cases, graduate students discuss their own current research before the other members of the research group. On other occasions, the group seminars may be devoted to group discussions of recent papers which are of interest to the particular research group. In any event, small group seminars are one of the most important ways in which students learn by organizing and interpreting their own results before their peers.

Qualifying Exam. Sometime during the second year of graduate work at Berkeley, each student takes a qualifying examination. The examining board, a committee of four faculty members, is appointed to examine the student for general competence in the area of interest. The qualifying examination is centered around the defense of the individual research project. Upon satisfactory completion of the oral qualifying examination, the student is advanced to candidacy for the Ph.D. degree. After advancement, the student completes an original, scholarly contribution to science and writes a dissertation on the subject. Most students complete their work and received their degree within five years.

Teaching. An integral part of the graduate education at Berkeley is teaching. The department requires that each doctoral candidate assist in the instructional program of the department as a teaching assistant for two semesters during their graduate careers. The faculty regard the teaching experience as highly valuable for all graduate students, especially those who plan to teach as a career.

Financial Aid. All students admitted to our graduate program receive a stipend for the duration of study in the form of teaching and research assistantships as long as they are in residence and demonstrate good progress toward the degree. Students also receive full tution, health, dental and vision insurance. Most funds for this support derive from research contracts and grants.

For more information see the Berkeley Bulletin

top of page

phd organic chemistry

Ph.D. Program

Entering the ph.d. program.

The official course of study in the Ph.D. graduate program begins during the second week of August, one week before the official start of the Fall Semester at Cornell. All incoming Ph.D. students take a series of graduate proficiency exams in Organic, Inorganic, and Physical Chemistry provided by the American Chemical Society (ACS). All Ph.D. students then meet with the Director of Graduate Studies (DGS) and select professors in their area of interest for advice on course selection.

Chemistry and Chemical Biology Ph.D. Program Handbook

Read the Chemistry and Chemical Biology Ph.D. Program Handbook, here .

Ph.D. Coursework

Incoming Ph.D. students generally take three graduate courses during their first semester at Cornell. A minimum grade of B- is required in each course for the student to remain in good standing with the department and the university. An additional three courses are then taken in the spring semester, for a total of six required courses. Depending on a student’s academic background and research interests, one or more of these courses may be taken outside of the Graduate Field of Chemistry & Chemical Biology. Additional courses are often taken by Ph.D. students in the later years of their dissertation work, if they are deemed useful by the student's research advisor and/or special committee (see below). For the full list of courses offered at Cornell, please visit the Class Roster to select the appropriate department and semester.

Finding a Mentor and Laboratory to Conduct Thesis Research

During the first month of the Fall semester, all incoming Ph.D. students are expected to attend a series of research orientation lectures in which the faculty provide an overview of their current research projects. Students are expected to attend research group meetings of faculty of interest, talk to other students and postdoctoral research associates, and discuss potential research projects with at least three faculty members. Students then officially join research groups by November 1.

Special Committee

All Ph.D. students in C&CB are required to choose three or more faculty members to serve as a special committee to represent their major (and minor, if applicable) areas of study. The student’s faculty research advisor serves as chair of the special committee and usually has primary responsibility for directing the graduate student’s research and studies. Degree requirements are kept to a minimum and there are no specific course requirements. The number of formal courses required depends on students' academic background, chosen concentration, and the advice of the special committee.

Every Ph.D. student takes an oral examination for admission to candidacy (A-exam), typically during their second year of graduate study. The A-exam takes place after the student’s coursework has been completed and before the commencement of full-time research. The thesis, which is the final outcome of this research, must constitute an original contribution to chemical knowledge and be defended at a final examination overseen by the special committee (B-exam). The Ph.D. degree is awarded on successful defense of the thesis and students typically take five years to complete the Ph.D. program.

Financial Support

Complete financial support accompanies every offer of admission to the Ph.D. program. Each Ph.D. student is therefore guaranteed at least five years of full financial support as long as he or she makes satisfactory progress toward the Ph.D. degree. This support includes a 12-month stipend, a full tuition award, and health insurance. Financial support comes in the form of teaching assistantships, graduate research assistantships, research fellowships, and several NIH-funded training grant programs, such as the  Chemistry Biology Interface (CBI) Training Program . Eligible applicants are strongly encouraged to seek federally funded fellowships, such as those available from the National Science Foundation (NSF) as well as other government or private agencies.

Ph.D. in Chemistry

General info.

  • Faculty working with students: 30
  • Students: 130
  • Students receiving Financial Aid: 100%
  • Part time study available: No
  • Application Terms: Fall
  • Application Deadline: December 4

Kevin Welsher Director of Graduate Studies Department of Chemistry Duke University Box 90347 Durham, NC 27708-0347

Phone: (919) 660-1503

Email: [email protected]

Website:  http://www.chem.duke.edu

Program Description

The following areas of specialization are available: analytical, biological, inorganic, physical, theoretical, and organic. A wide range of interdisciplinary research programs (e.g., toxicology, biological chemistry, cell and molecular biology) involve chemistry students with those in medical sciences, engineering, the Nicholas School of the Environment and Earth Sciences, and occasionally with local industry. The French Family Science Center, totaling over 275,000 square feet, is a shared research facility with groups from Biology, Physics, Mathematics and the Medical Center occupying space, with additional research space in the adjacent Levine Science Research Center. This well-equipped chemical laboratory provides conditions conducive to research in many areas of current interest. Major shared instruments, including those for nuclear magnetic resonance and mass spectrometry, are housed in the departmental instrumentation facility and a wide array of more specialized instrumentation is available in the various research laboratories.

The doctoral program in chemistry features research programs that span the “traditional” sub-disciplines of chemistry, including analytical, biological, inorganic, organic, physical and theoretical chemistry. However, many, if not most of the research programs are interdisciplinary, either overlapping the traditional boundaries of chemistry or the boundaries between chemistry and the other sciences, for example biological, materials, and environmental sciences. Many chemistry faculty and students participate in university-wide interdisciplinary training programs and centers, including those in biological chemistry, toxicology, pharmacology, molecular biophysics, biologically inspired materials, and cellular and biosurface engineering. Research in all fields is supported by state-of-the-art equipment and facilities. Competitive stipends are provided through research and teaching assistantships, and fellowships are available for outstanding candidates.

  • Chemistry: PhD Admissions and Enrollment Statistics
  • Chemistry: PhD Time to Degree Statistics
  • Chemistry: PhD Completion Rate Statistics
  • Chemistry: PhD Career Outcomes Statistics

Application Information

Application Terms Available:  Fall

Application Deadline:  December 4

Graduate School Application Requirements See the Application Instructions page for important details about each Graduate School requirement.

  • Transcripts: Unofficial transcripts required with application submission; official transcripts required upon admission
  • Letters of Recommendation: 3 Required
  • Statement of Purpose: Required (see departmental guidance below)
  • Résumé: Required
  • GRE General: Optional
  • GRE Subject - Chemistry: Optional
  • English Language Exam: TOEFL, IELTS, or Duolingo English Test required* for applicants whose first language is not English *test waiver may apply for some applicants
  • GPA: Undergraduate GPA calculated on 4.0 scale required

Department-Specific Application Requirements (submitted through online application)

Statement of Purpose Guidelines: This is one of the most important components of your application and is the key to helping the admissions committee determine if Duke Chemistry is a good fit for your Ph.D. studies. Your statement should be well-organized and concise. It should provide clear evidence of your maturity, persistence, resilience, and motivation for pursuing a chemistry Ph.D. It should also provide evidence of how you will contribute to a diverse and inclusive community of scholars. Most of all, it should clearly articulate your research interests and explain how they overlap with faculty in the department.

Writing Sample None required

We strongly encourage you to review additional department-specific application guidance from the program to which you are applying: Departmental Application Guidance

List of Graduate School Programs and Degrees

Department of Chemistry

Graduate – Program PhD

Ph.d. program, doctoral program.

The goals of the program are to provide students with a broad base in advanced topics in chemistry and substantial depth in one or more areas of expertise through an in-depth research experience. Students earning a Ph.D. in chemistry are intellectually functional as independent scientists and sufficiently technically skilled to perform advanced scientific research.

They are able to instruct others in their discipline. They have highly developed communications skills to allow the efficient dissemination of scientific information in both a written and verbal format.

A. STUDENT ORIENTATION, PRIOR TO INITIAL REGISTRATION

PROFICIENCY or ENTRANCE EXAMS All entering students will be given proficiency exams, usually of the ACS type. Currently, these exams are in the following areas: Inorganic, Organic, and Physical. The results of the examinations will provide the Chemistry Department with information regarding the entering class as a group and the Graduate Studies Committee with information about the scientific backgrounds of individual members of the entering class.

GRADUATE ACHIEVEMENT THROUGH MENTORING (GrAM) GrAM’s mission is to provide first-year graduate students with resources and support as they navigate graduate school. Incoming graduate students are matched with current graduate students in a mentoring group composted of 2 mentors and 3-4 mentees. GrAM mentors will serve as a resource and develop their mentoring skills while positively contributing to the climate of the department.

The Nicewicz Group

Professor Nicewicz and his research group

B. PERMANENT COMMITTEE

1. CONSTITUTION All committees must be comprised of a majority of Chemistry faculty per Graduate School policy. Eligible committee members include, but are not limited to, faculty from other departments and members of staff (see https://gradschool.unc.edu/policies/faculty-staff/faculty/ for details).

A. QUALIFYING EXAM COMMITTEE The Qualifying Exam committee will be comprised of 4 members, including the advisor as prescribed by the Graduate School requirements.

B. DISSERTATION COMMITTEE The Dissertation Committee  will be comprised of 5 members, including the advisor as prescribed by the Graduate School requirements. This committee will oversee the Prospectus, 4th year check-in, and Final Oral Defense. Substitutions are allowed as needed.

C. REQUIREMENTS FOR THE Ph.D. DEGREE

*Click here to view PhD requirements for the Fall 2020 class and subsequent years. *Click here to view PhD requirements for the Fall 2016 – Fall 2019 classes.

Graduate Programs

Chemistry phd.

Solana Beach

The goal of the Chemistry PhD is to prepare students for careers in science as researchers and educators by expanding their knowledge of chemistry while developing their ability for critical analysis, creativity, and independent study. A high graduation rate in an average of just over five years can be attributed to the quality of applicants admitted, the flexibility of our program of study, the opportunity for students to begin research in the first year, and the affordability of education made possible by our generous financial support policies.

Program Overview

Programs of study are tailored to the needs of individual students, based on their prior training and research interests. However, progress to a degree is generally similar for all students. During the first year, students take courses, begin their teaching apprenticeships, choose research advisors, and embark on their thesis research; students whose native language is not English must pass an English proficiency examination. Beginning the first summer, the emphasis is on research, although courses of special interest may be taken throughout a student's residency. In the second year, there is a departmental examination which includes a written research proposal and an oral defense of the research proposal. In the third year, students advance to candidacy for the doctorate by defending the topic, preliminary findings, and future research plans for their dissertation. Subsequent years focus on thesis research and writing the dissertation. Most students graduate during their fifth year.

Research Opportunities

Research opportunities for graduate students are comprehensive and interdisciplinary, spanning inorganic, organic, physical, analytical, computational, and theoretical chemistry; surface and materials chemistry; and atmospheric and environmental chemistry. Please refer to the faculty pages for full descriptions of the ongoing research in our department. State-of-the-art facilities and laboratories support these research programs.

At UCSD, chemists and biochemists are part of a thriving community that stretches across campus and out into research institutions throughout the La Jolla and San Diego area, uniting researchers in substantive interactions and collaborations.

Special Training Programs

Interdisciplinary research and collaboration at UCSD is enhanced through a variety of training grants. These programs provide financial support for exceptional graduate and postdoctoral scholars and also unite researchers from across campus and throughout the La Jolla research community in special seminars, retreats, and courses. Doctoral students are usually placed on training grants in their second year or later.

  • Molecular Biophysics Training Grant
  • Contemporary Approaches to Cancer Cell Signaling and CommunicationBiochemistry of Growth Regulation and Oncogenesis
  • Chemistry Biology Interfaces Training Grant
  • Contemporary Approaches to Cancer Cell Signaling and Communication
  • Interfaces Graduate Training Program
  • Molecular Pharmacology Training Program
  • Quantitative Biology (qBio) Specialization

Teaching apprenticeships are a vital and integral part of graduate student training, and four quarters of teaching are required. See the Teaching Assistants page to apply. Students can gain experience teaching both discussion and laboratory sections. Excellence in teaching is stressed, and the department provides a thorough training program covering both fundamentals and special techniques for effective instruction. Further training is provided by the Teaching and Learning Commons on campus. Performance is evaluated every quarter, and awards are bestowed quarterly for outstanding teaching performance.

  • Financial Support

Students in good academic standing receive a 12-month stipend; fees and tuition are also provided. Support packages come from a variety of sources, including teaching and research assistantships, training grants, fellowships, and awards. Special fellowships are awarded to outstanding students based on their admission files. See Ph.D. Program Support Policy for more information.

Health and Dental Plan

A primary health care program, major medical plan, and dental plan are among the benefits provided by the University's registration fee (see Graduate Student Health Insurance Program, GSHIP) . Minor illnesses and injuries can usually be treated at the Student Health Center . Counseling is provided free of charge through Counseling and Psychological Services .

Creative, bright, and motivated students from diverse backgrounds are encouraged to apply. We admit for the Fall quarter entrance only. See UCSD Ph.D. Admissions FAQ page for full information.

PostGraduate Placement

Graduates typically obtain jobs in academia or in the chemical industry. Many take postdoctoral research positions in academic institutions and national laboratories that lead to future academic or industrial careers at other prestigious institutions. Our faculty and Student Affairs staff provide career advising and job placement services. The department's Industrial Relations program assists students with placement in industrial positions. UCSD's Career Services Center provides many resources for students, including the chance to videotape yourself in a mock interview!

  • Biochem & MolBiophysics PhD
  • Degree Requirements
  • Research Tracks
  • Faculty by Track
  • Masters Program
  • Joint Doctoral Program
  • Teaching Assistants
  • Student Spotlight
  • Graduate Events
  • Course Offerings
  • Room Requests
  • Utility Menu

University Logo

gA4 tracking code

Department of chemistry and chemical biology.

  • Donate to CCB

Organic Chemistry

CCB's long and illustrious history of accomplishment in the area of carbon-containing compounds is exemplified by pioneering syntheses of the complex molecules palytoxin and vitamin B12.

With emphasis on development of new reaction methodology and synthesis of families of molecules ranging from small probes to large compounds with antimicrobial and antibiotic activity, and creation of supramolecular assemblies of relevance to energy conversion, Harvard’s organic chemistry effort continues to be multifaceted and fruitful.

Organic Chemistry Faculty

Emily  Balskus

Emily Balskus

E. J. Corey

E. J. Corey

Eric Jacobsen

Eric Jacobsen

Professor Dan Kahne

David R. Liu

Richard Liu

Richard Y. Liu

Andrew Myers

Andrew Myers

Daniel G. Nocera

Daniel G. Nocera

Stuart L. Schreiber

Stuart L. Schreiber

Matthew Shair

Matthew Shair

Assistant Professor Christina Woo

Christina Woo

Recent news.

CCB celebrates undergraduate research and honors Yoshito Kishi

CCB celebrates undergraduate research and honors Yoshito Kishi

Professor Dan Kahne

Dan Kahne appointed Chair of the Department of Chemistry and Chemical Biology

A headshot of Eric Jacobsen

Eric Jacobsen receives 2024 Willard Gibbs Medal

Browse by research area.

Department of Chemistry

Organic chemistry.

Keeping pace with the forefront of scientific research, the organic chemistry faculty maintains considerable breadth and strength in organic synthesis, catalysis, physical organic chemistry, chemical biology, materials science, combinatorial chemistry, and computational chemistry. Organic chemistry lends itself naturally to interdisciplinary study, and many students interact extensively with students and faculty in the departments of Molecular Biophysics and Biochemistry (MB&B), Molecular, Cellular, and Developmental Biology (MCDB), Applied Physics, and Engineering. Overall, the goal of the faculty is to ensure that each student develops fully as a scientist, makes an impact on the forefront of science, and is successful in pursuing a career beyond Yale.

List of Faculty

Jason M. Crawford Craig Crews Jonathan A. Ellman Seth Herzon William L. Jorgensen J. Michael McBride (emeritus) Scott J. Miller Timothy Newhouse Martin Saunders Alanna Schepartz Dieter G. Söll David A. Spiegel Scott Strobel Kenneth B. Wiberg  (emeritus) Frederick E. Ziegler  (emeritus)

Sidney Altman Robert H. Crabtree John W. Faller

1,139 organic-chemistry PhD positions

Filtered by.

  • organic-chemistry

Refine Your Search

  • Last-24-hours 6
  • Last-3-days 25
  • Last-7-days 50
  • Last-30-days 277
  • Scholarship 1023
  • Research Job 125
  • Germany 148
  • Netherlands 142
  • United Kingdom 122
  • Switzerland 26
  • United States 19
  • Australia 15
  • Portugal 12
  • Slovakia 10
  • Hong Kong 2
  • Luxembourg 1
  • South Korea 1
  • The Netherlands 1
  • Stockholm University 36
  • Umeå University 34
  • Chalmers University of Technology 32
  • University of Groningen 24
  • Technical University of Denmark 21
  • NORWEGIAN UNIVERSITY OF SCIENCE & TECHNOLOGY - NTNU 19
  • Linköping University 17
  • NTNU Norwegian University of Science and Technology 17
  • Ghent University 15
  • Uppsala universitet 15
  • University of Amsterdam 14
  • University of Göttingen • 14
  • University of Nottingham 14
  • Uppsala University 14
  • Leiden University 13
  • SciLifeLab 13
  • Babes-Bolyai University 12
  • Charles University, Faculty of Pharmacy 12
  • NTNU - Norwegian University of Science and Technology 12
  • Norwegian University of Life Sciences (NMBU) 12
  • ; University of Leeds 11
  • Forschungszentrum Jülich 9
  • Helmholtz 9
  • University of Bergen 9
  • AcademicTransfer 8
  • Eindhoven University of Technology (TU/e) 8
  • Nantes Université 8
  • Newcastle University 8
  • Technical University of Munich 8
  • ; University of Nottingham 7
  • ETH Zurich 7
  • International Centre for Translational Eye Research / Institute of Physical Chemistry, Polish Academy of Sciences 7
  • Maastricht University (UM) 7
  • Radboud University 7
  • ; Newcastle University 6
  • ; The University of Manchester 6
  • ; University of Southampton 6
  • Delft University of Technology 6
  • Fraunhofer-Gesellschaft 6
  • Nature Careers 6
  • Swansea University 6
  • University of Amsterdam (UvA) 6
  • University of Twente (UT) 6
  • Wageningen University & Research 6
  • ETH Zürich 5
  • Institute of Physical Chemistry, Polish Academy of Sciences 5
  • KU Leuven 5
  • Umeå universitet 5
  • University of Basel 5
  • University of Castilla- La Mancha 5
  • University of Warsaw 5
  • Utrecht University 5
  • Wageningen University and Research Center 5
  • ; University of Birmingham 4
  • Curtin University 4
  • Eindhoven University of Technology 4
  • Faculty of Natural Sciences, Comenius University in Bratislava 4
  • Institute of Physical Chemistry "Ilie Murgulescu" 4
  • RMIT University 4
  • Swedish University of Agricultural Sciences 4
  • University of Antwerp 4
  • ; University of Cambridge 3
  • ; University of Sussex 3
  • ; University of Warwick 3
  • Academic Europe 3
  • Aix-Marseille Université 3
  • Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento _IST-ID 3
  • Cranfield University 3
  • Delft University of Technology (TU Delft) 3
  • Deutsches Zentrum für Luft - und Raumfahrt (DLR) 3
  • Helmholtz-Zentrum für Infektionsforschung 3
  • IDAEA-CSIC 3
  • Institute of Bioorganic Chemistry Polish Academy of Sciences 3
  • International Institute of Molecular and Cell Biology in Warsaw 3
  • Karolinska Institutet 3
  • Ludwig-Maximilians-Universität München • 3
  • Pavol Jozef Šafárik University in Košice 3
  • Ruhr-Universität Bochum • 3
  • Sveriges lantbruksuniversitet 3
  • UNIVERSIDAD CATÓLICA DE MURCIA - FUNDACIÓN UNIVERSITARIA SAN ANTONIO DE MURCIA 3
  • University of British Columbia 3
  • University of Cambridge 3
  • University of Copenhagen 3
  • University of Gothenburg 3
  • University of Liverpool 3
  • University of Maryland, Baltimore 3
  • University of Oulu 3
  • University of Pittsburgh 3
  • Vrije Universiteit Amsterdam (VU) 3
  • ; University of East Anglia 2
  • ; University of Exeter 2
  • Chemistry 303
  • Biology 154
  • Computer Science 115
  • Materials Science 102
  • Engineering 78
  • Medical Sciences 46
  • Environment 30
  • Economics 29
  • Linguistics 26
  • Mathematics 22
  • Business 16
  • Arts and Literature 13
  • Earth Sciences 13
  • Electrical Engineering 10
  • Education 6
  • Humanities 4
  • Social Sciences 4
  • Philosophy 1
  • Sports and Recreation 1
  • Statistics 1

Doctoral studentship in chemistry with focus on organic chemistry

7 May 2024 Job Information Organisation /Company Linnaeus University Research Field Chemistry » Inorganic chemistry Researcher Profile First Stage Researcher (R1) Country Sweden Application Deadline

PhD-Student in Synthetic Organic Chemistry

10 May 2024 Job Information Organisation /Company University of Natural Resources and Life Sciences Department Chemistry Research Field Chemistry » Organic chemistry Researcher Profile First Stage

PhD in Organic Chemistry : Molecular Photoswitches with Fluorescent Structural Subunit

3 May 2024 Job Information Organisation /Company Faculty of Natural Sciences, Comenius University in Bratislava Department Department of Organic Chemistry Research Field Chemistry » Organic chemistry

Scholarship Organic Chemistry

16 Mar 2024 Job Information Organisation /Company Vrije Universiteit Brussel (VUB) Research Field Chemistry » Biochemistry Chemistry » Inorganic chemistry Chemistry » Other Medical sciences » Other

Chemistry /Physics: Fully Funded EPSRC DTP PhD Scholarship: Towards Organic Quantum Memristors

23 Apr 2024 Job Information Organisation /Company Swansea University Department Central Research Field Chemistry » Other Researcher Profile First Stage Researcher (R1) Country United Kingdom

PhD position in organic chemistry

18 Apr 2024 Job Information Organisation /Company INSA Rouen Normandie Research Field Chemistry » Organic chemistry Researcher Profile First Stage Researcher (R1) Country France Application Deadline

PhD student position in Organic Chemistry

10 Apr 2024 Job Information Organisation /Company Chalmers University of Technology Research Field Chemistry » Biochemistry Researcher Profile First Stage Researcher (R1) Country Sweden Application

We are looking for a highly motivated PhD candidate, with an interest in organic synthesis and transition metal catalysis, to join the Kann group. The goal of your project will be to develop metal

PhD student in Organic Chemistry in the area of studies in modern organoboron chemistry

Ref. No. SU FV-0840-24 at the Department of Organic Chemistry . Closing date: 23 April 2024. The Department of Organic Chemistry has an extensive research program, covering many areas

PhD student in Organic Chemistry in the area of heterogeneous catalysis for sustainable organic synthesis

Ref. No. SU FV-0857-24 at the Department of Organic Chemistry . Closing date: 23 April 2024. The Department of Organic Chemistry has an extensive research program, covering many areas

Searches related to organic chemistry

  • postdoctoral
  • medicinal chemistry
  • postdoctoral organic chemistry
  • bioinformatics
  • organic chemistry postdoctoral

PhD in Organic Chemistry: Molecular Photoswitches with Fluorescent Structural Subunit

Job information, offer description.

Compounds exhibiting reversible changes in their physico-chemical characteristics upon light stimulation (photo-switches) are considered key elements in modern materials chemistry, as well as imaging techniques in contemporary biology/biomedicine. The Laboratory of Photochemistry of Organic Compounds at the Faculty of Natural Sciences, Comenius University in Bratislava is looking for candidates to pursue a PhD degree in organic chemistry with the focus on molecular photoswitches with fluorescent subunit under supervision of assoc. prof. Marek Cigáň ( Marek Cigáň (0000-0001-7734-626X) - ORCID ). This will include design, synthesis and characterization of new fluorescent photoswitches with the aim to understand the relationship between the structure and the desired output characteristics.

Requirements

A recent MSc degree (completed in 2022 to 2024) in organic chemistry or related field with excellent track record (research, grades, graduation with honors, etc.);

Prior hands-on laboratory experience in an organic laboratory is required;

The ideal candidate should demonstrate capability to troubleshoot problems during synthetic tasks and understand advanced concepts in photochemistry of organic compounds;

Collaboration and effective communication, both oral and written, in English.

Additional Information

Comenius University is the oldest and largest university in Slovakia, situated in its capital city - Bratislava. Bratislava is a capital city unusually situated on the border of other two countries (Austria, Hungary) and as such has always attracted residents from many different countries, cultures and backgrounds. Our campus is situated next to river Danube and close to the slopes of Small Carpathian Mountains, offering plenty of green spaces around the campus. Comenius University offers affordable accommodation to its PhD students next to its campus.

We offer a temporary contract for 38 hours per week for the duration of 4 years. After period of 18 months, the student will be evaluated in the state exam - succesfull completion of the exams is the prerequisite for continuation of the PhD studies. This should lead to completion and defense of a dissertation (PhD thesis). We will design an educational plan that includes opportunities to attend (international) conferences, meetings, and summer schools. You will have the chance to test your skills and knowledge through interactions with undergraduate and Master's students by assisting in their learning process. Throughout your projects, you will have the opportunity to collaborate with specialists from many different backgrounds, giving you the chance to master multiple techniques and gain multitude of interdisciplinary skills. The PhD study is fully funded and the student will be paid according to national PhD pay grade (starting from netto 1000 EUR/month) in addition to full health insurance and other benefits.

Pre-selection will be made on the basis of a personal on-line interview with assoc. prof. Marek Cigáň (supervisor of the PhD study). Successful candidates will be advised to submit an official application for PhD study.

Work Location(s)

Where to apply.

IMAGES

  1. Best Organic Chemistry PhD Programs

    phd organic chemistry

  2. Organic Chemistry, 2nd Edition by Jonathan Clayden, Paperback

    phd organic chemistry

  3. Organic Chemistry Graduate Program

    phd organic chemistry

  4. PhD in Organic Chemistry

    phd organic chemistry

  5. Best Organic Chemistry PhD Programs

    phd organic chemistry

  6. Best Organic Chemistry PhD Programs

    phd organic chemistry

VIDEO

  1. Pd-catalyzed Cross Coupling Reactions; Olefin Metathesis, Prof. Reiser, Lect 17

  2. Introduction to Organic Chemistry Part 1

  3. Organic Chemistry Postdoc Position in Singapore

  4. Organic Chemistry 2: Electrophilic Aromatic Substitution

  5. MSc/PhD Organic chemistry Interview questions for CRO, Process industry jobs/Suzuki coupling/6M KOH

  6. Houston, TX

COMMENTS

  1. Best Organic Chemistry Programs

    Los Angeles, CA. #10 in Organic. Organic chemistry involves carbon molecules and their structure, properties and behavior. Organic chemists work in research and development, teaching and industry ...

  2. PhD Program

    PhD Program. Professor Wender discusses chemistry with his graduate students. Doctoral study in chemistry at Stanford University prepares students for research and teaching careers with diverse emphases in basic, life, medical, physical, energy, materials, and environmental sciences. The Department of Chemistry offers opportunities for graduate ...

  3. PhD in Chemistry

    Students build a solid foundation in all four core areas of chemistry (analytical, inorganic, organic, and physical), and a thorough knowledge of their chosen field of specialization. In the first part of the PhD program, students take at least one formal classroom course in each the core areas of chemistry as outlined in the course ...

  4. Organic Chemistry Graduate Program

    Learn how to prepare for research opportunities in modern chemistry, biological chemistry, and materials science at the crossroads of biomedical importance. UT Southwestern offers a top-notch program with dynamic research, world-class facilities, and top-notch faculty.

  5. Chemistry, PhD < Johns Hopkins University

    The Hopkins graduate program is designed for students who desire a PhD in chemistry while advancing scientific knowledge for humankind. ... Advanced Mechanistic Organic Chemistry I: 3: AS.030.626: Advanced Mechanistic Organic Chemistry II: 3: AS.030.677: Advanced Organic Synthesis I: 3: Johns Hopkins University; Baltimore, MD;

  6. Chemistry PhD

    Students in the Organic Chemistry PhD track are required to take one core course, two core organic chemistry track courses, three elective courses, and at least six credits of Graduate Seminar and twenty credits of dissertation research. Of the three elective courses, one must be in the Chemistry Department, whereas up to two can be from other ...

  7. PhD Program

    The Graduate Program is designed for students who wish to earn a Ph.D. in Chemistry while undertaking cutting edge research. The program provides students with the necessary theoretical background and hands-on training to become independent and highly successful scientists. Graduate students achieve mastery of advanced chemistry topics through ...

  8. Graduate

    Johns Hopkins University was the first American institution to emphasize graduate education and to establish a PhD program in chemistry. Founding Chair Ira Remsen initiated a tradition of excellence in research and education that has continued until this day. The Hopkins graduate program is designed for students who desire a PhD in chemistry while advancing...

  9. Graduate Program

    Our program in Chemistry offers research and training opportunities in many subdisciplines of chemistry, including chemical biology, inorganic, organic, physical, and theoretical. Chemical Physics Our interdepartmental Chemical Physics program is designed for students who wish to prepare themselves for the study of chemical problems by the ...

  10. Chemistry < University of California, Berkeley

    The Chemistry PhD program is designed towards developing the ability to do creative scientific research. ... Spring 2020 Advanced topics in organic chemistry with a focus on the reactivity and synthesis of aromatic heterocycles. Classic and modern methods for the synthesis of indoles, pyridines, furans, pyrroles, and quinolines will be covered ...

  11. About the Chemistry Ph.D. Program

    The Chemistry PhD program is designed towards developing within each student the ability to do creative scientific research. Accordingly, the single most important facet of the curriculum for an individual is their own research project. ... Synthetic Chemistry: The Synthetic Chemistry Graduate Program includes emphases in either organic or ...

  12. Organic Chemistry

    The organic chemistry path at UW-Madison includes a large selection of top research groups. Organic chemistry graduate students may study areas such as synthetic, mechanistic, bioorganic, organometallic, combinatorial, materials, catalytic, structural, and computational chemistry. The degree of interaction and collaboration among research ...

  13. Ph.D. Program

    The official course of study in the Ph.D. graduate program begins during the second week of August, one week before the official start of the Fall Semester at Cornell. All incoming Ph.D. students take a series of graduate proficiency exams in Organic, Inorganic, and Physical Chemistry provided by the American Chemical Society (ACS).

  14. Ph.D. in Chemistry

    The doctoral program in chemistry features research programs that span the "traditional" sub-disciplines of chemistry, including analytical, biological, inorganic, organic, physical and theoretical chemistry.

  15. Graduate

    Currently, these exams are in the following areas: Inorganic, Organic, and Physical. The results of the examinations will provide the Chemistry Department with information regarding the entering class as a group and the Graduate Studies Committee with information about the scientific backgrounds of individual members of the entering class.

  16. Organic Chemistry

    This is the first quarter of the advanced organic chemistry sequence. Chem 254 students will be required to complete an additional paper and/or exam beyond that expected of students in Chem 154. Prerequisites: Chem 140C or 140CH (154), or graduate standing (254).

  17. Organic Chemistry PhD projects

    Most PhDs in Organic Chemistry will require you to write an 80,000-word thesis to be defended in an oral viva examination at the end of your study. The minimum entry requirement for a PhD in Organic Chemistry is usually a 2:1 undergraduate degree in a relevant subject, such as Biology, Chemistry or Physics, along with a Masters qualification.

  18. Chemistry PhD

    Chemistry PhD. The goal of the Chemistry PhD is to prepare students for careers in science as researchers and educators by expanding their knowledge of chemistry while developing their ability for critical analysis, creativity, and independent study. ... spanning inorganic, organic, physical, analytical, computational, and theoretical chemistry ...

  19. Organic Chemistry

    Organic Chemistry Faculty. CCB's long and illustrious history of accomplishment in the area of carbon-containing compounds is exemplified by pioneering syntheses of the complex molecules palytoxin and vitamin B12. With emphasis on development of new reaction methodology and synthesis of families of molecules ranging from small probes to large ...

  20. Organic Chemistry

    Organic chemistry lends itself naturally to interdisciplinary study, and many students interact extensively with students and faculty in the departments of Molecular Biophysics and Biochemistry (MB&B), Molecular, Cellular, and Developmental Biology (MCDB), Applied Physics, and Engineering. Overall, the goal of the faculty is to ensure that each ...

  21. A PhD in Organic Chemistry

    Most graduate students in organic chemistry finish all or almost all of their required coursework during their first year. There is a major requirement (basically Chem 641, 843 and 841) and a minor requirement (10 additional credits of coursework). University regulations require that full-time graduate students register for 12 credits of ...

  22. 1,144 organic-chemistry PhD positions

    PhD student in Organic Chemistry in the area of heterogeneous catalysis for sustainable organic synthesis. Ref. No. SU FV-0857-24 at the Department of Organic Chemistry . Closing date: 23 April 2024. The Department of Organic Chemistry has an extensive research program, covering many areas.

  23. PhD Organic Chemistry Salary, Jobs, Admission, Syllabus ...

    PhD Organic Chemistry is a 3-year duration doctorate course especially designed to teach students regarding advanced study in the field of Organic Chemistry, the in-depth knowledge of Biochemistry, Synthetic Organic Chemistry, Natural Product Chemistry, Medicinal Chemistry and some other research areas.

  24. PhD in Organic Chemistry: Molecular Photoswitches with Fluorescent

    The Laboratory of Photochemistry of Organic Compounds at the Faculty of Natural Sciences, Comenius University in Bratislava is looking for candidates to pursue a PhD degree in organic chemistry with the focus on molecular photoswitches with fluorescent subunit under supervision of assoc. prof. Marek Cigáň ( Marek Cigáň (0000-0001-7734-626X ...