Floor Tape Store

Tuesday, May 15, 2012

  • The Six-Step Problem-Solving Process

are the six steps of problem solving

  • Select the problem to be analyzed
  • Clearly define the problem and establish aprecise problem statement
  • Set a measurable goal for the problem solving effort
  • Establish a process for coordinating with and gaining approval of leadership
  • Identify the processes that impact the problem and select one
  • List the steps in the process as it currently exists
  • Map the Process
  • Validate the map of the process
  • Identify potential cause of the problem
  • Collect and analyze data related to the problem
  • Verify or revise the original problem statement
  • Identify root causes of the problem
  • Collect additional data if needed to verify root causes
  • Establish criteria for selecting a solution
  • Generate potential solutions that will address the root causes of the problem
  • Select a solution
  • Gain approval and supporter the chosen solution
  • Plan the solution
  • Implement the chosen solution on a trial or pilot basis
  • If the Problem Solving Process is being used in conjunction with the Continuous Improvement Process, return to Step 6 of the Continuous Improvement Process
  • If the Problem Solving Process is being used as a standalone, continue to Step 5
  • Gather data on the solution
  • Analyze the data on the solution
  • Achive the desired results?
  • If YES, go to Step 6. 
  • If NO, go back to Step 1.
  • Identify systemic changes and training needs for full implementation
  • Adopt the solution
  • Plan ongoing monitoring of the solution
  • Continue to look for incremental improvements to refine the solution
  • Look for another improvement opportunity

Subscribe via Email

4 comments:

Tim, This is a good guideline for any practitioner to follow. I wish I had this a few weeks ago. A client liked a training deck I prepared but didn't want to confuse anyone with terms like Deming Cycle and such. The final version of PDCA was a 6 step process improvement method that's very similar to yours. Thanks for sharing. Cheers, Chris

Thank you for you brief and easy to understand on each step problem solving above.

Wonderful. Well Explained. Thank you for sharing

I mapped this to PDCA and observed that the first 3 steps correspond to P, the next 3 to D, C and A respectively. This Show that indeed planning is the most important step in PDCA.

Subscribe via Email

Search A Lean Journey

Twitter updates.

  • Facebook Updates
  • Advertising

Subscribe Now

are the six steps of problem solving

Get new posts by email:

A Lean Journey LinkedIn Group

Recent comments, search this blog, top 10 posts.

  • Celebrating my 500th Blog Post
  • Visual Management Board
  • Guest Post: Reduce, Reuse, Recycle...
  • What Do We Mean By True North?
  • Five Lean Games Every Company Can Benefit From
  • 10 Characteristics of a Good Measure and 7 Pitfalls to Avoid
  • DOWNTIME and the Eight Wastes
  • The 8 Common Wastes in an Office That Cause Downtime
  • Lean Leadership: Lessons from Abe Lincoln

Blog Archive

  • ►  April (1)
  • ►  March (13)
  • ►  February (12)
  • ►  January (14)
  • ►  December (11)
  • ►  November (13)
  • ►  October (12)
  • ►  September (13)
  • ►  August (13)
  • ►  July (8)
  • ►  June (13)
  • ►  May (14)
  • ►  April (12)
  • ►  February (13)
  • ►  January (13)
  • ►  December (12)
  • ►  October (13)
  • ►  August (14)
  • ►  July (13)
  • ►  May (13)
  • ►  April (13)
  • ►  August (10)
  • ►  March (14)
  • ►  July (14)
  • ►  December (10)
  • ►  June (12)
  • ►  April (9)
  • ►  December (13)
  • ►  October (14)
  • ►  September (12)
  • ►  May (12)
  • ►  January (12)
  • ►  October (15)
  • ►  December (14)
  • ►  November (12)
  • ►  January (15)
  • ►  August (17)
  • ►  July (19)
  • ►  June (16)
  • ►  May (19)
  • ►  April (18)
  • ►  March (17)
  • ►  February (16)
  • ►  January (18)
  • ►  December (19)
  • ►  November (18)
  • ►  October (20)
  • ►  September (18)
  • ►  August (22)
  • ►  July (23)
  • ►  June (21)
  • Lean Roundup #36 – May, 2012
  • Meet-up: Beyond Lean's Matt Wrye
  • Meet-up: 6 Questions to Learn of Those in Our Comm...
  • Memorial Day is a Time for Remembrance
  • Lean Quote: Change Leaders Create Constancy of Pur...
  • Celebrating A Lean Journey's Third Year With Some ...
  • Quality Improvement in Government?
  • Webinar: Checking Your Lean Progress
  • Lean Quote: Ability, Motivation, Attitude
  • Daily Lean Tips Edition #31
  • Leveraging Quality to Achieve Your Business Goals
  • Lean Quote: Continuous Improvement is About Findin...
  • Management Improvement Blog Carnival #166
  • Top 3 “Old School” Apps for Lean
  • Creating A Quality Focused Culture
  • Lean Quote: Opportunity is Dressed as Hard Work
  • Kanban Flow - A Free, Fast, & Flexible Kanban Tool
  • Demonstrating Commitment Is A Combination of Suppo...
  • ►  April (17)
  • ►  February (18)
  • ►  January (20)
  • ►  December (18)
  • ►  November (19)
  • ►  October (17)
  • ►  September (22)
  • ►  July (20)
  • ►  June (20)
  • ►  May (21)
  • ►  April (19)
  • ►  March (20)
  • ►  February (17)
  • ►  January (17)
  • ►  December (20)
  • ►  November (15)
  • ►  August (18)
  • ►  July (17)
  • ►  April (14)
  • ►  November (17)
  • ►  July (15)
  • ►  June (9)
  • ►  May (5)
  • A Lean Journey (79)
  • A Year Ago (8)
  • ASQ's Influential Voices (40)
  • Book Review (63)
  • Change Management (53)
  • Communication (11)
  • Conference (10)
  • Culture (38)
  • Customer Focus (2)
  • Daily Management (1)
  • Development/Training (13)
  • Empowerment (19)
  • Engagement (37)
  • Exercises/Games (8)
  • Facilitation (2)
  • Feedback (3)
  • Guest Post (167)
  • In the News (69)
  • Innovation (2)
  • L.A.M.E. (5)
  • Leadership (218)
  • Lean and Green (12)
  • Lean Basics (109)
  • Lean Definition (24)
  • Lean Fun (10)
  • Lean in Practice (55)
  • Lean Management (150)
  • Lean Office (14)
  • Lean Products (4)
  • Lean Quote (718)
  • Lean Resources (44)
  • Lean Roundup (197)
  • Lean Thinking (5)
  • Lean Tips (230)
  • Meet-up (25)
  • Podcast (5)
  • Problem Solving (21)
  • Product Review (2)
  • Project Management (6)
  • Quality (48)
  • Respect For People (57)
  • Sharing Best Practices (129)
  • Soft Skills (3)
  • Strategy (6)
  • Supply Chain (1)
  • Talking Lean (1)
  • Teamwork (42)
  • Visual Factory (31)
  • Webinar (23)

Lean Blogs I Like

  • 2 Lean Principles
  • 5S Supply Blog
  • Avoiding The Corporate Death Spiral
  • Be More Careful!
  • Curious Cat
  • Daily Kaizen
  • Evolving Excellence
  • Gemba Panta Rei
  • Gemba Tales
  • Got Boondoggle?
  • Gotta Go Lean Blog
  • Improve With Me
  • Jamie Flinchbaugh
  • Kaizen Notebook
  • Lean Builder
  • Lean Communications
  • Lean For Everyone
  • Lean Healthcare Exchange
  • Lean Homebuilding
  • Lean Insider
  • Lean Is Good
  • Lean Leadership
  • Lean Pathways
  • Lean Printing
  • Lean Reflections
  • Lean Simulations
  • Lean Six Sigma Academy
  • LeanCor Blog
  • Learn Lean Manufacturing
  • Learning About Lean
  • Old Lean Dude Blog
  • The A3 Post
  • The Lean Edge
  • The Lean Library
  • The Lean Logistics Blog
  • The Lean Thinker
  • The Lean Way Consulting
  • TimeBack Blog
  • To The Gemba
  • Training Within Industry
  • Visual Management Blog

Other Sites I like

  • AME's Target Magazine
  • AnythingLean.com
  • Art of Lean
  • Bosch Rexroth Lean Production
  • CIRAS - Theory of Constraints
  • Chasing The Rabbit
  • Corporate Event Management
  • Creative Safety Supply
  • Creative Safety Supply 5S Resource Page
  • Fuss & O'Neill SPL
  • Gemba Academy
  • Grassroots Innovation
  • IndustryWeek
  • Lean Enterprise Institute
  • Leanovations
  • Learn More McGraw-Hill
  • MEP University
  • Manufacturers BlogNotions
  • Manufacturing Business Technology
  • Manufacturing Pulse
  • Modern Machine Shop
  • Running A Hospital
  • Superfactory
  • The 5S Store
  • Unclutterer
  • Visual Workplace
  • Xtreme Lean Consulting
  • catalyst for change
  • freeleansite.com

wibiya widget

A lean journey blog - copyright © 2009-2024 tim mcmahon - all rights reserved.

Six Steps to Develop an Effective Problem-Solving Process

by Rawzaba Alhalabi Published on November 1, 2017

Problem-solving involves thought and understanding. Although it may appear simple, identifying a problem may be a challenging process.

“Problems are only opportunities in work clothes”, says American industrialist Henry Kaiser. According to Concise Oxford Dictionary (1995), a problem is “ doubtful or difficult matter requiring a solution” and “something hard to understand or accomplish or deal with.” Such situations are at the center of what many people do at work every day.

Whether to help a client solve a problem, support a problem-solver, or to discover new problems, problem-solving is a crucial element to the workplace ingredients. Everyone can benefit from effective problem-solving skills that would make people happier. Everyone wins. Hence, this approach is a critical element but how can you do it effectively? You need to find a solution, but not right away. People tend to put the solution at the beginning of the process but they actually needed it at the end of the process.

Here are six steps to an effective problem-solving process:

Identify the issues, understand everyone’s interests, list the possible solutions, make a decision, implement the solution.

By following the whole process, you will be able to enhance your problem-solving skills and increase your patience. Keep in mind that effective problem solving does take some time and attention. You have to always be ready to hit the brakes and slow down. A problem is like a bump road. Take it right and you’ll find yourself in good shape for the straightaway that follows. Take it too fast and you may not be in as good shape.

Case study 1:

According to Real Time Economics, there are industries that have genuinely evolved, with more roles for people with analytical and problem-solving skills. In healthcare, for example, a regulatory change requiring the digitization of health records has led to greater demand for medical records technicians. Technological change in the manufacturing industry has reduced routine factory jobs while demanding more skilled workers who can operate complex machinery.

Case study 2:

Yolanda was having a hard time dealing with difficult clients and dealing with her team at the office, so she decided to take a problem-solving course. “I was very pleased with the 2-day Problem Solving program at RSM.  It is an excellent investment for anyone involved in the strategic decision-making process—be it in their own company or as a consultant charged with supporting organizations facing strategic challenges.“

Yolanda Barreros Gutiérrez, B&C Consulting

As a response to the COVID-19 outbreak, Potential.com is offering individuals free access to our future skills library (20+ Courses) to support you during the COVID outbreak. It’s your chance to learn essential skills to help you prepare for future jobs. Register now for free using your details and coupon code: potentialreader .

Click here to register (coupon embedded) .

Having read this I believed it was extremely enlightening. I appreciate you taking the time and energy to put tis informative article together. I onc again findd myself spending a significant amount of time both reading and leavfing comments. But so what, it was still worth it!

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Subscribe to our newsletter

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Overview of the Problem-Solving Mental Process

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

are the six steps of problem solving

Rachel Goldman, PhD FTOS, is a licensed psychologist, clinical assistant professor, speaker, wellness expert specializing in eating behaviors, stress management, and health behavior change.

are the six steps of problem solving

  • Identify the Problem
  • Define the Problem
  • Form a Strategy
  • Organize Information
  • Allocate Resources
  • Monitor Progress
  • Evaluate the Results

Frequently Asked Questions

Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue.

The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything they can about the issue and then using factual knowledge to come up with a solution. In other instances, creativity and insight are the best options.

It is not necessary to follow problem-solving steps sequentially, It is common to skip steps or even go back through steps multiple times until the desired solution is reached.

In order to correctly solve a problem, it is often important to follow a series of steps. Researchers sometimes refer to this as the problem-solving cycle. While this cycle is portrayed sequentially, people rarely follow a rigid series of steps to find a solution.

The following steps include developing strategies and organizing knowledge.

1. Identifying the Problem

While it may seem like an obvious step, identifying the problem is not always as simple as it sounds. In some cases, people might mistakenly identify the wrong source of a problem, which will make attempts to solve it inefficient or even useless.

Some strategies that you might use to figure out the source of a problem include :

  • Asking questions about the problem
  • Breaking the problem down into smaller pieces
  • Looking at the problem from different perspectives
  • Conducting research to figure out what relationships exist between different variables

2. Defining the Problem

After the problem has been identified, it is important to fully define the problem so that it can be solved. You can define a problem by operationally defining each aspect of the problem and setting goals for what aspects of the problem you will address

At this point, you should focus on figuring out which aspects of the problems are facts and which are opinions. State the problem clearly and identify the scope of the solution.

3. Forming a Strategy

After the problem has been identified, it is time to start brainstorming potential solutions. This step usually involves generating as many ideas as possible without judging their quality. Once several possibilities have been generated, they can be evaluated and narrowed down.

The next step is to develop a strategy to solve the problem. The approach used will vary depending upon the situation and the individual's unique preferences. Common problem-solving strategies include heuristics and algorithms.

  • Heuristics are mental shortcuts that are often based on solutions that have worked in the past. They can work well if the problem is similar to something you have encountered before and are often the best choice if you need a fast solution.
  • Algorithms are step-by-step strategies that are guaranteed to produce a correct result. While this approach is great for accuracy, it can also consume time and resources.

Heuristics are often best used when time is of the essence, while algorithms are a better choice when a decision needs to be as accurate as possible.

4. Organizing Information

Before coming up with a solution, you need to first organize the available information. What do you know about the problem? What do you not know? The more information that is available the better prepared you will be to come up with an accurate solution.

When approaching a problem, it is important to make sure that you have all the data you need. Making a decision without adequate information can lead to biased or inaccurate results.

5. Allocating Resources

Of course, we don't always have unlimited money, time, and other resources to solve a problem. Before you begin to solve a problem, you need to determine how high priority it is.

If it is an important problem, it is probably worth allocating more resources to solving it. If, however, it is a fairly unimportant problem, then you do not want to spend too much of your available resources on coming up with a solution.

At this stage, it is important to consider all of the factors that might affect the problem at hand. This includes looking at the available resources, deadlines that need to be met, and any possible risks involved in each solution. After careful evaluation, a decision can be made about which solution to pursue.

6. Monitoring Progress

After selecting a problem-solving strategy, it is time to put the plan into action and see if it works. This step might involve trying out different solutions to see which one is the most effective.

It is also important to monitor the situation after implementing a solution to ensure that the problem has been solved and that no new problems have arisen as a result of the proposed solution.

Effective problem-solvers tend to monitor their progress as they work towards a solution. If they are not making good progress toward reaching their goal, they will reevaluate their approach or look for new strategies .

7. Evaluating the Results

After a solution has been reached, it is important to evaluate the results to determine if it is the best possible solution to the problem. This evaluation might be immediate, such as checking the results of a math problem to ensure the answer is correct, or it can be delayed, such as evaluating the success of a therapy program after several months of treatment.

Once a problem has been solved, it is important to take some time to reflect on the process that was used and evaluate the results. This will help you to improve your problem-solving skills and become more efficient at solving future problems.

A Word From Verywell​

It is important to remember that there are many different problem-solving processes with different steps, and this is just one example. Problem-solving in real-world situations requires a great deal of resourcefulness, flexibility, resilience, and continuous interaction with the environment.

Get Advice From The Verywell Mind Podcast

Hosted by therapist Amy Morin, LCSW, this episode of The Verywell Mind Podcast shares how you can stop dwelling in a negative mindset.

Follow Now : Apple Podcasts / Spotify / Google Podcasts

You can become a better problem solving by:

  • Practicing brainstorming and coming up with multiple potential solutions to problems
  • Being open-minded and considering all possible options before making a decision
  • Breaking down problems into smaller, more manageable pieces
  • Asking for help when needed
  • Researching different problem-solving techniques and trying out new ones
  • Learning from mistakes and using them as opportunities to grow

It's important to communicate openly and honestly with your partner about what's going on. Try to see things from their perspective as well as your own. Work together to find a resolution that works for both of you. Be willing to compromise and accept that there may not be a perfect solution.

Take breaks if things are getting too heated, and come back to the problem when you feel calm and collected. Don't try to fix every problem on your own—consider asking a therapist or counselor for help and insight.

If you've tried everything and there doesn't seem to be a way to fix the problem, you may have to learn to accept it. This can be difficult, but try to focus on the positive aspects of your life and remember that every situation is temporary. Don't dwell on what's going wrong—instead, think about what's going right. Find support by talking to friends or family. Seek professional help if you're having trouble coping.

Davidson JE, Sternberg RJ, editors.  The Psychology of Problem Solving .  Cambridge University Press; 2003. doi:10.1017/CBO9780511615771

Sarathy V. Real world problem-solving .  Front Hum Neurosci . 2018;12:261. Published 2018 Jun 26. doi:10.3389/fnhum.2018.00261

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

loading

How it works

For Business

Join Mind Tools

Article • 4 min read

The Problem-Solving Process

Looking at the basic problem-solving process to help keep you on the right track.

By the Mind Tools Content Team

Problem-solving is an important part of planning and decision-making. The process has much in common with the decision-making process, and in the case of complex decisions, can form part of the process itself.

We face and solve problems every day, in a variety of guises and of differing complexity. Some, such as the resolution of a serious complaint, require a significant amount of time, thought and investigation. Others, such as a printer running out of paper, are so quickly resolved they barely register as a problem at all.

are the six steps of problem solving

Despite the everyday occurrence of problems, many people lack confidence when it comes to solving them, and as a result may chose to stay with the status quo rather than tackle the issue. Broken down into steps, however, the problem-solving process is very simple. While there are many tools and techniques available to help us solve problems, the outline process remains the same.

The main stages of problem-solving are outlined below, though not all are required for every problem that needs to be solved.

are the six steps of problem solving

1. Define the Problem

Clarify the problem before trying to solve it. A common mistake with problem-solving is to react to what the problem appears to be, rather than what it actually is. Write down a simple statement of the problem, and then underline the key words. Be certain there are no hidden assumptions in the key words you have underlined. One way of doing this is to use a synonym to replace the key words. For example, ‘We need to encourage higher productivity ’ might become ‘We need to promote superior output ’ which has a different meaning.

2. Analyze the Problem

Ask yourself, and others, the following questions.

  • Where is the problem occurring?
  • When is it occurring?
  • Why is it happening?

Be careful not to jump to ‘who is causing the problem?’. When stressed and faced with a problem it is all too easy to assign blame. This, however, can cause negative feeling and does not help to solve the problem. As an example, if an employee is underperforming, the root of the problem might lie in a number of areas, such as lack of training, workplace bullying or management style. To assign immediate blame to the employee would not therefore resolve the underlying issue.

Once the answers to the where, when and why have been determined, the following questions should also be asked:

  • Where can further information be found?
  • Is this information correct, up-to-date and unbiased?
  • What does this information mean in terms of the available options?

3. Generate Potential Solutions

When generating potential solutions it can be a good idea to have a mixture of ‘right brain’ and ‘left brain’ thinkers. In other words, some people who think laterally and some who think logically. This provides a balance in terms of generating the widest possible variety of solutions while also being realistic about what can be achieved. There are many tools and techniques which can help produce solutions, including thinking about the problem from a number of different perspectives, and brainstorming, where a team or individual write as many possibilities as they can think of to encourage lateral thinking and generate a broad range of potential solutions.

4. Select Best Solution

When selecting the best solution, consider:

  • Is this a long-term solution, or a ‘quick fix’?
  • Is the solution achievable in terms of available resources and time?
  • Are there any risks associated with the chosen solution?
  • Could the solution, in itself, lead to other problems?

This stage in particular demonstrates why problem-solving and decision-making are so closely related.

5. Take Action

In order to implement the chosen solution effectively, consider the following:

  • What will the situation look like when the problem is resolved?
  • What needs to be done to implement the solution? Are there systems or processes that need to be adjusted?
  • What will be the success indicators?
  • What are the timescales for the implementation? Does the scale of the problem/implementation require a project plan?
  • Who is responsible?

Once the answers to all the above questions are written down, they can form the basis of an action plan.

6. Monitor and Review

One of the most important factors in successful problem-solving is continual observation and feedback. Use the success indicators in the action plan to monitor progress on a regular basis. Is everything as expected? Is everything on schedule? Keep an eye on priorities and timelines to prevent them from slipping.

If the indicators are not being met, or if timescales are slipping, consider what can be done. Was the plan realistic? If so, are sufficient resources being made available? Are these resources targeting the correct part of the plan? Or does the plan need to be amended? Regular review and discussion of the action plan is important so small adjustments can be made on a regular basis to help keep everything on track.

Once all the indicators have been met and the problem has been resolved, consider what steps can now be taken to prevent this type of problem recurring? It may be that the chosen solution already prevents a recurrence, however if an interim or partial solution has been chosen it is important not to lose momentum.

Problems, by their very nature, will not always fit neatly into a structured problem-solving process. This process, therefore, is designed as a framework which can be adapted to individual needs and nature.

Join Mind Tools and get access to exclusive content.

This resource is only available to Mind Tools members.

Already a member? Please Login here

are the six steps of problem solving

Get 20% off your first year of Mind Tools

Our on-demand e-learning resources let you learn at your own pace, fitting seamlessly into your busy workday. Join today and save with our limited time offer!

Sign-up to our newsletter

Subscribing to the Mind Tools newsletter will keep you up-to-date with our latest updates and newest resources.

Subscribe now

Business Skills

Personal Development

Leadership and Management

Member Extras

Most Popular

Newest Releases

Article am7y1zt

Pain Points Podcast - Balancing Work And Kids

Article aexy3sj

Pain Points Podcast - Improving Culture

Mind Tools Store

About Mind Tools Content

Discover something new today

Pain points podcast - what is ai.

Exploring Artificial Intelligence

Pain Points Podcast - How Do I Get Organized?

It's Time to Get Yourself Sorted!

How Emotionally Intelligent Are You?

Boosting Your People Skills

Self-Assessment

What's Your Leadership Style?

Learn About the Strengths and Weaknesses of the Way You Like to Lead

Recommended for you

Top tips for staying focused.

If You Have Trouble Concentrating These Tips Will Help You Focus

Business Operations and Process Management

Strategy Tools

Customer Service

Business Ethics and Values

Handling Information and Data

Project Management

Knowledge Management

Self-Development and Goal Setting

Time Management

Presentation Skills

Learning Skills

Career Skills

Communication Skills

Negotiation, Persuasion and Influence

Working With Others

Difficult Conversations

Creativity Tools

Self-Management

Work-Life Balance

Stress Management and Wellbeing

Coaching and Mentoring

Change Management

Team Management

Managing Conflict

Delegation and Empowerment

Performance Management

Leadership Skills

Developing Your Team

Talent Management

Problem Solving

Decision Making

Member Podcast

ChatableApps

Mastering the Six Step Problem Solving Model – A Comprehensive Guide for Effective Solutions

Introduction.

Problem-solving skills are essential in both personal and professional lives. Whether you are facing a small issue or a complex challenge, having a structured approach can help you navigate through the problem, analyze it thoroughly, and find effective solutions. One popular and widely-used problem-solving model is the Six Step Problem Solving Model. In this blog post, we will explore the six steps of this model in detail, discussing how each step contributes to solving problems successfully.

Understanding the Six Step Problem Solving Model

The Six Step Problem Solving Model provides a systematic framework for approaching problems. Each step plays a crucial role in understanding, analyzing, and resolving the problem at hand. Let’s delve into each step:

Step 1: Define the problem

The first step is to clearly define the problem. This involves identifying the issue you are facing and understanding its importance. You must have a clear understanding of what needs to be solved before you can move forward. A well-defined problem statement sets the foundation for effective problem-solving.

Step 2: Analyze the problem

Once the problem is defined, it’s time to analyze it. This step involves gathering relevant information and identifying the root causes of the problem. By thoroughly understanding the underlying factors contributing to the problem, you can develop targeted strategies to address them.

Step 3: Generate potential solutions

After analyzing the problem, it’s time to brainstorm potential solutions. This step encourages creative thinking and exploration of different possibilities. Utilizing various brainstorming techniques can help generate a wide range of ideas. Once potential solutions are identified, it’s crucial to evaluate them based on their feasibility and potential impact.

Step 4: Choose the best solution

With a list of potential solutions in hand, it’s important to choose the best one. This step involves utilizing decision-making tools to evaluate each solution’s strengths and weaknesses. Factors such as feasibility, cost, and potential impact should be considered during the decision-making process. By selecting the most effective solution, you increase the likelihood of achieving a successful outcome.

Step 5: Implement the solution

Once a solution has been chosen, it’s time to put it into action. This step requires developing a detailed action plan that outlines the necessary steps to implement the solution effectively. Additionally, assigning responsibilities ensures that everyone involved understands their role in the implementation process. By having a well-structured plan, you can streamline the implementation process and minimize potential setbacks.

Step 6: Evaluate and follow-up

The final step of the problem-solving model is to evaluate the effectiveness of the solution implementation and make necessary adjustments if needed. This step involves assessing whether the solution has produced the desired outcome or if further modifications are required. Regular follow-ups are essential to ensure continuous improvement and address any new challenges that arise.

Applying the Six Step Problem Solving Model in Real-life Scenarios

The Six Step Problem Solving Model can be applied to various real-life situations, both personal and professional. Let’s explore some examples:

Personal problem-solving

When faced with a personal problem, such as managing time effectively or improving relationships, the Six Step Problem Solving Model can be a valuable tool. By defining the problem, analyzing its causes, generating potential solutions, choosing the best one, implementing it, and evaluating the results, individuals can overcome personal challenges and improve their well-being.

Professional problem-solving

In a professional setting, problem-solving skills are vital for success. From addressing customer complaints to optimizing business processes, the Six Step Problem Solving Model provides a structured approach. Applying the model allows for a thorough understanding of the problem, consideration of multiple solutions, informed decision-making, effective implementation, and continuous evaluation for improvement.

Case studies highlighting successful application of the model

Let’s take a look at a few case studies that demonstrate the successful application of the Six Step Problem Solving Model:

  • Case Study 1: Resolving Customer Complaints: A customer service team at a retail store implemented the Six Step Problem Solving Model to address a high volume of customer complaints. By defining the problem (long wait times and inadequate product knowledge), analyzing the root causes (staffing issues and lack of training), generating potential solutions (hiring additional staff, providing comprehensive training), choosing the best solution (opting for both solutions), implementing the changes, and evaluating the results, the team successfully reduced customer complaints and improved overall customer satisfaction.
  • Case Study 2: Streamlining Manufacturing Processes: A manufacturing company faced inefficiencies in its production line, resulting in increased costs and delays in product delivery. Utilizing the Six Step Problem Solving Model, the team defined the problem (inefficient workflows and bottlenecks), analyzed the root causes (ineffective equipment maintenance and suboptimal process design), generated potential solutions (implementing regular maintenance schedules, reconfiguring layouts), chose the best solution (combination of both solutions), implemented the changes, and continuously evaluated and adjusted strategies. As a result, the company improved productivity, reduced costs, and enhanced customer satisfaction.

Tips and Best Practices for Mastering the Six Step Problem Solving Model

Mastering the Six Step Problem Solving Model requires a combination of critical thinking, effective communication, and appropriate utilization of problem-solving tools and techniques. Here are some tips to enhance your proficiency in using this model:

Developing critical thinking skills

Critical thinking is essential for problem-solving. Sharpening your critical thinking skills allows you to objectively analyze situations, identify patterns, and generate creative and effective solutions. Engage in activities that promote critical thinking, such as puzzles or mind mapping exercises, to enhance this skill.

Enhancing communication and collaboration

Effective communication and collaboration are key to successful problem-solving. Encourage open and constructive dialogue within teams, actively listen to others’ perspectives, and promote idea sharing. By fostering a collaborative environment, you can tap into the collective knowledge and insights of your team, leading to more comprehensive and innovative solutions.

Utilizing problem-solving tools and techniques

There are various problem-solving tools and techniques available that can complement the Six Step Problem Solving Model. Examples include SWOT analysis, Fishbone diagrams, and decision matrices. Familiarize yourself with these tools, and utilize them as appropriate to enhance your problem-solving capabilities.

Advantages and Limitations of the Six Step Problem Solving Model

While the Six Step Problem Solving Model provides a structured approach to problem-solving, it is important to consider its advantages and limitations:

Advantages of using a structured approach

Using a structured approach, such as the Six Step Problem Solving Model, offers several benefits. It provides a clear framework that guides problem-solving activities, ensures thorough analysis of the problem, and encourages systematic decision-making. Additionally, this model allows for continuous evaluation and improvement, enabling individuals and teams to continuously refine their problem-solving skills.

Potential challenges and drawbacks

There are a few potential challenges and drawbacks to be aware of when using the Six Step Problem Solving Model. It may require significant time and effort to complete all six steps, especially for complex problems. Additionally, this model assumes a linear problem-solving process, which may not always align with the dynamic and iterative nature of certain challenges. It is important to adapt the model as needed to accommodate different problem-solving contexts.

The Six Step Problem Solving Model provides individuals and teams with an effective framework for approaching and resolving problems. By defining the problem, analyzing it thoroughly, generating potential solutions, choosing the most suitable option, implementing it effectively, and continuously evaluating and adjusting strategies, you can overcome obstacles and achieve successful outcomes. Mastering this model requires critical thinking, effective communication, and a willingness to learn and improve. Apply the Six Step Problem Solving Model in your personal and professional life and witness the positive impact it can have on problem-solving processes.

Related articles:

  • Mastering the Six Step Problem Solving Model – A Step-by-Step Guide for Effective Solutions
  • Understanding AI Model Drift – Causes, Challenges, and Solutions
  • Mastering the Art of Critical Thinking and Problem Solving – A Comprehensive Definition and Guide
  • Mastering the Six-Step Problem Solving Model – A Comprehensive Guide for Success

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Creating Environments Conducive to Social Interaction
  • Thinking Ethically: A Framework for Moral Decision Making
  • Developing a Positive Climate with Trust and Respect
  • Developing Self-Esteem, Confidence, Resiliency, and Mindset
  • Developing Ability to Consider Different Perspectives
  • Developing Tools and Techniques Useful in Social Problem-Solving
  • Leadership Problem-Solving Model
  • A Problem-Solving Model for Improving Student Achievement

Six-Step Problem-Solving Model

  • Hurson’s Productive Thinking Model: Solving Problems Creatively
  • The Power of Storytelling and Play
  • Creative Documentation & Assessment
  • Materials for Use in Creating “Third Party” Solution Scenarios
  • Resources for Connecting Schools to Communities
  • Resources for Enabling Students

weblink:  http://www.yale.edu/bestpractices/resources/docs/problemsolvingmodel.pdf

This six-step model is designed for the workplace, but is easily adaptable to other settings such as schools and families.  It emphasizes the cyclical , continuous nature of the problem-solving process .  The model describes in detail the following steps:

Step One:   Define the Problem

Step Two:   Determine the Root Cause(s) of the Problem

Step Three:   Develop Alternative Solutions

Step Four:   Select a Solution

Step Five:   Implement the Solution

Step Six:   Evaluate the Outcome

Status.net

What is Problem Solving? (Steps, Techniques, Examples)

By Status.net Editorial Team on May 7, 2023 — 5 minutes to read

What Is Problem Solving?

Definition and importance.

Problem solving is the process of finding solutions to obstacles or challenges you encounter in your life or work. It is a crucial skill that allows you to tackle complex situations, adapt to changes, and overcome difficulties with ease. Mastering this ability will contribute to both your personal and professional growth, leading to more successful outcomes and better decision-making.

Problem-Solving Steps

The problem-solving process typically includes the following steps:

  • Identify the issue : Recognize the problem that needs to be solved.
  • Analyze the situation : Examine the issue in depth, gather all relevant information, and consider any limitations or constraints that may be present.
  • Generate potential solutions : Brainstorm a list of possible solutions to the issue, without immediately judging or evaluating them.
  • Evaluate options : Weigh the pros and cons of each potential solution, considering factors such as feasibility, effectiveness, and potential risks.
  • Select the best solution : Choose the option that best addresses the problem and aligns with your objectives.
  • Implement the solution : Put the selected solution into action and monitor the results to ensure it resolves the issue.
  • Review and learn : Reflect on the problem-solving process, identify any improvements or adjustments that can be made, and apply these learnings to future situations.

Defining the Problem

To start tackling a problem, first, identify and understand it. Analyzing the issue thoroughly helps to clarify its scope and nature. Ask questions to gather information and consider the problem from various angles. Some strategies to define the problem include:

  • Brainstorming with others
  • Asking the 5 Ws and 1 H (Who, What, When, Where, Why, and How)
  • Analyzing cause and effect
  • Creating a problem statement

Generating Solutions

Once the problem is clearly understood, brainstorm possible solutions. Think creatively and keep an open mind, as well as considering lessons from past experiences. Consider:

  • Creating a list of potential ideas to solve the problem
  • Grouping and categorizing similar solutions
  • Prioritizing potential solutions based on feasibility, cost, and resources required
  • Involving others to share diverse opinions and inputs

Evaluating and Selecting Solutions

Evaluate each potential solution, weighing its pros and cons. To facilitate decision-making, use techniques such as:

  • SWOT analysis (Strengths, Weaknesses, Opportunities, Threats)
  • Decision-making matrices
  • Pros and cons lists
  • Risk assessments

After evaluating, choose the most suitable solution based on effectiveness, cost, and time constraints.

Implementing and Monitoring the Solution

Implement the chosen solution and monitor its progress. Key actions include:

  • Communicating the solution to relevant parties
  • Setting timelines and milestones
  • Assigning tasks and responsibilities
  • Monitoring the solution and making adjustments as necessary
  • Evaluating the effectiveness of the solution after implementation

Utilize feedback from stakeholders and consider potential improvements. Remember that problem-solving is an ongoing process that can always be refined and enhanced.

Problem-Solving Techniques

During each step, you may find it helpful to utilize various problem-solving techniques, such as:

  • Brainstorming : A free-flowing, open-minded session where ideas are generated and listed without judgment, to encourage creativity and innovative thinking.
  • Root cause analysis : A method that explores the underlying causes of a problem to find the most effective solution rather than addressing superficial symptoms.
  • SWOT analysis : A tool used to evaluate the strengths, weaknesses, opportunities, and threats related to a problem or decision, providing a comprehensive view of the situation.
  • Mind mapping : A visual technique that uses diagrams to organize and connect ideas, helping to identify patterns, relationships, and possible solutions.

Brainstorming

When facing a problem, start by conducting a brainstorming session. Gather your team and encourage an open discussion where everyone contributes ideas, no matter how outlandish they may seem. This helps you:

  • Generate a diverse range of solutions
  • Encourage all team members to participate
  • Foster creative thinking

When brainstorming, remember to:

  • Reserve judgment until the session is over
  • Encourage wild ideas
  • Combine and improve upon ideas

Root Cause Analysis

For effective problem-solving, identifying the root cause of the issue at hand is crucial. Try these methods:

  • 5 Whys : Ask “why” five times to get to the underlying cause.
  • Fishbone Diagram : Create a diagram representing the problem and break it down into categories of potential causes.
  • Pareto Analysis : Determine the few most significant causes underlying the majority of problems.

SWOT Analysis

SWOT analysis helps you examine the Strengths, Weaknesses, Opportunities, and Threats related to your problem. To perform a SWOT analysis:

  • List your problem’s strengths, such as relevant resources or strong partnerships.
  • Identify its weaknesses, such as knowledge gaps or limited resources.
  • Explore opportunities, like trends or new technologies, that could help solve the problem.
  • Recognize potential threats, like competition or regulatory barriers.

SWOT analysis aids in understanding the internal and external factors affecting the problem, which can help guide your solution.

Mind Mapping

A mind map is a visual representation of your problem and potential solutions. It enables you to organize information in a structured and intuitive manner. To create a mind map:

  • Write the problem in the center of a blank page.
  • Draw branches from the central problem to related sub-problems or contributing factors.
  • Add more branches to represent potential solutions or further ideas.

Mind mapping allows you to visually see connections between ideas and promotes creativity in problem-solving.

Examples of Problem Solving in Various Contexts

In the business world, you might encounter problems related to finances, operations, or communication. Applying problem-solving skills in these situations could look like:

  • Identifying areas of improvement in your company’s financial performance and implementing cost-saving measures
  • Resolving internal conflicts among team members by listening and understanding different perspectives, then proposing and negotiating solutions
  • Streamlining a process for better productivity by removing redundancies, automating tasks, or re-allocating resources

In educational contexts, problem-solving can be seen in various aspects, such as:

  • Addressing a gap in students’ understanding by employing diverse teaching methods to cater to different learning styles
  • Developing a strategy for successful time management to balance academic responsibilities and extracurricular activities
  • Seeking resources and support to provide equal opportunities for learners with special needs or disabilities

Everyday life is full of challenges that require problem-solving skills. Some examples include:

  • Overcoming a personal obstacle, such as improving your fitness level, by establishing achievable goals, measuring progress, and adjusting your approach accordingly
  • Navigating a new environment or city by researching your surroundings, asking for directions, or using technology like GPS to guide you
  • Dealing with a sudden change, like a change in your work schedule, by assessing the situation, identifying potential impacts, and adapting your plans to accommodate the change.
  • How to Resolve Employee Conflict at Work [Steps, Tips, Examples]
  • How to Write Inspiring Core Values? 5 Steps with Examples
  • 30 Employee Feedback Examples (Positive & Negative)
  • The Art of Effective Problem Solving: A Step-by-Step Guide
  • Learn Lean Sigma
  • Problem Solving

Whether we realise it or not, problem solving skills are an important part of our daily lives. From resolving a minor annoyance at home to tackling complex business challenges at work, our ability to solve problems has a significant impact on our success and happiness. However, not everyone is naturally gifted at problem-solving, and even those who are can always improve their skills. In this blog post, we will go over the art of effective problem-solving step by step.

You will learn how to define a problem, gather information, assess alternatives, and implement a solution, all while honing your critical thinking and creative problem-solving skills. Whether you’re a seasoned problem solver or just getting started, this guide will arm you with the knowledge and tools you need to face any challenge with confidence. So let’s get started!

Table of Contents

Problem solving methodologies.

Individuals and organisations can use a variety of problem-solving methodologies to address complex challenges. 8D and A3 problem solving techniques are two popular methodologies in the Lean Six Sigma framework.

Methodology of 8D (Eight Discipline) Problem Solving:

The 8D problem solving methodology is a systematic, team-based approach to problem solving. It is a method that guides a team through eight distinct steps to solve a problem in a systematic and comprehensive manner.

The 8D process consists of the following steps:

  • Form a team: Assemble a group of people who have the necessary expertise to work on the problem.
  • Define the issue: Clearly identify and define the problem, including the root cause and the customer impact.
  • Create a temporary containment plan: Put in place a plan to lessen the impact of the problem until a permanent solution can be found.
  • Identify the root cause: To identify the underlying causes of the problem, use root cause analysis techniques such as Fishbone diagrams and Pareto charts.
  • Create and test long-term corrective actions: Create and test a long-term solution to eliminate the root cause of the problem.
  • Implement and validate the permanent solution: Implement and validate the permanent solution’s effectiveness.
  • Prevent recurrence: Put in place measures to keep the problem from recurring.
  • Recognize and reward the team: Recognize and reward the team for its efforts.

Download the 8D Problem Solving Template

A3 Problem Solving Method:

The A3 problem solving technique is a visual, team-based problem-solving approach that is frequently used in Lean Six Sigma projects. The A3 report is a one-page document that clearly and concisely outlines the problem, root cause analysis, and proposed solution.

The A3 problem-solving procedure consists of the following steps:

  • Determine the issue: Define the issue clearly, including its impact on the customer.
  • Perform root cause analysis: Identify the underlying causes of the problem using root cause analysis techniques.
  • Create and implement a solution: Create and implement a solution that addresses the problem’s root cause.
  • Monitor and improve the solution: Keep an eye on the solution’s effectiveness and make any necessary changes.

Subsequently, in the Lean Six Sigma framework, the 8D and A3 problem solving methodologies are two popular approaches to problem solving. Both methodologies provide a structured, team-based problem-solving approach that guides individuals through a comprehensive and systematic process of identifying, analysing, and resolving problems in an effective and efficient manner.

Step 1 – Define the Problem

The definition of the problem is the first step in effective problem solving. This may appear to be a simple task, but it is actually quite difficult. This is because problems are frequently complex and multi-layered, making it easy to confuse symptoms with the underlying cause. To avoid this pitfall, it is critical to thoroughly understand the problem.

To begin, ask yourself some clarifying questions:

  • What exactly is the issue?
  • What are the problem’s symptoms or consequences?
  • Who or what is impacted by the issue?
  • When and where does the issue arise?

Answering these questions will assist you in determining the scope of the problem. However, simply describing the problem is not always sufficient; you must also identify the root cause. The root cause is the underlying cause of the problem and is usually the key to resolving it permanently.

Try asking “why” questions to find the root cause:

  • What causes the problem?
  • Why does it continue?
  • Why does it have the effects that it does?

By repeatedly asking “ why ,” you’ll eventually get to the bottom of the problem. This is an important step in the problem-solving process because it ensures that you’re dealing with the root cause rather than just the symptoms.

Once you have a firm grasp on the issue, it is time to divide it into smaller, more manageable chunks. This makes tackling the problem easier and reduces the risk of becoming overwhelmed. For example, if you’re attempting to solve a complex business problem, you might divide it into smaller components like market research, product development, and sales strategies.

To summarise step 1, defining the problem is an important first step in effective problem-solving. You will be able to identify the root cause and break it down into manageable parts if you take the time to thoroughly understand the problem. This will prepare you for the next step in the problem-solving process, which is gathering information and brainstorming ideas.

Step 2 – Gather Information and Brainstorm Ideas

Gathering information and brainstorming ideas is the next step in effective problem solving. This entails researching the problem and relevant information, collaborating with others, and coming up with a variety of potential solutions. This increases your chances of finding the best solution to the problem.

Begin by researching the problem and relevant information. This could include reading articles, conducting surveys, or consulting with experts. The goal is to collect as much information as possible in order to better understand the problem and possible solutions.

Next, work with others to gather a variety of perspectives. Brainstorming with others can be an excellent way to come up with new and creative ideas. Encourage everyone to share their thoughts and ideas when working in a group, and make an effort to actively listen to what others have to say. Be open to new and unconventional ideas and resist the urge to dismiss them too quickly.

Finally, use brainstorming to generate a wide range of potential solutions. This is the place where you can let your imagination run wild. At this stage, don’t worry about the feasibility or practicality of the solutions; instead, focus on generating as many ideas as possible. Write down everything that comes to mind, no matter how ridiculous or unusual it may appear. This can be done individually or in groups.

Once you’ve compiled a list of potential solutions, it’s time to assess them and select the best one. This is the next step in the problem-solving process, which we’ll go over in greater detail in the following section.

Step 3 – Evaluate Options and Choose the Best Solution

Once you’ve compiled a list of potential solutions, it’s time to assess them and select the best one. This is the third step in effective problem solving, and it entails weighing the advantages and disadvantages of each solution, considering their feasibility and practicability, and selecting the solution that is most likely to solve the problem effectively.

To begin, weigh the advantages and disadvantages of each solution. This will assist you in determining the potential outcomes of each solution and deciding which is the best option. For example, a quick and easy solution may not be the most effective in the long run, whereas a more complex and time-consuming solution may be more effective in solving the problem in the long run.

Consider each solution’s feasibility and practicability. Consider the following:

  • Can the solution be implemented within the available resources, time, and budget?
  • What are the possible barriers to implementing the solution?
  • Is the solution feasible in today’s political, economic, and social environment?

You’ll be able to tell which solutions are likely to succeed and which aren’t by assessing their feasibility and practicability.

Finally, choose the solution that is most likely to effectively solve the problem. This solution should be based on the criteria you’ve established, such as the advantages and disadvantages of each solution, their feasibility and practicability, and your overall goals.

It is critical to remember that there is no one-size-fits-all solution to problems. What is effective for one person or situation may not be effective for another. This is why it is critical to consider a wide range of solutions and evaluate each one based on its ability to effectively solve the problem.

Step 4 – Implement and Monitor the Solution

When you’ve decided on the best solution, it’s time to put it into action. The fourth and final step in effective problem solving is to put the solution into action, monitor its progress, and make any necessary adjustments.

To begin, implement the solution. This may entail delegating tasks, developing a strategy, and allocating resources. Ascertain that everyone involved understands their role and responsibilities in the solution’s implementation.

Next, keep an eye on the solution’s progress. This may entail scheduling regular check-ins, tracking metrics, and soliciting feedback from others. You will be able to identify any potential roadblocks and make any necessary adjustments in a timely manner if you monitor the progress of the solution.

Finally, make any necessary modifications to the solution. This could entail changing the solution, altering the plan of action, or delegating different tasks. Be willing to make changes if they will improve the solution or help it solve the problem more effectively.

It’s important to remember that problem solving is an iterative process, and there may be times when you need to start from scratch. This is especially true if the initial solution does not effectively solve the problem. In these situations, it’s critical to be adaptable and flexible and to keep trying new solutions until you find the one that works best.

To summarise, effective problem solving is a critical skill that can assist individuals and organisations in overcoming challenges and achieving their objectives. Effective problem solving consists of four key steps: defining the problem, generating potential solutions, evaluating alternatives and selecting the best solution, and implementing the solution.

You can increase your chances of success in problem solving by following these steps and considering factors such as the pros and cons of each solution, their feasibility and practicability, and making any necessary adjustments. Furthermore, keep in mind that problem solving is an iterative process, and there may be times when you need to go back to the beginning and restart. Maintain your adaptability and try new solutions until you find the one that works best for you.

  • Novick, L.R. and Bassok, M., 2005.  Problem Solving . Cambridge University Press.

Daniel Croft

Daniel Croft is a seasoned continuous improvement manager with a Black Belt in Lean Six Sigma. With over 10 years of real-world application experience across diverse sectors, Daniel has a passion for optimizing processes and fostering a culture of efficiency. He's not just a practitioner but also an avid learner, constantly seeking to expand his knowledge. Outside of his professional life, Daniel has a keen Investing, statistics and knowledge-sharing, which led him to create the website learnleansigma.com, a platform dedicated to Lean Six Sigma and process improvement insights.

Free Lean Six Sigma Templates

Improve your Lean Six Sigma projects with our free templates. They're designed to make implementation and management easier, helping you achieve better results.

5S Floor Marking Best Practices

In lean manufacturing, the 5S System is a foundational tool, involving the steps: Sort, Set…

How to Measure the ROI of Continuous Improvement Initiatives

When it comes to business, knowing the value you’re getting for your money is crucial,…

8D Problem-Solving: Common Mistakes to Avoid

In today’s competitive business landscape, effective problem-solving is the cornerstone of organizational success. The 8D…

The Evolution of 8D Problem-Solving: From Basics to Excellence

In a world where efficiency and effectiveness are more than just buzzwords, the need for…

8D: Tools and Techniques

Are you grappling with recurring problems in your organization and searching for a structured way…

How to Select the Right Lean Six Sigma Projects: A Comprehensive Guide

Going on a Lean Six Sigma journey is an invigorating experience filled with opportunities for…

are the six steps of problem solving

   NYFPS    |           FPSONLINE    |         VOLUNTEER   |         DONATE   |         

are the six steps of problem solving

Six Steps Demystified

The six-step approach offers a framework for creative problem solving. Although each step is critical, it is important that participants don't forget that conducting RESEARCH on a topic sets up a strong foundation. Being knowledgeable about a topic allows for better understanding of the bigger picture and is a key part of identifying problems as well as generating solutions. Successful problem solvers always have conducted research on the topic.

There are two essential Pre-Steps before starting the six-step process.

Research the topic

Read and analyze the future scene

are the six steps of problem solving

Underlying Problem

Evaluate Solutions

Action Plan

are the six steps of problem solving

Develop an Action Plan

The solution idea (which receives the highest total from STEP 5) is described in detail within the action plan. Develop your action plan by relating the idea back to the U.P. Demonstrate how your action plan will achieve what you set out to accomplish in STEP 2 (the KVP and Purpose).

Tips: 

Explain in detail the  who, what, how why, where,  and  when  of your action plan. Who will carry out the plan or be involved? What will be done to solve the problem? When will the results begin and will it continue? Where will the plan be implemented? Why will this idea positively impact the future scene? How will the action plan be carried out? How does it positively impact the U.P.? 

New facts to your action plan may be added, as long as each addition represents a subpart of your action plan.

Sample Format:  One approach might be to write five complete paragraphs in elaboration of your action plan.

 An overview of the plans steps and stages of implementation ( Who  and  What ).

Discuss the reasons or logic behind the solution being the best choice ( Why  and  How  the plan solves every aspect of the U.P.).

Discuss potential roadblocks or challenges that will likely confront this action plan, along with ideas or actions for overcoming these obstacles.

Highlight the strengths which Action Plan possess.

Underscore the many positive impacts that the action plan will provide to the whole situation described in the future scene. Provide a justification ( Why  and How ) for each positive impact and benefit derived from the implementation of the action plan.

Pastel Swirl

Produce Solution Ideas to the Underlying Problem

Solutions are detailed plans to solve all aspects of the team’s U.P.

Elaborate by indicating  WHO  will implement the solution idea,  WHAT  will be done,  HOW  the solution idea will work, and  WHY  the solution idea will solve the KVP and Purpose of the U.P.

Elements of the future should be incorporated within these action proposals by utilizing new or special technologies, methods, or procedures that would be effective.

Solution ideas are to be stated as definite proposals (e.g. "will").

Incorporate futuristic aspects in your writing of the solution idea.

Attempt to produce solutions for every relevant category of thought for the future scene as possible.

Generate and Select Criteria to Evaluate Solution Ideas

Brainstorm criteria that question the creative potential and importance of solution ideas. Create criteria which will measure the comparative quality (relevance and/or validity) of your STEP 3 solutions.

Only identify one concern/dimension with each criterion. Avoid the use of "and" in a criterion.

It is helpful to include  superlatives words (e.g. least, most, greatest, fewest, etc.).

You can create advanced criteria by considering various aspects of the future scene or your U.P. (KVP or Purpose) within a criterion.

Include the phrase, "which solution will" and phrase each in the form of a question.

Identify Challenges Related to the Topic or Future Scene

Challenges note important concerns, problems, issues, or challenges that have a strong possibility of occurring within the future scene. 

Written in statement form.

Stated in terms of possibility (e.g. may, could, might).

Must have relation to the future scene by containing terms or phrases that describe the topic, place, and/or individuals detailed in the future scene.

Challenges may either cause the future scene or result from the future scene.

Explain WHAT the challenge is, WHY it is a challenge, and HOW it relates to the future scene.

Phrase your challenges as cause and effect logic statements.

Attempt to find as many challenges as you can for every relevant category of thought for the future scene (about 12 categories should be your goal).

Incorporate ideas or concepts found during your research when writing the selected challenges from your group’s brainstorming whenever possible.

Select an Underlying Problem

The Underlying Problem (U.P.) is a statement of the most important challenge identified in STEP 1. The selected challenge, if solved, might solve many of the other challenges identified in the Future Scene. A challenge causing other concerns to occur in the scenario is much preferred as the U.P. rather than a challenge resulting from the future scene’s situation.

How To Structure A U.P.:   A U.P. should be stated in one question containing the following five basic components.

Condition Phrase: A beginning sentence that describes the most significant challenge selected from STEP 1 that may be causing many other challenges in the future scene. The conditions should describe an effect and a cause arising from the future scene. The conditions are the impetus for the area of concern that the team has chosen for their solution finding. Since and due to (or because) could be a format used to write the condition phrase.

Stem: Phrased as "How might we" or "In what ways might we"

Key Verb Phrase (KVP): One main verb which is active, descriptive, and clear which describes the action that must be done to solve the problem.

Purpose: The what you aim to accomplish by doing the Key Verb Phrase.

Future Scene Parameters (FSP): The geographic location, time, and topic described within the future scene.

The U.P. should address only one issue (one action in the KVP and one goal in the Purpose).

The action stated in your KVP should be clear and the goal or outcome described in your Purpose should be measurable.

Evaluate Solution Ideas to Determine the Better Action Plan

Select your 8 most promising solution ideas and list them in the 8 solution idea blanks of the grid. If you have fewer than 8, list them all. Rank order your solution ideas from 8 (best) to 1 (least effective) relative to each criterion from STEP 4. Ensure that you use each number between 8 and 1 only once in each vertical column. Sum the ratings across the grid to total the ranks given to each solution. The solution with the highest total rank is the solution used to develop your action plan in STEP 6.

It is always helpful to familiarize yourself with the six steps by looking at the full blank booklet and understanding how evaluators review each step through the GIPS Evaluation Scoresheet which can also be found under at the Virtual Center . 

The GIPS Key Tips packet found under at the Virtual Center offers more in-depth explanation of each step. If you have any questions about the six steps never hesitate to reach out to our Evaluation Director, so we can offer more insight. Always remember to review the evaluators' scoresheet after each submission and read the feedback which can offer advice on how to further improve.

Explore GIPS Downloadable Resources  

NYFPS

REGISTER TO PARTICIPATE TODAY

NYFPS

Start Your Journey To Solve Future Problems 

New York Future Problem Solvers

Scenario Writing

Global issues, competitive components, register now, how to start, non-competitive option, get involved, competitions, program areas, call to action, media coverage, our commitment, discover more, about nyfps, mission & values.

New York Future Problem Solving

Registration Form

How to get started, why be an advisor, inspire the future, on-site training, fps value-add, the classroom, integrate fps into your teaching, six-step method, create parental buy-in, parents' guide, fps pedagogy.

New York Future Problem Solving Program

Team/Club Tools

Program info, virtual center, competition info and resources, annual topics, component info, quick access, scholarship.

New York Future Problem Solving

HuddleIQ logo

Integrations

Help articles.

Online whiteboard for connecting, collaborating, creating

The Inspect and Adapt (I&A) is a significant event held at the end of each PI, where the current state of the Solution is demonstrated and evaluated. Teams then reflect and identify improvement backlog items via a structured problem-solving workshop.

The Agile Manifesto emphasizes the importance of continuous improvement through the following principle: “At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its behavior accordingly.”

In addition, SAFe includes ‘relentless improvement’ as one of the four SAFe Core Values as well as a dimension of the Continuous Learning Culture core competency. While opportunities to improve can and should occur continuously throughout the PI (e.g., Iteration Retrospectives ), applying some structure, cadence, and synchronization helps ensure that there is also time set aside to identify improvements across multiple teams and Agile Release Trains .

All ART stakeholders participate along with the Agile Teams in the I&A event. The result is a set of improvement backlog items that go into the ART Backlog for the next PI Planning event. In this way, every ART improves every PI. A similar I&A event is held by Solution Trains .

The I&A event consists of three parts:

PI System Demo

  • Quantitative and qualitative measurement
  • Retrospective and problem-solving workshop

Participants in the I&A should be, wherever possible, all the people involved in building the solution. For an ART, this includes:

  • The Agile teams
  • Release Train Engineer (RTE)
  • System and Solution Architects
  • Product Management ,  Business Owners , and other stakeholders

Additionally, Solution Train stakeholders may also attend this event.

The PI System Demo is the first part of the I&A, and it’s a little different from the regular system demos after every iteration. This demo shows all the Features the ART has developed during the PI. Typically the audience is broader; for example, Customers or Portfolio representatives are more likely to attend this demo. Therefore, the PI system demo tends to be a little more formal, and extra preparation and setup are usually required. But like any other system demo, it should be timeboxed to an hour or less, with the level of abstraction high enough to keep stakeholders actively engaged and providing feedback.

Before or as part of the PI system demo, Business Owners collaborate with each Agile Team to score the actual business value achieved for each of their Team PI Objectives , as illustrated in Figure 1.

The achievement score is calculated by separately totaling the business value for the plan and actual columns. The uncommitted objectives are not included in the total plan. However, they are part of the total actual. Then divide the actual total by the planned total to calculate the achievement score illustrated in Figure 1.

Quantitative and Qualitative Measurement

In the second part of the I&A event, teams collectively review any quantitative and qualitative metrics they have agreed to collect, then discuss the data and trends. In preparation for this, the RTE and the Solution Train Engineer are often responsible for gathering the information, analyzing it to identify potential issues, and facilitating the presentation of the findings to the ART.

Each team’s planned vs. actual business value is rolled up to create the ART predictability measure, as shown in Figure 2.

Reliable trains should operate in the 80–100 percent range; this allows the business and its external stakeholders to plan effectively. (Note: Uncommitted objectives are excluded from the planned commitment. However, they are included in the actual business value achievement, as can also be seen in Figure 1.)

Retrospective

The teams then run a brief (30 minutes or less) retrospective to identify a few significant issues they would like to address during the problem-solving workshop . There is no one way to do this; several different Agile retrospective formats can be used [3].

Based on the retrospective and the nature of the problems identified, the facilitator helps the group decide which issues they want to tackle. Each team may work on a problem, or, more typically, new groups are formed from individuals across different teams who wish to work on the same issue. This self-selection helps provide cross-functional and differing views of the problem and brings together those impacted and those best motivated to address the issue.

Key ART stakeholders—including Business Owners, customers, and management—join the retrospective and problem-solving workshop teams. The Business Owners can often unblock the impediments outside the team’s control.

Problem-Solving Workshop

The ART holds a structured, root-cause problem-solving workshop to address systemic problems. Root cause analysis provides a set of problem-solving tools used to identify the actual causes of a problem rather than just fixing the symptoms. The RTE typically facilitates the session in a timebox of two hours or less.

Figure 3 illustrates the steps in the problem-solving workshop.

The following sections describe each step of the process.

Agree on the Problem(s) to Solve

American inventor Charles Kettering is credited with saying that “a problem well stated is a problem half solved.” At this point, the teams have self-selected the problem they want to address. But do they agree on the details of the problem, or is it more likely that they have differing perspectives? To this end, the teams should spend a few minutes clearly stating the problem, highlighting the ‘what,’ ‘where,’ ‘when,’ and ‘impact’ as concisely as possible. Figure 4 illustrates a well-written problem statement.

Perform Root Cause Analysis

Effective problem-solving tools include the fishbone diagram and the ‘5 Whys.’ Also known as an Ishikawa Diagram , a fishbone diagram is a visual tool to explore the causes of specific events or sources of variation in a process. Figure 5 illustrates the fishbone diagram with a summary of the previous problem statement written at the head of the ‘fish.’

For our problem-solving workshop, the main bones often start with the default categories of people, processes, tools, program, and environment. However, these categories should be adapted as appropriate.

Team members then brainstorm causes that they think contribute to solving the problem and group them into these categories. Once a potential cause is identified, its root cause is explored with the 5 Whys technique. By asking ‘why’ five times, the cause of the previous cause is uncovered and added to the diagram. The process stops once a suitable root cause has been identified, and the same process is then applied to the next cause.

Identify the Biggest Root Cause

Pareto Analysis, also known as the 80/20 rule, is used to narrow down the number of actions that produce the most significant overall effect. It uses the principle that 20 percent of the causes are responsible for 80 percent of the problem. It’s beneficial when many possible courses of action compete for attention, which is almost always the case with complex, systemic issues.

Once all the possible causes-of-causes are identified, team members then cumulatively vote on the item they think is the most significant factor contributing to the original problem. They can do this by dot voting. For example, each person gets five votes to choose one or more causes they think are most problematic. The team then summarizes the votes in a Pareto chart, such as the example in Figure 6, which illustrates their collective consensus on the most significant root cause.

Restate the New Problem

The next step is to pick the cause with the most votes and restate it clearly as a problem. Restating it should take only a few minutes, as the teams clearly understand the root cause.

Brainstorm Solutions

At this point, the restated problem will start to imply some potential solutions. The team brainstorms as many possible corrective actions as possible within a fixed timebox (about 15–30 minutes). The rules of brainstorming apply here:

  • Generate as many ideas as possible
  • Do not allow criticism or debate
  • Let the imagination soar
  • Explore and combine ideas

Create Improvement Backlog Items

The team then cumulatively votes on up to three most viable solutions. These potential solutions are written as improvement stories and features, planned in the following PI Planning event. During that event, the RTE helps ensure that the relevant work needed to deliver the identified improvements is planned. This approach closes the loop, thus ensuring that action will be taken and that people and resources are dedicated as necessary to improve the current state.

Following this practice, problem-solving becomes routine and systematic, and team members and ART stakeholders can ensure that the train is solidly on its journey of relentless improvement.

Inspect and Adapt for Solution Trains

The above describes a rigorous approach to problem-solving in the context of a single ART. If the ART is part of a Solution Train, the I&A event will often include key stakeholders from the Solution Train. In larger value streams, however, an additional Solution Train I&A event may be required, following the same format.

Due to the number of people in a Solution Train, attendees at the large solution I&A event cannot include everyone, so stakeholders are selected that are best suited to address the problems. This subset of people consists of the Solution Train’s primary stakeholders and representatives from the various ARTs and Suppliers .

Last update: 22 January 2023

Privacy Overview

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

Enter the email address you signed up with and we'll email you a reset link.

  • We're Hiring!
  • Help Center

paper cover thumbnail

Problem Solving Overview SIX-STEP PROBLEM SOLVING MODEL

Profile image of Zia Qureshi

Related Papers

The Leadership Quarterly

Min Basadur

are the six steps of problem solving

Siti S. Salim

Diabetes Spectrum

Felicia Hill-Briggs, PhD

Jurnal Pendidikan IPA Indonesia

Muhammad Syukri

This study aimed to determine the impact of the integration of engineering design process (asking, imagining, planning, creating and improving) in an electrical & magnetism module to improve problem-solving skills in physics among secondary school students in Aceh, Indonesia. The quasi-experimental study was carried out with 82 form three (age 15 years old) students of a secondary school in Aceh Besar, Indonesia. The first author had randomly chosen two classes as the experimental group and two other classes as the control group. Independent samples t-test analysis was conducted to determine the difference between the physics teaching and learning module which integrated the five steps of engineering design process and the existing commonly used science " Pudak " teaching and learning module. The results of the independent samples t-test analysis showed that the use of the physics teaching and learning module which integrated the five steps of engineering design process was more effective compared to the use of the existing " Pudak " module in increasing the students' skills in solving physics problems. The findings of the study suggest that the science learning approach is appropriate to be applied in the teaching and learning of science to enhance science problem-solving skills among secondary school students. In addition, it can be used as a guide for teachers on how to implement the integration of the five steps of engineering design process in science teaching and learning practices.

IOSR Journals

Education and Training in Autism and Developmental Disabilities

Mark Doggett

Despite the availability of a wide range of problem solving methods, individuals continue to struggle with problems. Scientists attempt to address recurring economic, social, political, and organizational problems through the expansion of knowledge and theory. ... Cause-effect relationships advance logical explanations, predict future events,and forecast consequences. Theories and thinking based on cause-effect findings become recognized science (Goldratt, 1990) and move the field of inquiry from "art" to that of disciplined examination. In problem solving, the root cause of the problem produces an undesirable effect. Any pursuit that does not seek the root cause leads only to the symptom of the problem and, by definition, solving a symptom will not solve a problem. Problem solvers identify root causes of problems to be able to predict future cause and effect relationships. The purposeful application of an analysis method can address complex problems using a structured app...

Lecture Notes in Computer Science

Myriam Lewkowicz

Juan Sebastián Betancourt Tabares

Lauren E Rudd

Solving problems is a necessary life skill and design is a problem solving process. This study investigated whether learning to design affected college students’ awareness and perception of their problem solving ability, and whether that ability correlated to academic success. Pretest-posttest scores of The Problem Solving Inventory were compared from a design fundamentals class. Results showed significant improvement in self-appraisal of problem solving ability subsequent to learning design. Student awareness of problem solving skills development was identified through student opinions involving solving problems for design and real life. Students indicated broader thinking, simplified solution development, and improved confidence. The study clearly shows correlations between learning to design and problem solving skills, and between problem solving skills and real-life problem solving.

RELATED PAPERS

Bulletin of the American Meteorological Society

Kenneth S Gage

Johannes Schemmel

Mohamed Al-Agamy

Acta Bioquimica Clinica Latinoamericana

JOHANA NAYLEA MAZON MORALES

Lawrence Hubert

Physical Review D

Emine Yildirim

WALTER RIVAS ALTEZ

2010 International Conference on Computer Applications and Industrial Electronics

Shivanand Handigund

Urología Colombiana

jAIME pÉREZ

Silje Vagli Østbye

Echo Research and Practice

N. O'Keeffe

Biogerontology

Jeffrey Skolnick

Annals of burns and fire disasters

Kidney international

Marc De Broe

CERN European Organization for Nuclear Research - Zenodo

Louis Looli Boyombe

Proceedings of the 51st ACM Technical Symposium on Computer Science Education

Physical Review B

Po-Hao chang

Pannon Egyetem - Gondolat Kiadó

Erzsebet Korom

Research Square - Research Square

Mvuyo Makhasi

Computers, Environment and Urban Systems

muhammad umer

Applied Mathematical Sciences

Alessandra Buratto

Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry

Chayan Kumar Das

North Carolina medical journal

Sandra Stinnett

Annapolis, MD. April 25 - 28, 2024

Athanasios Platias

njjfr hggtgrf

See More Documents Like This

RELATED TOPICS

  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024

IMAGES

  1. 6 Steps Problem Solving Process Powerpoint Slide

    are the six steps of problem solving

  2. Infographic Design Elements with Six Options for Problem Solving Steps

    are the six steps of problem solving

  3. 6 steps of the problem solving process

    are the six steps of problem solving

  4. Six steps problem-solving process infographic. Stock Vector

    are the six steps of problem solving

  5. Download Now! Six Step Problem Solving Model Presentation

    are the six steps of problem solving

  6. the 6 step problem solving model

    are the six steps of problem solving

VIDEO

  1. Problem Solving and Reasoning: Polya's Steps and Problem Solving Strategies

  2. WHAT IS 8D? || HOW TO FILL G8D FORMAT || 7 STEPS PROBLEM SOLVING METHODOLOGY || Q4U || G8D || Q4U

  3. six steps (footwork)

  4. Lean Coach: Problem Solving Coaching / Avoiding Jumping to Solutions

  5. The I.D.E.A.L. Problem Solving Method #shorts #problemsolving

  6. what is problem

COMMENTS

  1. PDF The Six Step Problem Solving Model

    Determine the Root Cause(s) of the Problem", the group may return to the first step to redefine the problem. The Six Steps . 1. Define the Problem 2. Determine the Root Cause(s) of the Problem 3. Develop Alternative Solutions 4. Select a Solution 5. Implement the Solution 6. Evaluate the Outcome The process is one of continuous improvement.

  2. A Lean Journey: The Six-Step Problem-Solving Process

    Another problem is that people are not consistent in how they solve problems. They do not find something that works and then do it the same way over and over to be successful. The Six-Step Problem-Solving Process is described below: Step 1: Identify The Problem. Select the problem to be analyzed; Clearly define the problem and establish ...

  3. Problem-Solving Process in 6 Steps

    Here are six steps to an effective problem-solving process: Identify the issues. The first phase of problem-solving requires thought and analysis. Problem identification may sound clear, but it actually can be a difficult task. So you should spend some time to define the problem and know people's different views on the issue.

  4. How To Put Problem-Solving Skills To Work in 6 Steps

    Here are the basic steps involved in problem-solving: 1. Define the problem. The first step is to analyze the situation carefully to learn more about the problem. A single situation may solve multiple problems. Identify each problem and determine its cause. Try to anticipate the behavior and response of those affected by the problem.

  5. What is Problem Solving? Steps, Process & Techniques

    1. Define the problem. Diagnose the situation so that your focus is on the problem, not just its symptoms. Helpful problem-solving techniques include using flowcharts to identify the expected steps of a process and cause-and-effect diagrams to define and analyze root causes.. The sections below help explain key problem-solving steps.

  6. The Problem-Solving Process

    Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue. The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything ...

  7. The Problem-Solving Process

    The Problem-Solving Process. Problem-solving is an important part of planning and decision-making. The process has much in common with the decision-making process, and in the case of complex decisions, can form part of the process itself. We face and solve problems every day, in a variety of guises and of differing complexity.

  8. Guide: Problem Solving

    The process of problem-solving is a methodical approach that involves several distinct stages. Each stage plays a crucial role in navigating from the initial recognition of a problem to its final resolution. Let's explore each of these stages in detail. Step 1: Identifying the Problem. This is the foundational step in the problem-solving process.

  9. Mastering the Six Step Problem Solving Model

    The Six Step Problem Solving Model provides individuals and teams with an effective framework for approaching and resolving problems. By defining the problem, analyzing it thoroughly, generating potential solutions, choosing the most suitable option, implementing it effectively, and continuously evaluating and adjusting strategies, you can ...

  10. Six-Step Problem-Solving Model

    This six-step model is designed for the workplace, but is easily adaptable to other settings such as schools and families. It emphasizes the cyclical, continuous nature of the problem-solving process. The model describes in detail the following steps: Step One: Define the Problem. Step Two: Determine the Root Cause(s) of the Problem

  11. The Six-Step Problem-Solving Model: A Collaborative Approach to

    The Six Step Problem Solving Model isn't just a method; it's a mindset. A mindset that ensures problems are tackled systematically and collaboratively, driving teams towards effective ...

  12. What is Problem Solving? (Steps, Techniques, Examples)

    The problem-solving process typically includes the following steps: Identify the issue: Recognize the problem that needs to be solved. Analyze the situation: Examine the issue in depth, gather all relevant information, and consider any limitations or constraints that may be present. Generate potential solutions: Brainstorm a list of possible ...

  13. Six Steps to Effective Problem Solving Within Organizations

    In this article, we will introduce the six-step problem solving process defined by Edgar Schein, so that teams trained in this can find the best solution to a problem and create an action plan. Why Use a Problem Solving Process? Since problems can be many and root causes hidden, it may take an extended period of time to come to a solution.

  14. The Art of Effective Problem Solving: A Step-by-Step Guide

    Step 1 - Define the Problem. The definition of the problem is the first step in effective problem solving. This may appear to be a simple task, but it is actually quite difficult. This is because problems are frequently complex and multi-layered, making it easy to confuse symptoms with the underlying cause.

  15. PDF Six-step Problem Solving Model

    Although problem solving models can be highly sophisticated and technical, the following model has just six simple steps. Despite its simplicity, this model is comprehensive enough to address all but the most technical problems. The simplicity of the model makes it easier for your group to remember when solving a problem. The Problem Solving ...

  16. Six Steps Demystified

    The six-step approach offers a framework for creative problem solving. Although each step is critical, it is important that participants don't forget that conducting RESEARCH on a topic sets up a strong foundation. Being knowledgeable about a topic allows for better understanding of the bigger picture and is a key part of identifying problems ...

  17. How to master the seven-step problem-solving process

    When we do problem definition well in classic problem solving, we are demonstrating the kind of empathy, at the very beginning of our problem, that design thinking asks us to approach. When we ideate—and that's very similar to the disaggregation, prioritization, and work-planning steps—we do precisely the same thing, and often we use ...

  18. The McKinsey guide to problem solving

    The McKinsey guide to problem solving. Become a better problem solver with insights and advice from leaders around the world on topics including developing a problem-solving mindset, solving problems in uncertain times, problem solving with AI, and much more.

  19. PDF Six Steps to Effective Problem Solving Within Organizations

    In this article, we will introduce the six-step problem solving process defined by Edgar Schein, so that teams trained in this can find the best solution to a problem and create an action plan. Why Use a Problem Solving Process? Since problems can be many and root causes hidden, it may take an extended period of time to come to a solution.

  20. A Six-Step Plan For Problem Solving

    Problem SolvingDefine the problem and find the right solution. Research & DesignVisualize ideas, share designs and gather feedback. Strategic PlanningSet goals, organize, prioritize and stay on track. Features. Problem-solving skills are extremely valuable when running your own business, as you will have many different challenges to overcome.

  21. Inspect and Adapt

    Figure 3 illustrates the steps in the problem-solving workshop. Figure 3. Problem-solving workshop format. The following sections describe each step of the process. Agree on the Problem(s) to Solve. American inventor Charles Kettering is credited with saying that "a problem well stated is a problem half solved." At this point, the teams ...

  22. What are the 6 steps of problem solving?

    The Six Step Problem Solving Model provides a shared, collaborative, and systematic approach to problem solving. Each step must be completed before moving on to the next step. However, the steps are repeatable. At any point the group can return to an earlier step, and proceed from there.

  23. Problem Solving Overview SIX-STEP PROBLEM SOLVING MODEL

    Evaluate the 1. Define the Outcome Problem 2. Determine the 5. Implement the Root Cause (s) of Solution the Problem 4. Select a 3. Develop Solution Alternative Solutions The steps in this sequence are arranged in a circle to emphasize the cyclical, continuous nature of the problem solving process.