GCFGlobal Logo

  • Get started with computers
  • Learn Microsoft Office
  • Apply for a job
  • Improve my work skills
  • Design nice-looking docs
  • Getting Started
  • Smartphones & Tablets
  • Typing Tutorial
  • Online Learning
  • Basic Internet Skills
  • Online Safety
  • Social Media
  • Zoom Basics
  • Google Docs
  • Google Sheets
  • Career Planning
  • Resume Writing
  • Cover Letters
  • Job Search and Networking
  • Business Communication
  • Entrepreneurship 101
  • Careers without College
  • Job Hunt for Today
  • 3D Printing
  • Freelancing 101
  • Personal Finance
  • Sharing Economy
  • Decision-Making
  • Graphic Design
  • Photography
  • Image Editing
  • Learning WordPress
  • Language Learning
  • Critical Thinking
  • For Educators
  • Translations
  • Staff Picks
  • English expand_more expand_less

Critical Thinking and Decision-Making  - What is Critical Thinking?

Critical thinking and decision-making  -, what is critical thinking, critical thinking and decision-making what is critical thinking.

GCFLearnFree Logo

Critical Thinking and Decision-Making: What is Critical Thinking?

Lesson 1: what is critical thinking, what is critical thinking.

Critical thinking is a term that gets thrown around a lot. You've probably heard it used often throughout the years whether it was in school, at work, or in everyday conversation. But when you stop to think about it, what exactly is critical thinking and how do you do it ?

Watch the video below to learn more about critical thinking.

Simply put, critical thinking is the act of deliberately analyzing information so that you can make better judgements and decisions . It involves using things like logic, reasoning, and creativity, to draw conclusions and generally understand things better.

illustration of the terms logic, reasoning, and creativity

This may sound like a pretty broad definition, and that's because critical thinking is a broad skill that can be applied to so many different situations. You can use it to prepare for a job interview, manage your time better, make decisions about purchasing things, and so much more.

The process

illustration of "thoughts" inside a human brain, with several being connected and "analyzed"

As humans, we are constantly thinking . It's something we can't turn off. But not all of it is critical thinking. No one thinks critically 100% of the time... that would be pretty exhausting! Instead, it's an intentional process , something that we consciously use when we're presented with difficult problems or important decisions.

Improving your critical thinking

illustration of the questions "What do I currently know?" and "How do I know this?"

In order to become a better critical thinker, it's important to ask questions when you're presented with a problem or decision, before jumping to any conclusions. You can start with simple ones like What do I currently know? and How do I know this? These can help to give you a better idea of what you're working with and, in some cases, simplify more complex issues.  

Real-world applications

illustration of a hand holding a smartphone displaying an article that reads, "Study: Cats are better than dogs"

Let's take a look at how we can use critical thinking to evaluate online information . Say a friend of yours posts a news article on social media and you're drawn to its headline. If you were to use your everyday automatic thinking, you might accept it as fact and move on. But if you were thinking critically, you would first analyze the available information and ask some questions :

  • What's the source of this article?
  • Is the headline potentially misleading?
  • What are my friend's general beliefs?
  • Do their beliefs inform why they might have shared this?

illustration of "Super Cat Blog" and "According to survery of cat owners" being highlighted from an article on a smartphone

After analyzing all of this information, you can draw a conclusion about whether or not you think the article is trustworthy.

Critical thinking has a wide range of real-world applications . It can help you to make better decisions, become more hireable, and generally better understand the world around you.

illustration of a lightbulb, a briefcase, and the world

/en/problem-solving-and-decision-making/why-is-it-so-hard-to-make-decisions/content/

SEP home page

  • Table of Contents
  • Random Entry
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Advanced Tools
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Critical Thinking

Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking carefully, and the thinking components on which they focus. Its adoption as an educational goal has been recommended on the basis of respect for students’ autonomy and preparing students for success in life and for democratic citizenship. “Critical thinkers” have the dispositions and abilities that lead them to think critically when appropriate. The abilities can be identified directly; the dispositions indirectly, by considering what factors contribute to or impede exercise of the abilities. Standardized tests have been developed to assess the degree to which a person possesses such dispositions and abilities. Educational intervention has been shown experimentally to improve them, particularly when it includes dialogue, anchored instruction, and mentoring. Controversies have arisen over the generalizability of critical thinking across domains, over alleged bias in critical thinking theories and instruction, and over the relationship of critical thinking to other types of thinking.

2.1 Dewey’s Three Main Examples

2.2 dewey’s other examples, 2.3 further examples, 2.4 non-examples, 3. the definition of critical thinking, 4. its value, 5. the process of thinking critically, 6. components of the process, 7. contributory dispositions and abilities, 8.1 initiating dispositions, 8.2 internal dispositions, 9. critical thinking abilities, 10. required knowledge, 11. educational methods, 12.1 the generalizability of critical thinking, 12.2 bias in critical thinking theory and pedagogy, 12.3 relationship of critical thinking to other types of thinking, other internet resources, related entries.

Use of the term ‘critical thinking’ to describe an educational goal goes back to the American philosopher John Dewey (1910), who more commonly called it ‘reflective thinking’. He defined it as

active, persistent and careful consideration of any belief or supposed form of knowledge in the light of the grounds that support it, and the further conclusions to which it tends. (Dewey 1910: 6; 1933: 9)

and identified a habit of such consideration with a scientific attitude of mind. His lengthy quotations of Francis Bacon, John Locke, and John Stuart Mill indicate that he was not the first person to propose development of a scientific attitude of mind as an educational goal.

In the 1930s, many of the schools that participated in the Eight-Year Study of the Progressive Education Association (Aikin 1942) adopted critical thinking as an educational goal, for whose achievement the study’s Evaluation Staff developed tests (Smith, Tyler, & Evaluation Staff 1942). Glaser (1941) showed experimentally that it was possible to improve the critical thinking of high school students. Bloom’s influential taxonomy of cognitive educational objectives (Bloom et al. 1956) incorporated critical thinking abilities. Ennis (1962) proposed 12 aspects of critical thinking as a basis for research on the teaching and evaluation of critical thinking ability.

Since 1980, an annual international conference in California on critical thinking and educational reform has attracted tens of thousands of educators from all levels of education and from many parts of the world. Also since 1980, the state university system in California has required all undergraduate students to take a critical thinking course. Since 1983, the Association for Informal Logic and Critical Thinking has sponsored sessions in conjunction with the divisional meetings of the American Philosophical Association (APA). In 1987, the APA’s Committee on Pre-College Philosophy commissioned a consensus statement on critical thinking for purposes of educational assessment and instruction (Facione 1990a). Researchers have developed standardized tests of critical thinking abilities and dispositions; for details, see the Supplement on Assessment . Educational jurisdictions around the world now include critical thinking in guidelines for curriculum and assessment.

For details on this history, see the Supplement on History .

2. Examples and Non-Examples

Before considering the definition of critical thinking, it will be helpful to have in mind some examples of critical thinking, as well as some examples of kinds of thinking that would apparently not count as critical thinking.

Dewey (1910: 68–71; 1933: 91–94) takes as paradigms of reflective thinking three class papers of students in which they describe their thinking. The examples range from the everyday to the scientific.

Transit : “The other day, when I was down town on 16th Street, a clock caught my eye. I saw that the hands pointed to 12:20. This suggested that I had an engagement at 124th Street, at one o’clock. I reasoned that as it had taken me an hour to come down on a surface car, I should probably be twenty minutes late if I returned the same way. I might save twenty minutes by a subway express. But was there a station near? If not, I might lose more than twenty minutes in looking for one. Then I thought of the elevated, and I saw there was such a line within two blocks. But where was the station? If it were several blocks above or below the street I was on, I should lose time instead of gaining it. My mind went back to the subway express as quicker than the elevated; furthermore, I remembered that it went nearer than the elevated to the part of 124th Street I wished to reach, so that time would be saved at the end of the journey. I concluded in favor of the subway, and reached my destination by one o’clock.” (Dewey 1910: 68–69; 1933: 91–92)

Ferryboat : “Projecting nearly horizontally from the upper deck of the ferryboat on which I daily cross the river is a long white pole, having a gilded ball at its tip. It suggested a flagpole when I first saw it; its color, shape, and gilded ball agreed with this idea, and these reasons seemed to justify me in this belief. But soon difficulties presented themselves. The pole was nearly horizontal, an unusual position for a flagpole; in the next place, there was no pulley, ring, or cord by which to attach a flag; finally, there were elsewhere on the boat two vertical staffs from which flags were occasionally flown. It seemed probable that the pole was not there for flag-flying.

“I then tried to imagine all possible purposes of the pole, and to consider for which of these it was best suited: (a) Possibly it was an ornament. But as all the ferryboats and even the tugboats carried poles, this hypothesis was rejected. (b) Possibly it was the terminal of a wireless telegraph. But the same considerations made this improbable. Besides, the more natural place for such a terminal would be the highest part of the boat, on top of the pilot house. (c) Its purpose might be to point out the direction in which the boat is moving.

“In support of this conclusion, I discovered that the pole was lower than the pilot house, so that the steersman could easily see it. Moreover, the tip was enough higher than the base, so that, from the pilot’s position, it must appear to project far out in front of the boat. Moreover, the pilot being near the front of the boat, he would need some such guide as to its direction. Tugboats would also need poles for such a purpose. This hypothesis was so much more probable than the others that I accepted it. I formed the conclusion that the pole was set up for the purpose of showing the pilot the direction in which the boat pointed, to enable him to steer correctly.” (Dewey 1910: 69–70; 1933: 92–93)

Bubbles : “In washing tumblers in hot soapsuds and placing them mouth downward on a plate, bubbles appeared on the outside of the mouth of the tumblers and then went inside. Why? The presence of bubbles suggests air, which I note must come from inside the tumbler. I see that the soapy water on the plate prevents escape of the air save as it may be caught in bubbles. But why should air leave the tumbler? There was no substance entering to force it out. It must have expanded. It expands by increase of heat, or by decrease of pressure, or both. Could the air have become heated after the tumbler was taken from the hot suds? Clearly not the air that was already entangled in the water. If heated air was the cause, cold air must have entered in transferring the tumblers from the suds to the plate. I test to see if this supposition is true by taking several more tumblers out. Some I shake so as to make sure of entrapping cold air in them. Some I take out holding mouth downward in order to prevent cold air from entering. Bubbles appear on the outside of every one of the former and on none of the latter. I must be right in my inference. Air from the outside must have been expanded by the heat of the tumbler, which explains the appearance of the bubbles on the outside. But why do they then go inside? Cold contracts. The tumbler cooled and also the air inside it. Tension was removed, and hence bubbles appeared inside. To be sure of this, I test by placing a cup of ice on the tumbler while the bubbles are still forming outside. They soon reverse” (Dewey 1910: 70–71; 1933: 93–94).

Dewey (1910, 1933) sprinkles his book with other examples of critical thinking. We will refer to the following.

Weather : A man on a walk notices that it has suddenly become cool, thinks that it is probably going to rain, looks up and sees a dark cloud obscuring the sun, and quickens his steps (1910: 6–10; 1933: 9–13).

Disorder : A man finds his rooms on his return to them in disorder with his belongings thrown about, thinks at first of burglary as an explanation, then thinks of mischievous children as being an alternative explanation, then looks to see whether valuables are missing, and discovers that they are (1910: 82–83; 1933: 166–168).

Typhoid : A physician diagnosing a patient whose conspicuous symptoms suggest typhoid avoids drawing a conclusion until more data are gathered by questioning the patient and by making tests (1910: 85–86; 1933: 170).

Blur : A moving blur catches our eye in the distance, we ask ourselves whether it is a cloud of whirling dust or a tree moving its branches or a man signaling to us, we think of other traits that should be found on each of those possibilities, and we look and see if those traits are found (1910: 102, 108; 1933: 121, 133).

Suction pump : In thinking about the suction pump, the scientist first notes that it will draw water only to a maximum height of 33 feet at sea level and to a lesser maximum height at higher elevations, selects for attention the differing atmospheric pressure at these elevations, sets up experiments in which the air is removed from a vessel containing water (when suction no longer works) and in which the weight of air at various levels is calculated, compares the results of reasoning about the height to which a given weight of air will allow a suction pump to raise water with the observed maximum height at different elevations, and finally assimilates the suction pump to such apparently different phenomena as the siphon and the rising of a balloon (1910: 150–153; 1933: 195–198).

Diamond : A passenger in a car driving in a diamond lane reserved for vehicles with at least one passenger notices that the diamond marks on the pavement are far apart in some places and close together in others. Why? The driver suggests that the reason may be that the diamond marks are not needed where there is a solid double line separating the diamond lane from the adjoining lane, but are needed when there is a dotted single line permitting crossing into the diamond lane. Further observation confirms that the diamonds are close together when a dotted line separates the diamond lane from its neighbour, but otherwise far apart.

Rash : A woman suddenly develops a very itchy red rash on her throat and upper chest. She recently noticed a mark on the back of her right hand, but was not sure whether the mark was a rash or a scrape. She lies down in bed and thinks about what might be causing the rash and what to do about it. About two weeks before, she began taking blood pressure medication that contained a sulfa drug, and the pharmacist had warned her, in view of a previous allergic reaction to a medication containing a sulfa drug, to be on the alert for an allergic reaction; however, she had been taking the medication for two weeks with no such effect. The day before, she began using a new cream on her neck and upper chest; against the new cream as the cause was mark on the back of her hand, which had not been exposed to the cream. She began taking probiotics about a month before. She also recently started new eye drops, but she supposed that manufacturers of eye drops would be careful not to include allergy-causing components in the medication. The rash might be a heat rash, since she recently was sweating profusely from her upper body. Since she is about to go away on a short vacation, where she would not have access to her usual physician, she decides to keep taking the probiotics and using the new eye drops but to discontinue the blood pressure medication and to switch back to the old cream for her neck and upper chest. She forms a plan to consult her regular physician on her return about the blood pressure medication.

Candidate : Although Dewey included no examples of thinking directed at appraising the arguments of others, such thinking has come to be considered a kind of critical thinking. We find an example of such thinking in the performance task on the Collegiate Learning Assessment (CLA+), which its sponsoring organization describes as

a performance-based assessment that provides a measure of an institution’s contribution to the development of critical-thinking and written communication skills of its students. (Council for Aid to Education 2017)

A sample task posted on its website requires the test-taker to write a report for public distribution evaluating a fictional candidate’s policy proposals and their supporting arguments, using supplied background documents, with a recommendation on whether to endorse the candidate.

Immediate acceptance of an idea that suggests itself as a solution to a problem (e.g., a possible explanation of an event or phenomenon, an action that seems likely to produce a desired result) is “uncritical thinking, the minimum of reflection” (Dewey 1910: 13). On-going suspension of judgment in the light of doubt about a possible solution is not critical thinking (Dewey 1910: 108). Critique driven by a dogmatically held political or religious ideology is not critical thinking; thus Paulo Freire (1968 [1970]) is using the term (e.g., at 1970: 71, 81, 100, 146) in a more politically freighted sense that includes not only reflection but also revolutionary action against oppression. Derivation of a conclusion from given data using an algorithm is not critical thinking.

What is critical thinking? There are many definitions. Ennis (2016) lists 14 philosophically oriented scholarly definitions and three dictionary definitions. Following Rawls (1971), who distinguished his conception of justice from a utilitarian conception but regarded them as rival conceptions of the same concept, Ennis maintains that the 17 definitions are different conceptions of the same concept. Rawls articulated the shared concept of justice as

a characteristic set of principles for assigning basic rights and duties and for determining… the proper distribution of the benefits and burdens of social cooperation. (Rawls 1971: 5)

Bailin et al. (1999b) claim that, if one considers what sorts of thinking an educator would take not to be critical thinking and what sorts to be critical thinking, one can conclude that educators typically understand critical thinking to have at least three features.

  • It is done for the purpose of making up one’s mind about what to believe or do.
  • The person engaging in the thinking is trying to fulfill standards of adequacy and accuracy appropriate to the thinking.
  • The thinking fulfills the relevant standards to some threshold level.

One could sum up the core concept that involves these three features by saying that critical thinking is careful goal-directed thinking. This core concept seems to apply to all the examples of critical thinking described in the previous section. As for the non-examples, their exclusion depends on construing careful thinking as excluding jumping immediately to conclusions, suspending judgment no matter how strong the evidence, reasoning from an unquestioned ideological or religious perspective, and routinely using an algorithm to answer a question.

If the core of critical thinking is careful goal-directed thinking, conceptions of it can vary according to its presumed scope, its presumed goal, one’s criteria and threshold for being careful, and the thinking component on which one focuses. As to its scope, some conceptions (e.g., Dewey 1910, 1933) restrict it to constructive thinking on the basis of one’s own observations and experiments, others (e.g., Ennis 1962; Fisher & Scriven 1997; Johnson 1992) to appraisal of the products of such thinking. Ennis (1991) and Bailin et al. (1999b) take it to cover both construction and appraisal. As to its goal, some conceptions restrict it to forming a judgment (Dewey 1910, 1933; Lipman 1987; Facione 1990a). Others allow for actions as well as beliefs as the end point of a process of critical thinking (Ennis 1991; Bailin et al. 1999b). As to the criteria and threshold for being careful, definitions vary in the term used to indicate that critical thinking satisfies certain norms: “intellectually disciplined” (Scriven & Paul 1987), “reasonable” (Ennis 1991), “skillful” (Lipman 1987), “skilled” (Fisher & Scriven 1997), “careful” (Bailin & Battersby 2009). Some definitions specify these norms, referring variously to “consideration of any belief or supposed form of knowledge in the light of the grounds that support it and the further conclusions to which it tends” (Dewey 1910, 1933); “the methods of logical inquiry and reasoning” (Glaser 1941); “conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication” (Scriven & Paul 1987); the requirement that “it is sensitive to context, relies on criteria, and is self-correcting” (Lipman 1987); “evidential, conceptual, methodological, criteriological, or contextual considerations” (Facione 1990a); and “plus-minus considerations of the product in terms of appropriate standards (or criteria)” (Johnson 1992). Stanovich and Stanovich (2010) propose to ground the concept of critical thinking in the concept of rationality, which they understand as combining epistemic rationality (fitting one’s beliefs to the world) and instrumental rationality (optimizing goal fulfillment); a critical thinker, in their view, is someone with “a propensity to override suboptimal responses from the autonomous mind” (2010: 227). These variant specifications of norms for critical thinking are not necessarily incompatible with one another, and in any case presuppose the core notion of thinking carefully. As to the thinking component singled out, some definitions focus on suspension of judgment during the thinking (Dewey 1910; McPeck 1981), others on inquiry while judgment is suspended (Bailin & Battersby 2009, 2021), others on the resulting judgment (Facione 1990a), and still others on responsiveness to reasons (Siegel 1988). Kuhn (2019) takes critical thinking to be more a dialogic practice of advancing and responding to arguments than an individual ability.

In educational contexts, a definition of critical thinking is a “programmatic definition” (Scheffler 1960: 19). It expresses a practical program for achieving an educational goal. For this purpose, a one-sentence formulaic definition is much less useful than articulation of a critical thinking process, with criteria and standards for the kinds of thinking that the process may involve. The real educational goal is recognition, adoption and implementation by students of those criteria and standards. That adoption and implementation in turn consists in acquiring the knowledge, abilities and dispositions of a critical thinker.

Conceptions of critical thinking generally do not include moral integrity as part of the concept. Dewey, for example, took critical thinking to be the ultimate intellectual goal of education, but distinguished it from the development of social cooperation among school children, which he took to be the central moral goal. Ennis (1996, 2011) added to his previous list of critical thinking dispositions a group of dispositions to care about the dignity and worth of every person, which he described as a “correlative” (1996) disposition without which critical thinking would be less valuable and perhaps harmful. An educational program that aimed at developing critical thinking but not the correlative disposition to care about the dignity and worth of every person, he asserted, “would be deficient and perhaps dangerous” (Ennis 1996: 172).

Dewey thought that education for reflective thinking would be of value to both the individual and society; recognition in educational practice of the kinship to the scientific attitude of children’s native curiosity, fertile imagination and love of experimental inquiry “would make for individual happiness and the reduction of social waste” (Dewey 1910: iii). Schools participating in the Eight-Year Study took development of the habit of reflective thinking and skill in solving problems as a means to leading young people to understand, appreciate and live the democratic way of life characteristic of the United States (Aikin 1942: 17–18, 81). Harvey Siegel (1988: 55–61) has offered four considerations in support of adopting critical thinking as an educational ideal. (1) Respect for persons requires that schools and teachers honour students’ demands for reasons and explanations, deal with students honestly, and recognize the need to confront students’ independent judgment; these requirements concern the manner in which teachers treat students. (2) Education has the task of preparing children to be successful adults, a task that requires development of their self-sufficiency. (3) Education should initiate children into the rational traditions in such fields as history, science and mathematics. (4) Education should prepare children to become democratic citizens, which requires reasoned procedures and critical talents and attitudes. To supplement these considerations, Siegel (1988: 62–90) responds to two objections: the ideology objection that adoption of any educational ideal requires a prior ideological commitment and the indoctrination objection that cultivation of critical thinking cannot escape being a form of indoctrination.

Despite the diversity of our 11 examples, one can recognize a common pattern. Dewey analyzed it as consisting of five phases:

  • suggestions , in which the mind leaps forward to a possible solution;
  • an intellectualization of the difficulty or perplexity into a problem to be solved, a question for which the answer must be sought;
  • the use of one suggestion after another as a leading idea, or hypothesis , to initiate and guide observation and other operations in collection of factual material;
  • the mental elaboration of the idea or supposition as an idea or supposition ( reasoning , in the sense on which reasoning is a part, not the whole, of inference); and
  • testing the hypothesis by overt or imaginative action. (Dewey 1933: 106–107; italics in original)

The process of reflective thinking consisting of these phases would be preceded by a perplexed, troubled or confused situation and followed by a cleared-up, unified, resolved situation (Dewey 1933: 106). The term ‘phases’ replaced the term ‘steps’ (Dewey 1910: 72), thus removing the earlier suggestion of an invariant sequence. Variants of the above analysis appeared in (Dewey 1916: 177) and (Dewey 1938: 101–119).

The variant formulations indicate the difficulty of giving a single logical analysis of such a varied process. The process of critical thinking may have a spiral pattern, with the problem being redefined in the light of obstacles to solving it as originally formulated. For example, the person in Transit might have concluded that getting to the appointment at the scheduled time was impossible and have reformulated the problem as that of rescheduling the appointment for a mutually convenient time. Further, defining a problem does not always follow after or lead immediately to an idea of a suggested solution. Nor should it do so, as Dewey himself recognized in describing the physician in Typhoid as avoiding any strong preference for this or that conclusion before getting further information (Dewey 1910: 85; 1933: 170). People with a hypothesis in mind, even one to which they have a very weak commitment, have a so-called “confirmation bias” (Nickerson 1998): they are likely to pay attention to evidence that confirms the hypothesis and to ignore evidence that counts against it or for some competing hypothesis. Detectives, intelligence agencies, and investigators of airplane accidents are well advised to gather relevant evidence systematically and to postpone even tentative adoption of an explanatory hypothesis until the collected evidence rules out with the appropriate degree of certainty all but one explanation. Dewey’s analysis of the critical thinking process can be faulted as well for requiring acceptance or rejection of a possible solution to a defined problem, with no allowance for deciding in the light of the available evidence to suspend judgment. Further, given the great variety of kinds of problems for which reflection is appropriate, there is likely to be variation in its component events. Perhaps the best way to conceptualize the critical thinking process is as a checklist whose component events can occur in a variety of orders, selectively, and more than once. These component events might include (1) noticing a difficulty, (2) defining the problem, (3) dividing the problem into manageable sub-problems, (4) formulating a variety of possible solutions to the problem or sub-problem, (5) determining what evidence is relevant to deciding among possible solutions to the problem or sub-problem, (6) devising a plan of systematic observation or experiment that will uncover the relevant evidence, (7) carrying out the plan of systematic observation or experimentation, (8) noting the results of the systematic observation or experiment, (9) gathering relevant testimony and information from others, (10) judging the credibility of testimony and information gathered from others, (11) drawing conclusions from gathered evidence and accepted testimony, and (12) accepting a solution that the evidence adequately supports (cf. Hitchcock 2017: 485).

Checklist conceptions of the process of critical thinking are open to the objection that they are too mechanical and procedural to fit the multi-dimensional and emotionally charged issues for which critical thinking is urgently needed (Paul 1984). For such issues, a more dialectical process is advocated, in which competing relevant world views are identified, their implications explored, and some sort of creative synthesis attempted.

If one considers the critical thinking process illustrated by the 11 examples, one can identify distinct kinds of mental acts and mental states that form part of it. To distinguish, label and briefly characterize these components is a useful preliminary to identifying abilities, skills, dispositions, attitudes, habits and the like that contribute causally to thinking critically. Identifying such abilities and habits is in turn a useful preliminary to setting educational goals. Setting the goals is in its turn a useful preliminary to designing strategies for helping learners to achieve the goals and to designing ways of measuring the extent to which learners have done so. Such measures provide both feedback to learners on their achievement and a basis for experimental research on the effectiveness of various strategies for educating people to think critically. Let us begin, then, by distinguishing the kinds of mental acts and mental events that can occur in a critical thinking process.

  • Observing : One notices something in one’s immediate environment (sudden cooling of temperature in Weather , bubbles forming outside a glass and then going inside in Bubbles , a moving blur in the distance in Blur , a rash in Rash ). Or one notes the results of an experiment or systematic observation (valuables missing in Disorder , no suction without air pressure in Suction pump )
  • Feeling : One feels puzzled or uncertain about something (how to get to an appointment on time in Transit , why the diamonds vary in spacing in Diamond ). One wants to resolve this perplexity. One feels satisfaction once one has worked out an answer (to take the subway express in Transit , diamonds closer when needed as a warning in Diamond ).
  • Wondering : One formulates a question to be addressed (why bubbles form outside a tumbler taken from hot water in Bubbles , how suction pumps work in Suction pump , what caused the rash in Rash ).
  • Imagining : One thinks of possible answers (bus or subway or elevated in Transit , flagpole or ornament or wireless communication aid or direction indicator in Ferryboat , allergic reaction or heat rash in Rash ).
  • Inferring : One works out what would be the case if a possible answer were assumed (valuables missing if there has been a burglary in Disorder , earlier start to the rash if it is an allergic reaction to a sulfa drug in Rash ). Or one draws a conclusion once sufficient relevant evidence is gathered (take the subway in Transit , burglary in Disorder , discontinue blood pressure medication and new cream in Rash ).
  • Knowledge : One uses stored knowledge of the subject-matter to generate possible answers or to infer what would be expected on the assumption of a particular answer (knowledge of a city’s public transit system in Transit , of the requirements for a flagpole in Ferryboat , of Boyle’s law in Bubbles , of allergic reactions in Rash ).
  • Experimenting : One designs and carries out an experiment or a systematic observation to find out whether the results deduced from a possible answer will occur (looking at the location of the flagpole in relation to the pilot’s position in Ferryboat , putting an ice cube on top of a tumbler taken from hot water in Bubbles , measuring the height to which a suction pump will draw water at different elevations in Suction pump , noticing the spacing of diamonds when movement to or from a diamond lane is allowed in Diamond ).
  • Consulting : One finds a source of information, gets the information from the source, and makes a judgment on whether to accept it. None of our 11 examples include searching for sources of information. In this respect they are unrepresentative, since most people nowadays have almost instant access to information relevant to answering any question, including many of those illustrated by the examples. However, Candidate includes the activities of extracting information from sources and evaluating its credibility.
  • Identifying and analyzing arguments : One notices an argument and works out its structure and content as a preliminary to evaluating its strength. This activity is central to Candidate . It is an important part of a critical thinking process in which one surveys arguments for various positions on an issue.
  • Judging : One makes a judgment on the basis of accumulated evidence and reasoning, such as the judgment in Ferryboat that the purpose of the pole is to provide direction to the pilot.
  • Deciding : One makes a decision on what to do or on what policy to adopt, as in the decision in Transit to take the subway.

By definition, a person who does something voluntarily is both willing and able to do that thing at that time. Both the willingness and the ability contribute causally to the person’s action, in the sense that the voluntary action would not occur if either (or both) of these were lacking. For example, suppose that one is standing with one’s arms at one’s sides and one voluntarily lifts one’s right arm to an extended horizontal position. One would not do so if one were unable to lift one’s arm, if for example one’s right side was paralyzed as the result of a stroke. Nor would one do so if one were unwilling to lift one’s arm, if for example one were participating in a street demonstration at which a white supremacist was urging the crowd to lift their right arm in a Nazi salute and one were unwilling to express support in this way for the racist Nazi ideology. The same analysis applies to a voluntary mental process of thinking critically. It requires both willingness and ability to think critically, including willingness and ability to perform each of the mental acts that compose the process and to coordinate those acts in a sequence that is directed at resolving the initiating perplexity.

Consider willingness first. We can identify causal contributors to willingness to think critically by considering factors that would cause a person who was able to think critically about an issue nevertheless not to do so (Hamby 2014). For each factor, the opposite condition thus contributes causally to willingness to think critically on a particular occasion. For example, people who habitually jump to conclusions without considering alternatives will not think critically about issues that arise, even if they have the required abilities. The contrary condition of willingness to suspend judgment is thus a causal contributor to thinking critically.

Now consider ability. In contrast to the ability to move one’s arm, which can be completely absent because a stroke has left the arm paralyzed, the ability to think critically is a developed ability, whose absence is not a complete absence of ability to think but absence of ability to think well. We can identify the ability to think well directly, in terms of the norms and standards for good thinking. In general, to be able do well the thinking activities that can be components of a critical thinking process, one needs to know the concepts and principles that characterize their good performance, to recognize in particular cases that the concepts and principles apply, and to apply them. The knowledge, recognition and application may be procedural rather than declarative. It may be domain-specific rather than widely applicable, and in either case may need subject-matter knowledge, sometimes of a deep kind.

Reflections of the sort illustrated by the previous two paragraphs have led scholars to identify the knowledge, abilities and dispositions of a “critical thinker”, i.e., someone who thinks critically whenever it is appropriate to do so. We turn now to these three types of causal contributors to thinking critically. We start with dispositions, since arguably these are the most powerful contributors to being a critical thinker, can be fostered at an early stage of a child’s development, and are susceptible to general improvement (Glaser 1941: 175)

8. Critical Thinking Dispositions

Educational researchers use the term ‘dispositions’ broadly for the habits of mind and attitudes that contribute causally to being a critical thinker. Some writers (e.g., Paul & Elder 2006; Hamby 2014; Bailin & Battersby 2016a) propose to use the term ‘virtues’ for this dimension of a critical thinker. The virtues in question, although they are virtues of character, concern the person’s ways of thinking rather than the person’s ways of behaving towards others. They are not moral virtues but intellectual virtues, of the sort articulated by Zagzebski (1996) and discussed by Turri, Alfano, and Greco (2017).

On a realistic conception, thinking dispositions or intellectual virtues are real properties of thinkers. They are general tendencies, propensities, or inclinations to think in particular ways in particular circumstances, and can be genuinely explanatory (Siegel 1999). Sceptics argue that there is no evidence for a specific mental basis for the habits of mind that contribute to thinking critically, and that it is pedagogically misleading to posit such a basis (Bailin et al. 1999a). Whatever their status, critical thinking dispositions need motivation for their initial formation in a child—motivation that may be external or internal. As children develop, the force of habit will gradually become important in sustaining the disposition (Nieto & Valenzuela 2012). Mere force of habit, however, is unlikely to sustain critical thinking dispositions. Critical thinkers must value and enjoy using their knowledge and abilities to think things through for themselves. They must be committed to, and lovers of, inquiry.

A person may have a critical thinking disposition with respect to only some kinds of issues. For example, one could be open-minded about scientific issues but not about religious issues. Similarly, one could be confident in one’s ability to reason about the theological implications of the existence of evil in the world but not in one’s ability to reason about the best design for a guided ballistic missile.

Facione (1990a: 25) divides “affective dispositions” of critical thinking into approaches to life and living in general and approaches to specific issues, questions or problems. Adapting this distinction, one can usefully divide critical thinking dispositions into initiating dispositions (those that contribute causally to starting to think critically about an issue) and internal dispositions (those that contribute causally to doing a good job of thinking critically once one has started). The two categories are not mutually exclusive. For example, open-mindedness, in the sense of willingness to consider alternative points of view to one’s own, is both an initiating and an internal disposition.

Using the strategy of considering factors that would block people with the ability to think critically from doing so, we can identify as initiating dispositions for thinking critically attentiveness, a habit of inquiry, self-confidence, courage, open-mindedness, willingness to suspend judgment, trust in reason, wanting evidence for one’s beliefs, and seeking the truth. We consider briefly what each of these dispositions amounts to, in each case citing sources that acknowledge them.

  • Attentiveness : One will not think critically if one fails to recognize an issue that needs to be thought through. For example, the pedestrian in Weather would not have looked up if he had not noticed that the air was suddenly cooler. To be a critical thinker, then, one needs to be habitually attentive to one’s surroundings, noticing not only what one senses but also sources of perplexity in messages received and in one’s own beliefs and attitudes (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Habit of inquiry : Inquiry is effortful, and one needs an internal push to engage in it. For example, the student in Bubbles could easily have stopped at idle wondering about the cause of the bubbles rather than reasoning to a hypothesis, then designing and executing an experiment to test it. Thus willingness to think critically needs mental energy and initiative. What can supply that energy? Love of inquiry, or perhaps just a habit of inquiry. Hamby (2015) has argued that willingness to inquire is the central critical thinking virtue, one that encompasses all the others. It is recognized as a critical thinking disposition by Dewey (1910: 29; 1933: 35), Glaser (1941: 5), Ennis (1987: 12; 1991: 8), Facione (1990a: 25), Bailin et al. (1999b: 294), Halpern (1998: 452), and Facione, Facione, & Giancarlo (2001).
  • Self-confidence : Lack of confidence in one’s abilities can block critical thinking. For example, if the woman in Rash lacked confidence in her ability to figure things out for herself, she might just have assumed that the rash on her chest was the allergic reaction to her medication against which the pharmacist had warned her. Thus willingness to think critically requires confidence in one’s ability to inquire (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Courage : Fear of thinking for oneself can stop one from doing it. Thus willingness to think critically requires intellectual courage (Paul & Elder 2006: 16).
  • Open-mindedness : A dogmatic attitude will impede thinking critically. For example, a person who adheres rigidly to a “pro-choice” position on the issue of the legal status of induced abortion is likely to be unwilling to consider seriously the issue of when in its development an unborn child acquires a moral right to life. Thus willingness to think critically requires open-mindedness, in the sense of a willingness to examine questions to which one already accepts an answer but which further evidence or reasoning might cause one to answer differently (Dewey 1933; Facione 1990a; Ennis 1991; Bailin et al. 1999b; Halpern 1998, Facione, Facione, & Giancarlo 2001). Paul (1981) emphasizes open-mindedness about alternative world-views, and recommends a dialectical approach to integrating such views as central to what he calls “strong sense” critical thinking. In three studies, Haran, Ritov, & Mellers (2013) found that actively open-minded thinking, including “the tendency to weigh new evidence against a favored belief, to spend sufficient time on a problem before giving up, and to consider carefully the opinions of others in forming one’s own”, led study participants to acquire information and thus to make accurate estimations.
  • Willingness to suspend judgment : Premature closure on an initial solution will block critical thinking. Thus willingness to think critically requires a willingness to suspend judgment while alternatives are explored (Facione 1990a; Ennis 1991; Halpern 1998).
  • Trust in reason : Since distrust in the processes of reasoned inquiry will dissuade one from engaging in it, trust in them is an initiating critical thinking disposition (Facione 1990a, 25; Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001; Paul & Elder 2006). In reaction to an allegedly exclusive emphasis on reason in critical thinking theory and pedagogy, Thayer-Bacon (2000) argues that intuition, imagination, and emotion have important roles to play in an adequate conception of critical thinking that she calls “constructive thinking”. From her point of view, critical thinking requires trust not only in reason but also in intuition, imagination, and emotion.
  • Seeking the truth : If one does not care about the truth but is content to stick with one’s initial bias on an issue, then one will not think critically about it. Seeking the truth is thus an initiating critical thinking disposition (Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001). A disposition to seek the truth is implicit in more specific critical thinking dispositions, such as trying to be well-informed, considering seriously points of view other than one’s own, looking for alternatives, suspending judgment when the evidence is insufficient, and adopting a position when the evidence supporting it is sufficient.

Some of the initiating dispositions, such as open-mindedness and willingness to suspend judgment, are also internal critical thinking dispositions, in the sense of mental habits or attitudes that contribute causally to doing a good job of critical thinking once one starts the process. But there are many other internal critical thinking dispositions. Some of them are parasitic on one’s conception of good thinking. For example, it is constitutive of good thinking about an issue to formulate the issue clearly and to maintain focus on it. For this purpose, one needs not only the corresponding ability but also the corresponding disposition. Ennis (1991: 8) describes it as the disposition “to determine and maintain focus on the conclusion or question”, Facione (1990a: 25) as “clarity in stating the question or concern”. Other internal dispositions are motivators to continue or adjust the critical thinking process, such as willingness to persist in a complex task and willingness to abandon nonproductive strategies in an attempt to self-correct (Halpern 1998: 452). For a list of identified internal critical thinking dispositions, see the Supplement on Internal Critical Thinking Dispositions .

Some theorists postulate skills, i.e., acquired abilities, as operative in critical thinking. It is not obvious, however, that a good mental act is the exercise of a generic acquired skill. Inferring an expected time of arrival, as in Transit , has some generic components but also uses non-generic subject-matter knowledge. Bailin et al. (1999a) argue against viewing critical thinking skills as generic and discrete, on the ground that skilled performance at a critical thinking task cannot be separated from knowledge of concepts and from domain-specific principles of good thinking. Talk of skills, they concede, is unproblematic if it means merely that a person with critical thinking skills is capable of intelligent performance.

Despite such scepticism, theorists of critical thinking have listed as general contributors to critical thinking what they variously call abilities (Glaser 1941; Ennis 1962, 1991), skills (Facione 1990a; Halpern 1998) or competencies (Fisher & Scriven 1997). Amalgamating these lists would produce a confusing and chaotic cornucopia of more than 50 possible educational objectives, with only partial overlap among them. It makes sense instead to try to understand the reasons for the multiplicity and diversity, and to make a selection according to one’s own reasons for singling out abilities to be developed in a critical thinking curriculum. Two reasons for diversity among lists of critical thinking abilities are the underlying conception of critical thinking and the envisaged educational level. Appraisal-only conceptions, for example, involve a different suite of abilities than constructive-only conceptions. Some lists, such as those in (Glaser 1941), are put forward as educational objectives for secondary school students, whereas others are proposed as objectives for college students (e.g., Facione 1990a).

The abilities described in the remaining paragraphs of this section emerge from reflection on the general abilities needed to do well the thinking activities identified in section 6 as components of the critical thinking process described in section 5 . The derivation of each collection of abilities is accompanied by citation of sources that list such abilities and of standardized tests that claim to test them.

Observational abilities : Careful and accurate observation sometimes requires specialist expertise and practice, as in the case of observing birds and observing accident scenes. However, there are general abilities of noticing what one’s senses are picking up from one’s environment and of being able to articulate clearly and accurately to oneself and others what one has observed. It helps in exercising them to be able to recognize and take into account factors that make one’s observation less trustworthy, such as prior framing of the situation, inadequate time, deficient senses, poor observation conditions, and the like. It helps as well to be skilled at taking steps to make one’s observation more trustworthy, such as moving closer to get a better look, measuring something three times and taking the average, and checking what one thinks one is observing with someone else who is in a good position to observe it. It also helps to be skilled at recognizing respects in which one’s report of one’s observation involves inference rather than direct observation, so that one can then consider whether the inference is justified. These abilities come into play as well when one thinks about whether and with what degree of confidence to accept an observation report, for example in the study of history or in a criminal investigation or in assessing news reports. Observational abilities show up in some lists of critical thinking abilities (Ennis 1962: 90; Facione 1990a: 16; Ennis 1991: 9). There are items testing a person’s ability to judge the credibility of observation reports in the Cornell Critical Thinking Tests, Levels X and Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). Norris and King (1983, 1985, 1990a, 1990b) is a test of ability to appraise observation reports.

Emotional abilities : The emotions that drive a critical thinking process are perplexity or puzzlement, a wish to resolve it, and satisfaction at achieving the desired resolution. Children experience these emotions at an early age, without being trained to do so. Education that takes critical thinking as a goal needs only to channel these emotions and to make sure not to stifle them. Collaborative critical thinking benefits from ability to recognize one’s own and others’ emotional commitments and reactions.

Questioning abilities : A critical thinking process needs transformation of an inchoate sense of perplexity into a clear question. Formulating a question well requires not building in questionable assumptions, not prejudging the issue, and using language that in context is unambiguous and precise enough (Ennis 1962: 97; 1991: 9).

Imaginative abilities : Thinking directed at finding the correct causal explanation of a general phenomenon or particular event requires an ability to imagine possible explanations. Thinking about what policy or plan of action to adopt requires generation of options and consideration of possible consequences of each option. Domain knowledge is required for such creative activity, but a general ability to imagine alternatives is helpful and can be nurtured so as to become easier, quicker, more extensive, and deeper (Dewey 1910: 34–39; 1933: 40–47). Facione (1990a) and Halpern (1998) include the ability to imagine alternatives as a critical thinking ability.

Inferential abilities : The ability to draw conclusions from given information, and to recognize with what degree of certainty one’s own or others’ conclusions follow, is universally recognized as a general critical thinking ability. All 11 examples in section 2 of this article include inferences, some from hypotheses or options (as in Transit , Ferryboat and Disorder ), others from something observed (as in Weather and Rash ). None of these inferences is formally valid. Rather, they are licensed by general, sometimes qualified substantive rules of inference (Toulmin 1958) that rest on domain knowledge—that a bus trip takes about the same time in each direction, that the terminal of a wireless telegraph would be located on the highest possible place, that sudden cooling is often followed by rain, that an allergic reaction to a sulfa drug generally shows up soon after one starts taking it. It is a matter of controversy to what extent the specialized ability to deduce conclusions from premisses using formal rules of inference is needed for critical thinking. Dewey (1933) locates logical forms in setting out the products of reflection rather than in the process of reflection. Ennis (1981a), on the other hand, maintains that a liberally-educated person should have the following abilities: to translate natural-language statements into statements using the standard logical operators, to use appropriately the language of necessary and sufficient conditions, to deal with argument forms and arguments containing symbols, to determine whether in virtue of an argument’s form its conclusion follows necessarily from its premisses, to reason with logically complex propositions, and to apply the rules and procedures of deductive logic. Inferential abilities are recognized as critical thinking abilities by Glaser (1941: 6), Facione (1990a: 9), Ennis (1991: 9), Fisher & Scriven (1997: 99, 111), and Halpern (1998: 452). Items testing inferential abilities constitute two of the five subtests of the Watson Glaser Critical Thinking Appraisal (Watson & Glaser 1980a, 1980b, 1994), two of the four sections in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), three of the seven sections in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), 11 of the 34 items on Forms A and B of the California Critical Thinking Skills Test (Facione 1990b, 1992), and a high but variable proportion of the 25 selected-response questions in the Collegiate Learning Assessment (Council for Aid to Education 2017).

Experimenting abilities : Knowing how to design and execute an experiment is important not just in scientific research but also in everyday life, as in Rash . Dewey devoted a whole chapter of his How We Think (1910: 145–156; 1933: 190–202) to the superiority of experimentation over observation in advancing knowledge. Experimenting abilities come into play at one remove in appraising reports of scientific studies. Skill in designing and executing experiments includes the acknowledged abilities to appraise evidence (Glaser 1941: 6), to carry out experiments and to apply appropriate statistical inference techniques (Facione 1990a: 9), to judge inductions to an explanatory hypothesis (Ennis 1991: 9), and to recognize the need for an adequately large sample size (Halpern 1998). The Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) includes four items (out of 52) on experimental design. The Collegiate Learning Assessment (Council for Aid to Education 2017) makes room for appraisal of study design in both its performance task and its selected-response questions.

Consulting abilities : Skill at consulting sources of information comes into play when one seeks information to help resolve a problem, as in Candidate . Ability to find and appraise information includes ability to gather and marshal pertinent information (Glaser 1941: 6), to judge whether a statement made by an alleged authority is acceptable (Ennis 1962: 84), to plan a search for desired information (Facione 1990a: 9), and to judge the credibility of a source (Ennis 1991: 9). Ability to judge the credibility of statements is tested by 24 items (out of 76) in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) and by four items (out of 52) in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). The College Learning Assessment’s performance task requires evaluation of whether information in documents is credible or unreliable (Council for Aid to Education 2017).

Argument analysis abilities : The ability to identify and analyze arguments contributes to the process of surveying arguments on an issue in order to form one’s own reasoned judgment, as in Candidate . The ability to detect and analyze arguments is recognized as a critical thinking skill by Facione (1990a: 7–8), Ennis (1991: 9) and Halpern (1998). Five items (out of 34) on the California Critical Thinking Skills Test (Facione 1990b, 1992) test skill at argument analysis. The College Learning Assessment (Council for Aid to Education 2017) incorporates argument analysis in its selected-response tests of critical reading and evaluation and of critiquing an argument.

Judging skills and deciding skills : Skill at judging and deciding is skill at recognizing what judgment or decision the available evidence and argument supports, and with what degree of confidence. It is thus a component of the inferential skills already discussed.

Lists and tests of critical thinking abilities often include two more abilities: identifying assumptions and constructing and evaluating definitions.

In addition to dispositions and abilities, critical thinking needs knowledge: of critical thinking concepts, of critical thinking principles, and of the subject-matter of the thinking.

We can derive a short list of concepts whose understanding contributes to critical thinking from the critical thinking abilities described in the preceding section. Observational abilities require an understanding of the difference between observation and inference. Questioning abilities require an understanding of the concepts of ambiguity and vagueness. Inferential abilities require an understanding of the difference between conclusive and defeasible inference (traditionally, between deduction and induction), as well as of the difference between necessary and sufficient conditions. Experimenting abilities require an understanding of the concepts of hypothesis, null hypothesis, assumption and prediction, as well as of the concept of statistical significance and of its difference from importance. They also require an understanding of the difference between an experiment and an observational study, and in particular of the difference between a randomized controlled trial, a prospective correlational study and a retrospective (case-control) study. Argument analysis abilities require an understanding of the concepts of argument, premiss, assumption, conclusion and counter-consideration. Additional critical thinking concepts are proposed by Bailin et al. (1999b: 293), Fisher & Scriven (1997: 105–106), Black (2012), and Blair (2021).

According to Glaser (1941: 25), ability to think critically requires knowledge of the methods of logical inquiry and reasoning. If we review the list of abilities in the preceding section, however, we can see that some of them can be acquired and exercised merely through practice, possibly guided in an educational setting, followed by feedback. Searching intelligently for a causal explanation of some phenomenon or event requires that one consider a full range of possible causal contributors, but it seems more important that one implements this principle in one’s practice than that one is able to articulate it. What is important is “operational knowledge” of the standards and principles of good thinking (Bailin et al. 1999b: 291–293). But the development of such critical thinking abilities as designing an experiment or constructing an operational definition can benefit from learning their underlying theory. Further, explicit knowledge of quirks of human thinking seems useful as a cautionary guide. Human memory is not just fallible about details, as people learn from their own experiences of misremembering, but is so malleable that a detailed, clear and vivid recollection of an event can be a total fabrication (Loftus 2017). People seek or interpret evidence in ways that are partial to their existing beliefs and expectations, often unconscious of their “confirmation bias” (Nickerson 1998). Not only are people subject to this and other cognitive biases (Kahneman 2011), of which they are typically unaware, but it may be counter-productive for one to make oneself aware of them and try consciously to counteract them or to counteract social biases such as racial or sexual stereotypes (Kenyon & Beaulac 2014). It is helpful to be aware of these facts and of the superior effectiveness of blocking the operation of biases—for example, by making an immediate record of one’s observations, refraining from forming a preliminary explanatory hypothesis, blind refereeing, double-blind randomized trials, and blind grading of students’ work. It is also helpful to be aware of the prevalence of “noise” (unwanted unsystematic variability of judgments), of how to detect noise (through a noise audit), and of how to reduce noise: make accuracy the goal, think statistically, break a process of arriving at a judgment into independent tasks, resist premature intuitions, in a group get independent judgments first, favour comparative judgments and scales (Kahneman, Sibony, & Sunstein 2021). It is helpful as well to be aware of the concept of “bounded rationality” in decision-making and of the related distinction between “satisficing” and optimizing (Simon 1956; Gigerenzer 2001).

Critical thinking about an issue requires substantive knowledge of the domain to which the issue belongs. Critical thinking abilities are not a magic elixir that can be applied to any issue whatever by somebody who has no knowledge of the facts relevant to exploring that issue. For example, the student in Bubbles needed to know that gases do not penetrate solid objects like a glass, that air expands when heated, that the volume of an enclosed gas varies directly with its temperature and inversely with its pressure, and that hot objects will spontaneously cool down to the ambient temperature of their surroundings unless kept hot by insulation or a source of heat. Critical thinkers thus need a rich fund of subject-matter knowledge relevant to the variety of situations they encounter. This fact is recognized in the inclusion among critical thinking dispositions of a concern to become and remain generally well informed.

Experimental educational interventions, with control groups, have shown that education can improve critical thinking skills and dispositions, as measured by standardized tests. For information about these tests, see the Supplement on Assessment .

What educational methods are most effective at developing the dispositions, abilities and knowledge of a critical thinker? In a comprehensive meta-analysis of experimental and quasi-experimental studies of strategies for teaching students to think critically, Abrami et al. (2015) found that dialogue, anchored instruction, and mentoring each increased the effectiveness of the educational intervention, and that they were most effective when combined. They also found that in these studies a combination of separate instruction in critical thinking with subject-matter instruction in which students are encouraged to think critically was more effective than either by itself. However, the difference was not statistically significant; that is, it might have arisen by chance.

Most of these studies lack the longitudinal follow-up required to determine whether the observed differential improvements in critical thinking abilities or dispositions continue over time, for example until high school or college graduation. For details on studies of methods of developing critical thinking skills and dispositions, see the Supplement on Educational Methods .

12. Controversies

Scholars have denied the generalizability of critical thinking abilities across subject domains, have alleged bias in critical thinking theory and pedagogy, and have investigated the relationship of critical thinking to other kinds of thinking.

McPeck (1981) attacked the thinking skills movement of the 1970s, including the critical thinking movement. He argued that there are no general thinking skills, since thinking is always thinking about some subject-matter. It is futile, he claimed, for schools and colleges to teach thinking as if it were a separate subject. Rather, teachers should lead their pupils to become autonomous thinkers by teaching school subjects in a way that brings out their cognitive structure and that encourages and rewards discussion and argument. As some of his critics (e.g., Paul 1985; Siegel 1985) pointed out, McPeck’s central argument needs elaboration, since it has obvious counter-examples in writing and speaking, for which (up to a certain level of complexity) there are teachable general abilities even though they are always about some subject-matter. To make his argument convincing, McPeck needs to explain how thinking differs from writing and speaking in a way that does not permit useful abstraction of its components from the subject-matters with which it deals. He has not done so. Nevertheless, his position that the dispositions and abilities of a critical thinker are best developed in the context of subject-matter instruction is shared by many theorists of critical thinking, including Dewey (1910, 1933), Glaser (1941), Passmore (1980), Weinstein (1990), Bailin et al. (1999b), and Willingham (2019).

McPeck’s challenge prompted reflection on the extent to which critical thinking is subject-specific. McPeck argued for a strong subject-specificity thesis, according to which it is a conceptual truth that all critical thinking abilities are specific to a subject. (He did not however extend his subject-specificity thesis to critical thinking dispositions. In particular, he took the disposition to suspend judgment in situations of cognitive dissonance to be a general disposition.) Conceptual subject-specificity is subject to obvious counter-examples, such as the general ability to recognize confusion of necessary and sufficient conditions. A more modest thesis, also endorsed by McPeck, is epistemological subject-specificity, according to which the norms of good thinking vary from one field to another. Epistemological subject-specificity clearly holds to a certain extent; for example, the principles in accordance with which one solves a differential equation are quite different from the principles in accordance with which one determines whether a painting is a genuine Picasso. But the thesis suffers, as Ennis (1989) points out, from vagueness of the concept of a field or subject and from the obvious existence of inter-field principles, however broadly the concept of a field is construed. For example, the principles of hypothetico-deductive reasoning hold for all the varied fields in which such reasoning occurs. A third kind of subject-specificity is empirical subject-specificity, according to which as a matter of empirically observable fact a person with the abilities and dispositions of a critical thinker in one area of investigation will not necessarily have them in another area of investigation.

The thesis of empirical subject-specificity raises the general problem of transfer. If critical thinking abilities and dispositions have to be developed independently in each school subject, how are they of any use in dealing with the problems of everyday life and the political and social issues of contemporary society, most of which do not fit into the framework of a traditional school subject? Proponents of empirical subject-specificity tend to argue that transfer is more likely to occur if there is critical thinking instruction in a variety of domains, with explicit attention to dispositions and abilities that cut across domains. But evidence for this claim is scanty. There is a need for well-designed empirical studies that investigate the conditions that make transfer more likely.

It is common ground in debates about the generality or subject-specificity of critical thinking dispositions and abilities that critical thinking about any topic requires background knowledge about the topic. For example, the most sophisticated understanding of the principles of hypothetico-deductive reasoning is of no help unless accompanied by some knowledge of what might be plausible explanations of some phenomenon under investigation.

Critics have objected to bias in the theory, pedagogy and practice of critical thinking. Commentators (e.g., Alston 1995; Ennis 1998) have noted that anyone who takes a position has a bias in the neutral sense of being inclined in one direction rather than others. The critics, however, are objecting to bias in the pejorative sense of an unjustified favoring of certain ways of knowing over others, frequently alleging that the unjustly favoured ways are those of a dominant sex or culture (Bailin 1995). These ways favour:

  • reinforcement of egocentric and sociocentric biases over dialectical engagement with opposing world-views (Paul 1981, 1984; Warren 1998)
  • distancing from the object of inquiry over closeness to it (Martin 1992; Thayer-Bacon 1992)
  • indifference to the situation of others over care for them (Martin 1992)
  • orientation to thought over orientation to action (Martin 1992)
  • being reasonable over caring to understand people’s ideas (Thayer-Bacon 1993)
  • being neutral and objective over being embodied and situated (Thayer-Bacon 1995a)
  • doubting over believing (Thayer-Bacon 1995b)
  • reason over emotion, imagination and intuition (Thayer-Bacon 2000)
  • solitary thinking over collaborative thinking (Thayer-Bacon 2000)
  • written and spoken assignments over other forms of expression (Alston 2001)
  • attention to written and spoken communications over attention to human problems (Alston 2001)
  • winning debates in the public sphere over making and understanding meaning (Alston 2001)

A common thread in this smorgasbord of accusations is dissatisfaction with focusing on the logical analysis and evaluation of reasoning and arguments. While these authors acknowledge that such analysis and evaluation is part of critical thinking and should be part of its conceptualization and pedagogy, they insist that it is only a part. Paul (1981), for example, bemoans the tendency of atomistic teaching of methods of analyzing and evaluating arguments to turn students into more able sophists, adept at finding fault with positions and arguments with which they disagree but even more entrenched in the egocentric and sociocentric biases with which they began. Martin (1992) and Thayer-Bacon (1992) cite with approval the self-reported intimacy with their subject-matter of leading researchers in biology and medicine, an intimacy that conflicts with the distancing allegedly recommended in standard conceptions and pedagogy of critical thinking. Thayer-Bacon (2000) contrasts the embodied and socially embedded learning of her elementary school students in a Montessori school, who used their imagination, intuition and emotions as well as their reason, with conceptions of critical thinking as

thinking that is used to critique arguments, offer justifications, and make judgments about what are the good reasons, or the right answers. (Thayer-Bacon 2000: 127–128)

Alston (2001) reports that her students in a women’s studies class were able to see the flaws in the Cinderella myth that pervades much romantic fiction but in their own romantic relationships still acted as if all failures were the woman’s fault and still accepted the notions of love at first sight and living happily ever after. Students, she writes, should

be able to connect their intellectual critique to a more affective, somatic, and ethical account of making risky choices that have sexist, racist, classist, familial, sexual, or other consequences for themselves and those both near and far… critical thinking that reads arguments, texts, or practices merely on the surface without connections to feeling/desiring/doing or action lacks an ethical depth that should infuse the difference between mere cognitive activity and something we want to call critical thinking. (Alston 2001: 34)

Some critics portray such biases as unfair to women. Thayer-Bacon (1992), for example, has charged modern critical thinking theory with being sexist, on the ground that it separates the self from the object and causes one to lose touch with one’s inner voice, and thus stigmatizes women, who (she asserts) link self to object and listen to their inner voice. Her charge does not imply that women as a group are on average less able than men to analyze and evaluate arguments. Facione (1990c) found no difference by sex in performance on his California Critical Thinking Skills Test. Kuhn (1991: 280–281) found no difference by sex in either the disposition or the competence to engage in argumentative thinking.

The critics propose a variety of remedies for the biases that they allege. In general, they do not propose to eliminate or downplay critical thinking as an educational goal. Rather, they propose to conceptualize critical thinking differently and to change its pedagogy accordingly. Their pedagogical proposals arise logically from their objections. They can be summarized as follows:

  • Focus on argument networks with dialectical exchanges reflecting contesting points of view rather than on atomic arguments, so as to develop “strong sense” critical thinking that transcends egocentric and sociocentric biases (Paul 1981, 1984).
  • Foster closeness to the subject-matter and feeling connected to others in order to inform a humane democracy (Martin 1992).
  • Develop “constructive thinking” as a social activity in a community of physically embodied and socially embedded inquirers with personal voices who value not only reason but also imagination, intuition and emotion (Thayer-Bacon 2000).
  • In developing critical thinking in school subjects, treat as important neither skills nor dispositions but opening worlds of meaning (Alston 2001).
  • Attend to the development of critical thinking dispositions as well as skills, and adopt the “critical pedagogy” practised and advocated by Freire (1968 [1970]) and hooks (1994) (Dalgleish, Girard, & Davies 2017).

A common thread in these proposals is treatment of critical thinking as a social, interactive, personally engaged activity like that of a quilting bee or a barn-raising (Thayer-Bacon 2000) rather than as an individual, solitary, distanced activity symbolized by Rodin’s The Thinker . One can get a vivid description of education with the former type of goal from the writings of bell hooks (1994, 2010). Critical thinking for her is open-minded dialectical exchange across opposing standpoints and from multiple perspectives, a conception similar to Paul’s “strong sense” critical thinking (Paul 1981). She abandons the structure of domination in the traditional classroom. In an introductory course on black women writers, for example, she assigns students to write an autobiographical paragraph about an early racial memory, then to read it aloud as the others listen, thus affirming the uniqueness and value of each voice and creating a communal awareness of the diversity of the group’s experiences (hooks 1994: 84). Her “engaged pedagogy” is thus similar to the “freedom under guidance” implemented in John Dewey’s Laboratory School of Chicago in the late 1890s and early 1900s. It incorporates the dialogue, anchored instruction, and mentoring that Abrami (2015) found to be most effective in improving critical thinking skills and dispositions.

What is the relationship of critical thinking to problem solving, decision-making, higher-order thinking, creative thinking, and other recognized types of thinking? One’s answer to this question obviously depends on how one defines the terms used in the question. If critical thinking is conceived broadly to cover any careful thinking about any topic for any purpose, then problem solving and decision making will be kinds of critical thinking, if they are done carefully. Historically, ‘critical thinking’ and ‘problem solving’ were two names for the same thing. If critical thinking is conceived more narrowly as consisting solely of appraisal of intellectual products, then it will be disjoint with problem solving and decision making, which are constructive.

Bloom’s taxonomy of educational objectives used the phrase “intellectual abilities and skills” for what had been labeled “critical thinking” by some, “reflective thinking” by Dewey and others, and “problem solving” by still others (Bloom et al. 1956: 38). Thus, the so-called “higher-order thinking skills” at the taxonomy’s top levels of analysis, synthesis and evaluation are just critical thinking skills, although they do not come with general criteria for their assessment (Ennis 1981b). The revised version of Bloom’s taxonomy (Anderson et al. 2001) likewise treats critical thinking as cutting across those types of cognitive process that involve more than remembering (Anderson et al. 2001: 269–270). For details, see the Supplement on History .

As to creative thinking, it overlaps with critical thinking (Bailin 1987, 1988). Thinking about the explanation of some phenomenon or event, as in Ferryboat , requires creative imagination in constructing plausible explanatory hypotheses. Likewise, thinking about a policy question, as in Candidate , requires creativity in coming up with options. Conversely, creativity in any field needs to be balanced by critical appraisal of the draft painting or novel or mathematical theory.

  • Abrami, Philip C., Robert M. Bernard, Eugene Borokhovski, David I. Waddington, C. Anne Wade, and Tonje Person, 2015, “Strategies for Teaching Students to Think Critically: A Meta-analysis”, Review of Educational Research , 85(2): 275–314. doi:10.3102/0034654314551063
  • Aikin, Wilford M., 1942, The Story of the Eight-year Study, with Conclusions and Recommendations , Volume I of Adventure in American Education , New York and London: Harper & Brothers. [ Aikin 1942 available online ]
  • Alston, Kal, 1995, “Begging the Question: Is Critical Thinking Biased?”, Educational Theory , 45(2): 225–233. doi:10.1111/j.1741-5446.1995.00225.x
  • –––, 2001, “Re/Thinking Critical Thinking: The Seductions of Everyday Life”, Studies in Philosophy and Education , 20(1): 27–40. doi:10.1023/A:1005247128053
  • American Educational Research Association, 2014, Standards for Educational and Psychological Testing / American Educational Research Association, American Psychological Association, National Council on Measurement in Education , Washington, DC: American Educational Research Association.
  • Anderson, Lorin W., David R. Krathwohl, Peter W. Airiasian, Kathleen A. Cruikshank, Richard E. Mayer, Paul R. Pintrich, James Raths, and Merlin C. Wittrock, 2001, A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives , New York: Longman, complete edition.
  • Bailin, Sharon, 1987, “Critical and Creative Thinking”, Informal Logic , 9(1): 23–30. [ Bailin 1987 available online ]
  • –––, 1988, Achieving Extraordinary Ends: An Essay on Creativity , Dordrecht: Kluwer. doi:10.1007/978-94-009-2780-3
  • –––, 1995, “Is Critical Thinking Biased? Clarifications and Implications”, Educational Theory , 45(2): 191–197. doi:10.1111/j.1741-5446.1995.00191.x
  • Bailin, Sharon and Mark Battersby, 2009, “Inquiry: A Dialectical Approach to Teaching Critical Thinking”, in Juho Ritola (ed.), Argument Cultures: Proceedings of OSSA 09 , CD-ROM (pp. 1–10), Windsor, ON: OSSA. [ Bailin & Battersby 2009 available online ]
  • –––, 2016a, “Fostering the Virtues of Inquiry”, Topoi , 35(2): 367–374. doi:10.1007/s11245-015-9307-6
  • –––, 2016b, Reason in the Balance: An Inquiry Approach to Critical Thinking , Indianapolis: Hackett, 2nd edition.
  • –––, 2021, “Inquiry: Teaching for Reasoned Judgment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 31–46. doi: 10.1163/9789004444591_003
  • Bailin, Sharon, Roland Case, Jerrold R. Coombs, and Leroi B. Daniels, 1999a, “Common Misconceptions of Critical Thinking”, Journal of Curriculum Studies , 31(3): 269–283. doi:10.1080/002202799183124
  • –––, 1999b, “Conceptualizing Critical Thinking”, Journal of Curriculum Studies , 31(3): 285–302. doi:10.1080/002202799183133
  • Blair, J. Anthony, 2021, Studies in Critical Thinking , Windsor, ON: Windsor Studies in Argumentation, 2nd edition. [Available online at https://windsor.scholarsportal.info/omp/index.php/wsia/catalog/book/106]
  • Berman, Alan M., Seth J. Schwartz, William M. Kurtines, and Steven L. Berman, 2001, “The Process of Exploration in Identity Formation: The Role of Style and Competence”, Journal of Adolescence , 24(4): 513–528. doi:10.1006/jado.2001.0386
  • Black, Beth (ed.), 2012, An A to Z of Critical Thinking , London: Continuum International Publishing Group.
  • Bloom, Benjamin Samuel, Max D. Engelhart, Edward J. Furst, Walter H. Hill, and David R. Krathwohl, 1956, Taxonomy of Educational Objectives. Handbook I: Cognitive Domain , New York: David McKay.
  • Boardman, Frank, Nancy M. Cavender, and Howard Kahane, 2018, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Boston: Cengage, 13th edition.
  • Browne, M. Neil and Stuart M. Keeley, 2018, Asking the Right Questions: A Guide to Critical Thinking , Hoboken, NJ: Pearson, 12th edition.
  • Center for Assessment & Improvement of Learning, 2017, Critical Thinking Assessment Test , Cookeville, TN: Tennessee Technological University.
  • Cleghorn, Paul. 2021. “Critical Thinking in the Elementary School: Practical Guidance for Building a Culture of Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessmen t, Leiden: Brill, pp. 150–167. doi: 10.1163/9789004444591_010
  • Cohen, Jacob, 1988, Statistical Power Analysis for the Behavioral Sciences , Hillsdale, NJ: Lawrence Erlbaum Associates, 2nd edition.
  • College Board, 1983, Academic Preparation for College. What Students Need to Know and Be Able to Do , New York: College Entrance Examination Board, ERIC document ED232517.
  • Commission on the Relation of School and College of the Progressive Education Association, 1943, Thirty Schools Tell Their Story , Volume V of Adventure in American Education , New York and London: Harper & Brothers.
  • Council for Aid to Education, 2017, CLA+ Student Guide . Available at http://cae.org/images/uploads/pdf/CLA_Student_Guide_Institution.pdf ; last accessed 2022 07 16.
  • Dalgleish, Adam, Patrick Girard, and Maree Davies, 2017, “Critical Thinking, Bias and Feminist Philosophy: Building a Better Framework through Collaboration”, Informal Logic , 37(4): 351–369. [ Dalgleish et al. available online ]
  • Dewey, John, 1910, How We Think , Boston: D.C. Heath. [ Dewey 1910 available online ]
  • –––, 1916, Democracy and Education: An Introduction to the Philosophy of Education , New York: Macmillan.
  • –––, 1933, How We Think: A Restatement of the Relation of Reflective Thinking to the Educative Process , Lexington, MA: D.C. Heath.
  • –––, 1936, “The Theory of the Chicago Experiment”, Appendix II of Mayhew & Edwards 1936: 463–477.
  • –––, 1938, Logic: The Theory of Inquiry , New York: Henry Holt and Company.
  • Dominguez, Caroline (coord.), 2018a, A European Collection of the Critical Thinking Skills and Dispositions Needed in Different Professional Fields for the 21st Century , Vila Real, Portugal: UTAD. Available at http://bit.ly/CRITHINKEDUO1 ; last accessed 2022 07 16.
  • ––– (coord.), 2018b, A European Review on Critical Thinking Educational Practices in Higher Education Institutions , Vila Real: UTAD. Available at http://bit.ly/CRITHINKEDUO2 ; last accessed 2022 07 16.
  • ––– (coord.), 2018c, The CRITHINKEDU European Course on Critical Thinking Education for University Teachers: From Conception to Delivery , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU03; last accessed 2022 07 16.
  • Dominguez Caroline and Rita Payan-Carreira (eds.), 2019, Promoting Critical Thinking in European Higher Education Institutions: Towards an Educational Protocol , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU04; last accessed 2022 07 16.
  • Ennis, Robert H., 1958, “An Appraisal of the Watson-Glaser Critical Thinking Appraisal”, The Journal of Educational Research , 52(4): 155–158. doi:10.1080/00220671.1958.10882558
  • –––, 1962, “A Concept of Critical Thinking: A Proposed Basis for Research on the Teaching and Evaluation of Critical Thinking Ability”, Harvard Educational Review , 32(1): 81–111.
  • –––, 1981a, “A Conception of Deductive Logical Competence”, Teaching Philosophy , 4(3/4): 337–385. doi:10.5840/teachphil198143/429
  • –––, 1981b, “Eight Fallacies in Bloom’s Taxonomy”, in C. J. B. Macmillan (ed.), Philosophy of Education 1980: Proceedings of the Thirty-seventh Annual Meeting of the Philosophy of Education Society , Bloomington, IL: Philosophy of Education Society, pp. 269–273.
  • –––, 1984, “Problems in Testing Informal Logic, Critical Thinking, Reasoning Ability”, Informal Logic , 6(1): 3–9. [ Ennis 1984 available online ]
  • –––, 1987, “A Taxonomy of Critical Thinking Dispositions and Abilities”, in Joan Boykoff Baron and Robert J. Sternberg (eds.), Teaching Thinking Skills: Theory and Practice , New York: W. H. Freeman, pp. 9–26.
  • –––, 1989, “Critical Thinking and Subject Specificity: Clarification and Needed Research”, Educational Researcher , 18(3): 4–10. doi:10.3102/0013189X018003004
  • –––, 1991, “Critical Thinking: A Streamlined Conception”, Teaching Philosophy , 14(1): 5–24. doi:10.5840/teachphil19911412
  • –––, 1996, “Critical Thinking Dispositions: Their Nature and Assessability”, Informal Logic , 18(2–3): 165–182. [ Ennis 1996 available online ]
  • –––, 1998, “Is Critical Thinking Culturally Biased?”, Teaching Philosophy , 21(1): 15–33. doi:10.5840/teachphil19982113
  • –––, 2011, “Critical Thinking: Reflection and Perspective Part I”, Inquiry: Critical Thinking across the Disciplines , 26(1): 4–18. doi:10.5840/inquiryctnews20112613
  • –––, 2013, “Critical Thinking across the Curriculum: The Wisdom CTAC Program”, Inquiry: Critical Thinking across the Disciplines , 28(2): 25–45. doi:10.5840/inquiryct20132828
  • –––, 2016, “Definition: A Three-Dimensional Analysis with Bearing on Key Concepts”, in Patrick Bondy and Laura Benacquista (eds.), Argumentation, Objectivity, and Bias: Proceedings of the 11th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 18–21 May 2016 , Windsor, ON: OSSA, pp. 1–19. Available at http://scholar.uwindsor.ca/ossaarchive/OSSA11/papersandcommentaries/105 ; last accessed 2022 07 16.
  • –––, 2018, “Critical Thinking Across the Curriculum: A Vision”, Topoi , 37(1): 165–184. doi:10.1007/s11245-016-9401-4
  • Ennis, Robert H., and Jason Millman, 1971, Manual for Cornell Critical Thinking Test, Level X, and Cornell Critical Thinking Test, Level Z , Urbana, IL: Critical Thinking Project, University of Illinois.
  • Ennis, Robert H., Jason Millman, and Thomas Norbert Tomko, 1985, Cornell Critical Thinking Tests Level X & Level Z: Manual , Pacific Grove, CA: Midwest Publication, 3rd edition.
  • –––, 2005, Cornell Critical Thinking Tests Level X & Level Z: Manual , Seaside, CA: Critical Thinking Company, 5th edition.
  • Ennis, Robert H. and Eric Weir, 1985, The Ennis-Weir Critical Thinking Essay Test: Test, Manual, Criteria, Scoring Sheet: An Instrument for Teaching and Testing , Pacific Grove, CA: Midwest Publications.
  • Facione, Peter A., 1990a, Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction , Research Findings and Recommendations Prepared for the Committee on Pre-College Philosophy of the American Philosophical Association, ERIC Document ED315423.
  • –––, 1990b, California Critical Thinking Skills Test, CCTST – Form A , Millbrae, CA: The California Academic Press.
  • –––, 1990c, The California Critical Thinking Skills Test--College Level. Technical Report #3. Gender, Ethnicity, Major, CT Self-Esteem, and the CCTST , ERIC Document ED326584.
  • –––, 1992, California Critical Thinking Skills Test: CCTST – Form B, Millbrae, CA: The California Academic Press.
  • –––, 2000, “The Disposition Toward Critical Thinking: Its Character, Measurement, and Relationship to Critical Thinking Skill”, Informal Logic , 20(1): 61–84. [ Facione 2000 available online ]
  • Facione, Peter A. and Noreen C. Facione, 1992, CCTDI: A Disposition Inventory , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Noreen C. Facione, and Carol Ann F. Giancarlo, 2001, California Critical Thinking Disposition Inventory: CCTDI: Inventory Manual , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Carol A. Sánchez, and Noreen C. Facione, 1994, Are College Students Disposed to Think? , Millbrae, CA: The California Academic Press. ERIC Document ED368311.
  • Fisher, Alec, and Michael Scriven, 1997, Critical Thinking: Its Definition and Assessment , Norwich: Centre for Research in Critical Thinking, University of East Anglia.
  • Freire, Paulo, 1968 [1970], Pedagogia do Oprimido . Translated as Pedagogy of the Oppressed , Myra Bergman Ramos (trans.), New York: Continuum, 1970.
  • Gigerenzer, Gerd, 2001, “The Adaptive Toolbox”, in Gerd Gigerenzer and Reinhard Selten (eds.), Bounded Rationality: The Adaptive Toolbox , Cambridge, MA: MIT Press, pp. 37–50.
  • Glaser, Edward Maynard, 1941, An Experiment in the Development of Critical Thinking , New York: Bureau of Publications, Teachers College, Columbia University.
  • Groarke, Leo A. and Christopher W. Tindale, 2012, Good Reasoning Matters! A Constructive Approach to Critical Thinking , Don Mills, ON: Oxford University Press, 5th edition.
  • Halpern, Diane F., 1998, “Teaching Critical Thinking for Transfer Across Domains: Disposition, Skills, Structure Training, and Metacognitive Monitoring”, American Psychologist , 53(4): 449–455. doi:10.1037/0003-066X.53.4.449
  • –––, 2016, Manual: Halpern Critical Thinking Assessment , Mödling, Austria: Schuhfried. Available at https://pdfcoffee.com/hcta-test-manual-pdf-free.html; last accessed 2022 07 16.
  • Hamby, Benjamin, 2014, The Virtues of Critical Thinkers , Doctoral dissertation, Philosophy, McMaster University. [ Hamby 2014 available online ]
  • –––, 2015, “Willingness to Inquire: The Cardinal Critical Thinking Virtue”, in Martin Davies and Ronald Barnett (eds.), The Palgrave Handbook of Critical Thinking in Higher Education , New York: Palgrave Macmillan, pp. 77–87.
  • Haran, Uriel, Ilana Ritov, and Barbara A. Mellers, 2013, “The Role of Actively Open-minded Thinking in Information Acquisition, Accuracy, and Calibration”, Judgment and Decision Making , 8(3): 188–201.
  • Hatcher, Donald and Kevin Possin, 2021, “Commentary: Thinking Critically about Critical Thinking Assessment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 298–322. doi: 10.1163/9789004444591_017
  • Haynes, Ada, Elizabeth Lisic, Kevin Harris, Katie Leming, Kyle Shanks, and Barry Stein, 2015, “Using the Critical Thinking Assessment Test (CAT) as a Model for Designing Within-Course Assessments: Changing How Faculty Assess Student Learning”, Inquiry: Critical Thinking Across the Disciplines , 30(3): 38–48. doi:10.5840/inquiryct201530316
  • Haynes, Ada and Barry Stein, 2021, “Observations from a Long-Term Effort to Assess and Improve Critical Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 231–254. doi: 10.1163/9789004444591_014
  • Hiner, Amanda L. 2021. “Equipping Students for Success in College and Beyond: Placing Critical Thinking Instruction at the Heart of a General Education Program”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 188–208. doi: 10.1163/9789004444591_012
  • Hitchcock, David, 2017, “Critical Thinking as an Educational Ideal”, in his On Reasoning and Argument: Essays in Informal Logic and on Critical Thinking , Dordrecht: Springer, pp. 477–497. doi:10.1007/978-3-319-53562-3_30
  • –––, 2021, “Seven Philosophical Implications of Critical Thinking: Themes, Variations, Implications”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 9–30. doi: 10.1163/9789004444591_002
  • hooks, bell, 1994, Teaching to Transgress: Education as the Practice of Freedom , New York and London: Routledge.
  • –––, 2010, Teaching Critical Thinking: Practical Wisdom , New York and London: Routledge.
  • Johnson, Ralph H., 1992, “The Problem of Defining Critical Thinking”, in Stephen P, Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 38–53.
  • Kahane, Howard, 1971, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Belmont, CA: Wadsworth.
  • Kahneman, Daniel, 2011, Thinking, Fast and Slow , New York: Farrar, Straus and Giroux.
  • Kahneman, Daniel, Olivier Sibony, & Cass R. Sunstein, 2021, Noise: A Flaw in Human Judgment , New York: Little, Brown Spark.
  • Kenyon, Tim, and Guillaume Beaulac, 2014, “Critical Thinking Education and Debasing”, Informal Logic , 34(4): 341–363. [ Kenyon & Beaulac 2014 available online ]
  • Krathwohl, David R., Benjamin S. Bloom, and Bertram B. Masia, 1964, Taxonomy of Educational Objectives, Handbook II: Affective Domain , New York: David McKay.
  • Kuhn, Deanna, 1991, The Skills of Argument , New York: Cambridge University Press. doi:10.1017/CBO9780511571350
  • –––, 2019, “Critical Thinking as Discourse”, Human Development, 62 (3): 146–164. doi:10.1159/000500171
  • Lipman, Matthew, 1987, “Critical Thinking–What Can It Be?”, Analytic Teaching , 8(1): 5–12. [ Lipman 1987 available online ]
  • –––, 2003, Thinking in Education , Cambridge: Cambridge University Press, 2nd edition.
  • Loftus, Elizabeth F., 2017, “Eavesdropping on Memory”, Annual Review of Psychology , 68: 1–18. doi:10.1146/annurev-psych-010416-044138
  • Makaiau, Amber Strong, 2021, “The Good Thinker’s Tool Kit: How to Engage Critical Thinking and Reasoning in Secondary Education”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 168–187. doi: 10.1163/9789004444591_011
  • Martin, Jane Roland, 1992, “Critical Thinking for a Humane World”, in Stephen P. Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 163–180.
  • Mayhew, Katherine Camp, and Anna Camp Edwards, 1936, The Dewey School: The Laboratory School of the University of Chicago, 1896–1903 , New York: Appleton-Century. [ Mayhew & Edwards 1936 available online ]
  • McPeck, John E., 1981, Critical Thinking and Education , New York: St. Martin’s Press.
  • Moore, Brooke Noel and Richard Parker, 2020, Critical Thinking , New York: McGraw-Hill, 13th edition.
  • Nickerson, Raymond S., 1998, “Confirmation Bias: A Ubiquitous Phenomenon in Many Guises”, Review of General Psychology , 2(2): 175–220. doi:10.1037/1089-2680.2.2.175
  • Nieto, Ana Maria, and Jorge Valenzuela, 2012, “A Study of the Internal Structure of Critical Thinking Dispositions”, Inquiry: Critical Thinking across the Disciplines , 27(1): 31–38. doi:10.5840/inquiryct20122713
  • Norris, Stephen P., 1985, “Controlling for Background Beliefs When Developing Multiple-choice Critical Thinking Tests”, Educational Measurement: Issues and Practice , 7(3): 5–11. doi:10.1111/j.1745-3992.1988.tb00437.x
  • Norris, Stephen P. and Robert H. Ennis, 1989, Evaluating Critical Thinking (The Practitioners’ Guide to Teaching Thinking Series), Pacific Grove, CA: Midwest Publications.
  • Norris, Stephen P. and Ruth Elizabeth King, 1983, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1984, The Design of a Critical Thinking Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland. ERIC Document ED260083.
  • –––, 1985, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1990a, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • –––, 1990b, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • OCR [Oxford, Cambridge and RSA Examinations], 2011, AS/A Level GCE: Critical Thinking – H052, H452 , Cambridge: OCR. Past papers available at https://pastpapers.co/ocr/?dir=A-Level/Critical-Thinking-H052-H452; last accessed 2022 07 16.
  • Ontario Ministry of Education, 2013, The Ontario Curriculum Grades 9 to 12: Social Sciences and Humanities . Available at http://www.edu.gov.on.ca/eng/curriculum/secondary/ssciences9to122013.pdf ; last accessed 2022 07 16.
  • Passmore, John Arthur, 1980, The Philosophy of Teaching , London: Duckworth.
  • Paul, Richard W., 1981, “Teaching Critical Thinking in the ‘Strong’ Sense: A Focus on Self-Deception, World Views, and a Dialectical Mode of Analysis”, Informal Logic , 4(2): 2–7. [ Paul 1981 available online ]
  • –––, 1984, “Critical Thinking: Fundamental to Education for a Free Society”, Educational Leadership , 42(1): 4–14.
  • –––, 1985, “McPeck’s Mistakes”, Informal Logic , 7(1): 35–43. [ Paul 1985 available online ]
  • Paul, Richard W. and Linda Elder, 2006, The Miniature Guide to Critical Thinking: Concepts and Tools , Dillon Beach, CA: Foundation for Critical Thinking, 4th edition.
  • Payette, Patricia, and Edna Ross, 2016, “Making a Campus-Wide Commitment to Critical Thinking: Insights and Promising Practices Utilizing the Paul-Elder Approach at the University of Louisville”, Inquiry: Critical Thinking Across the Disciplines , 31(1): 98–110. doi:10.5840/inquiryct20163118
  • Possin, Kevin, 2008, “A Field Guide to Critical-Thinking Assessment”, Teaching Philosophy , 31(3): 201–228. doi:10.5840/teachphil200831324
  • –––, 2013a, “Some Problems with the Halpern Critical Thinking Assessment (HCTA) Test”, Inquiry: Critical Thinking across the Disciplines , 28(3): 4–12. doi:10.5840/inquiryct201328313
  • –––, 2013b, “A Serious Flaw in the Collegiate Learning Assessment (CLA) Test”, Informal Logic , 33(3): 390–405. [ Possin 2013b available online ]
  • –––, 2013c, “A Fatal Flaw in the Collegiate Learning Assessment Test”, Assessment Update , 25 (1): 8–12.
  • –––, 2014, “Critique of the Watson-Glaser Critical Thinking Appraisal Test: The More You Know, the Lower Your Score”, Informal Logic , 34(4): 393–416. [ Possin 2014 available online ]
  • –––, 2020, “CAT Scan: A Critical Review of the Critical-Thinking Assessment Test”, Informal Logic , 40 (3): 489–508. [Available online at https://informallogic.ca/index.php/informal_logic/article/view/6243]
  • Rawls, John, 1971, A Theory of Justice , Cambridge, MA: Harvard University Press.
  • Rear, David, 2019, “One Size Fits All? The Limitations of Standardised Assessment in Critical Thinking”, Assessment & Evaluation in Higher Education , 44(5): 664–675. doi: 10.1080/02602938.2018.1526255
  • Rousseau, Jean-Jacques, 1762, Émile , Amsterdam: Jean Néaulme.
  • Scheffler, Israel, 1960, The Language of Education , Springfield, IL: Charles C. Thomas.
  • Scriven, Michael, and Richard W. Paul, 1987, Defining Critical Thinking , Draft statement written for the National Council for Excellence in Critical Thinking Instruction. Available at http://www.criticalthinking.org/pages/defining-critical-thinking/766 ; last accessed 2022 07 16.
  • Sheffield, Clarence Burton Jr., 2018, “Promoting Critical Thinking in Higher Education: My Experiences as the Inaugural Eugene H. Fram Chair in Applied Critical Thinking at Rochester Institute of Technology”, Topoi , 37(1): 155–163. doi:10.1007/s11245-016-9392-1
  • Siegel, Harvey, 1985, “McPeck, Informal Logic and the Nature of Critical Thinking”, in David Nyberg (ed.), Philosophy of Education 1985: Proceedings of the Forty-First Annual Meeting of the Philosophy of Education Society , Normal, IL: Philosophy of Education Society, pp. 61–72.
  • –––, 1988, Educating Reason: Rationality, Critical Thinking, and Education , New York: Routledge.
  • –––, 1999, “What (Good) Are Thinking Dispositions?”, Educational Theory , 49(2): 207–221. doi:10.1111/j.1741-5446.1999.00207.x
  • Simon, Herbert A., 1956, “Rational Choice and the Structure of the Environment”, Psychological Review , 63(2): 129–138. doi: 10.1037/h0042769
  • Simpson, Elizabeth, 1966–67, “The Classification of Educational Objectives: Psychomotor Domain”, Illinois Teacher of Home Economics , 10(4): 110–144, ERIC document ED0103613. [ Simpson 1966–67 available online ]
  • Skolverket, 2018, Curriculum for the Compulsory School, Preschool Class and School-age Educare , Stockholm: Skolverket, revised 2018. Available at https://www.skolverket.se/download/18.31c292d516e7445866a218f/1576654682907/pdf3984.pdf; last accessed 2022 07 15.
  • Smith, B. Othanel, 1953, “The Improvement of Critical Thinking”, Progressive Education , 30(5): 129–134.
  • Smith, Eugene Randolph, Ralph Winfred Tyler, and the Evaluation Staff, 1942, Appraising and Recording Student Progress , Volume III of Adventure in American Education , New York and London: Harper & Brothers.
  • Splitter, Laurance J., 1987, “Educational Reform through Philosophy for Children”, Thinking: The Journal of Philosophy for Children , 7(2): 32–39. doi:10.5840/thinking1987729
  • Stanovich Keith E., and Paula J. Stanovich, 2010, “A Framework for Critical Thinking, Rational Thinking, and Intelligence”, in David D. Preiss and Robert J. Sternberg (eds), Innovations in Educational Psychology: Perspectives on Learning, Teaching and Human Development , New York: Springer Publishing, pp 195–237.
  • Stanovich Keith E., Richard F. West, and Maggie E. Toplak, 2011, “Intelligence and Rationality”, in Robert J. Sternberg and Scott Barry Kaufman (eds.), Cambridge Handbook of Intelligence , Cambridge: Cambridge University Press, 3rd edition, pp. 784–826. doi:10.1017/CBO9780511977244.040
  • Tankersley, Karen, 2005, Literacy Strategies for Grades 4–12: Reinforcing the Threads of Reading , Alexandria, VA: Association for Supervision and Curriculum Development.
  • Thayer-Bacon, Barbara J., 1992, “Is Modern Critical Thinking Theory Sexist?”, Inquiry: Critical Thinking Across the Disciplines , 10(1): 3–7. doi:10.5840/inquiryctnews199210123
  • –––, 1993, “Caring and Its Relationship to Critical Thinking”, Educational Theory , 43(3): 323–340. doi:10.1111/j.1741-5446.1993.00323.x
  • –––, 1995a, “Constructive Thinking: Personal Voice”, Journal of Thought , 30(1): 55–70.
  • –––, 1995b, “Doubting and Believing: Both are Important for Critical Thinking”, Inquiry: Critical Thinking across the Disciplines , 15(2): 59–66. doi:10.5840/inquiryctnews199515226
  • –––, 2000, Transforming Critical Thinking: Thinking Constructively , New York: Teachers College Press.
  • Toulmin, Stephen Edelston, 1958, The Uses of Argument , Cambridge: Cambridge University Press.
  • Turri, John, Mark Alfano, and John Greco, 2017, “Virtue Epistemology”, in Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2017 Edition). URL = < https://plato.stanford.edu/archives/win2017/entries/epistemology-virtue/ >
  • Vincent-Lancrin, Stéphan, Carlos González-Sancho, Mathias Bouckaert, Federico de Luca, Meritxell Fernández-Barrerra, Gwénaël Jacotin, Joaquin Urgel, and Quentin Vidal, 2019, Fostering Students’ Creativity and Critical Thinking: What It Means in School. Educational Research and Innovation , Paris: OECD Publishing.
  • Warren, Karen J. 1988. “Critical Thinking and Feminism”, Informal Logic , 10(1): 31–44. [ Warren 1988 available online ]
  • Watson, Goodwin, and Edward M. Glaser, 1980a, Watson-Glaser Critical Thinking Appraisal, Form A , San Antonio, TX: Psychological Corporation.
  • –––, 1980b, Watson-Glaser Critical Thinking Appraisal: Forms A and B; Manual , San Antonio, TX: Psychological Corporation,
  • –––, 1994, Watson-Glaser Critical Thinking Appraisal, Form B , San Antonio, TX: Psychological Corporation.
  • Weinstein, Mark, 1990, “Towards a Research Agenda for Informal Logic and Critical Thinking”, Informal Logic , 12(3): 121–143. [ Weinstein 1990 available online ]
  • –––, 2013, Logic, Truth and Inquiry , London: College Publications.
  • Willingham, Daniel T., 2019, “How to Teach Critical Thinking”, Education: Future Frontiers , 1: 1–17. [Available online at https://prod65.education.nsw.gov.au/content/dam/main-education/teaching-and-learning/education-for-a-changing-world/media/documents/How-to-teach-critical-thinking-Willingham.pdf.]
  • Zagzebski, Linda Trinkaus, 1996, Virtues of the Mind: An Inquiry into the Nature of Virtue and the Ethical Foundations of Knowledge , Cambridge: Cambridge University Press. doi:10.1017/CBO9781139174763
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up topics and thinkers related to this entry at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Association for Informal Logic and Critical Thinking (AILACT)
  • Critical Thinking Across the European Higher Education Curricula (CRITHINKEDU)
  • Critical Thinking Definition, Instruction, and Assessment: A Rigorous Approach
  • Critical Thinking Research (RAIL)
  • Foundation for Critical Thinking
  • Insight Assessment
  • Partnership for 21st Century Learning (P21)
  • The Critical Thinking Consortium
  • The Nature of Critical Thinking: An Outline of Critical Thinking Dispositions and Abilities , by Robert H. Ennis

abilities | bias, implicit | children, philosophy for | civic education | decision-making capacity | Dewey, John | dispositions | education, philosophy of | epistemology: virtue | logic: informal

Copyright © 2022 by David Hitchcock < hitchckd @ mcmaster . ca >

  • Accessibility

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

The Stanford Encyclopedia of Philosophy is copyright © 2024 by The Metaphysics Research Lab , Department of Philosophy, Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

loading

How it works

For Business

Join Mind Tools

Article • 8 min read

Critical Thinking

Developing the right mindset and skills.

By the Mind Tools Content Team

We make hundreds of decisions every day and, whether we realize it or not, we're all critical thinkers.

We use critical thinking each time we weigh up our options, prioritize our responsibilities, or think about the likely effects of our actions. It's a crucial skill that helps us to cut out misinformation and make wise decisions. The trouble is, we're not always very good at it!

In this article, we'll explore the key skills that you need to develop your critical thinking skills, and how to adopt a critical thinking mindset, so that you can make well-informed decisions.

What Is Critical Thinking?

Critical thinking is the discipline of rigorously and skillfully using information, experience, observation, and reasoning to guide your decisions, actions, and beliefs. You'll need to actively question every step of your thinking process to do it well.

Collecting, analyzing and evaluating information is an important skill in life, and a highly valued asset in the workplace. People who score highly in critical thinking assessments are also rated by their managers as having good problem-solving skills, creativity, strong decision-making skills, and good overall performance. [1]

Key Critical Thinking Skills

Critical thinkers possess a set of key characteristics which help them to question information and their own thinking. Focus on the following areas to develop your critical thinking skills:

Being willing and able to explore alternative approaches and experimental ideas is crucial. Can you think through "what if" scenarios, create plausible options, and test out your theories? If not, you'll tend to write off ideas and options too soon, so you may miss the best answer to your situation.

To nurture your curiosity, stay up to date with facts and trends. You'll overlook important information if you allow yourself to become "blinkered," so always be open to new information.

But don't stop there! Look for opposing views or evidence to challenge your information, and seek clarification when things are unclear. This will help you to reassess your beliefs and make a well-informed decision later. Read our article, Opening Closed Minds , for more ways to stay receptive.

Logical Thinking

You must be skilled at reasoning and extending logic to come up with plausible options or outcomes.

It's also important to emphasize logic over emotion. Emotion can be motivating but it can also lead you to take hasty and unwise action, so control your emotions and be cautious in your judgments. Know when a conclusion is "fact" and when it is not. "Could-be-true" conclusions are based on assumptions and must be tested further. Read our article, Logical Fallacies , for help with this.

Use creative problem solving to balance cold logic. By thinking outside of the box you can identify new possible outcomes by using pieces of information that you already have.

Self-Awareness

Many of the decisions we make in life are subtly informed by our values and beliefs. These influences are called cognitive biases and it can be difficult to identify them in ourselves because they're often subconscious.

Practicing self-awareness will allow you to reflect on the beliefs you have and the choices you make. You'll then be better equipped to challenge your own thinking and make improved, unbiased decisions.

One particularly useful tool for critical thinking is the Ladder of Inference . It allows you to test and validate your thinking process, rather than jumping to poorly supported conclusions.

Developing a Critical Thinking Mindset

Combine the above skills with the right mindset so that you can make better decisions and adopt more effective courses of action. You can develop your critical thinking mindset by following this process:

Gather Information

First, collect data, opinions and facts on the issue that you need to solve. Draw on what you already know, and turn to new sources of information to help inform your understanding. Consider what gaps there are in your knowledge and seek to fill them. And look for information that challenges your assumptions and beliefs.

Be sure to verify the authority and authenticity of your sources. Not everything you read is true! Use this checklist to ensure that your information is valid:

  • Are your information sources trustworthy ? (For example, well-respected authors, trusted colleagues or peers, recognized industry publications, websites, blogs, etc.)
  • Is the information you have gathered up to date ?
  • Has the information received any direct criticism ?
  • Does the information have any errors or inaccuracies ?
  • Is there any evidence to support or corroborate the information you have gathered?
  • Is the information you have gathered subjective or biased in any way? (For example, is it based on opinion, rather than fact? Is any of the information you have gathered designed to promote a particular service or organization?)

If any information appears to be irrelevant or invalid, don't include it in your decision making. But don't omit information just because you disagree with it, or your final decision will be flawed and bias.

Now observe the information you have gathered, and interpret it. What are the key findings and main takeaways? What does the evidence point to? Start to build one or two possible arguments based on what you have found.

You'll need to look for the details within the mass of information, so use your powers of observation to identify any patterns or similarities. You can then analyze and extend these trends to make sensible predictions about the future.

To help you to sift through the multiple ideas and theories, it can be useful to group and order items according to their characteristics. From here, you can compare and contrast the different items. And once you've determined how similar or different things are from one another, Paired Comparison Analysis can help you to analyze them.

The final step involves challenging the information and rationalizing its arguments.

Apply the laws of reason (induction, deduction, analogy) to judge an argument and determine its merits. To do this, it's essential that you can determine the significance and validity of an argument to put it in the correct perspective. Take a look at our article, Rational Thinking , for more information about how to do this.

Once you have considered all of the arguments and options rationally, you can finally make an informed decision.

Afterward, take time to reflect on what you have learned and what you found challenging. Step back from the detail of your decision or problem, and look at the bigger picture. Record what you've learned from your observations and experience.

Critical thinking involves rigorously and skilfully using information, experience, observation, and reasoning to guide your decisions, actions and beliefs. It's a useful skill in the workplace and in life.

You'll need to be curious and creative to explore alternative possibilities, but rational to apply logic, and self-aware to identify when your beliefs could affect your decisions or actions.

You can demonstrate a high level of critical thinking by validating your information, analyzing its meaning, and finally evaluating the argument.

Critical Thinking Infographic

See Critical Thinking represented in our infographic: An Elementary Guide to Critical Thinking .

rational thinking when problem solving is defined as the ability to

You've accessed 1 of your 2 free resources.

Get unlimited access

Discover more content

Book Insights

Work Disrupted: Opportunity, Resilience, and Growth in the Accelerated Future of Work

Jeff Schwartz and Suzanne Riss

Zenger and Folkman's 10 Fatal Leadership Flaws

Avoiding Common Mistakes in Leadership

Add comment

Comments (1)

priyanka ghogare

Sign-up to our newsletter

Subscribing to the Mind Tools newsletter will keep you up-to-date with our latest updates and newest resources.

Subscribe now

Business Skills

Personal Development

Leadership and Management

Member Extras

Most Popular

Latest Updates

Article az45dcz

Pain Points Podcast - Presentations Pt 2

Article ad84neo

NEW! Pain Points - How Do I Decide?

Mind Tools Store

About Mind Tools Content

Discover something new today

Finding the Best Mix in Training Methods

Using Mediation To Resolve Conflict

Resolving conflicts peacefully with mediation

How Emotionally Intelligent Are You?

Boosting Your People Skills

Self-Assessment

What's Your Leadership Style?

Learn About the Strengths and Weaknesses of the Way You Like to Lead

Recommended for you

Developing personal accountability.

Taking Responsibility to Get Ahead

Business Operations and Process Management

Strategy Tools

Customer Service

Business Ethics and Values

Handling Information and Data

Project Management

Knowledge Management

Self-Development and Goal Setting

Time Management

Presentation Skills

Learning Skills

Career Skills

Communication Skills

Negotiation, Persuasion and Influence

Working With Others

Difficult Conversations

Creativity Tools

Self-Management

Work-Life Balance

Stress Management and Wellbeing

Coaching and Mentoring

Change Management

Team Management

Managing Conflict

Delegation and Empowerment

Performance Management

Leadership Skills

Developing Your Team

Talent Management

Problem Solving

Decision Making

Member Podcast

Critical Thinking Definition, Skills, and Examples

  • Homework Help
  • Private School
  • College Admissions
  • College Life
  • Graduate School
  • Business School
  • Distance Learning

rational thinking when problem solving is defined as the ability to

  • Indiana University, Bloomington
  • State University of New York at Oneonta

Critical thinking refers to the ability to analyze information objectively and make a reasoned judgment. It involves the evaluation of sources, such as data, facts, observable phenomena, and research findings.

Good critical thinkers can draw reasonable conclusions from a set of information, and discriminate between useful and less useful details to solve problems or make decisions. These skills are especially helpful at school and in the workplace, where employers prioritize the ability to think critically. Find out why and see how you can demonstrate that you have this ability.

Examples of Critical Thinking

The circumstances that demand critical thinking vary from industry to industry. Some examples include:

  • A triage nurse analyzes the cases at hand and decides the order by which the patients should be treated.
  • A plumber evaluates the materials that would best suit a particular job.
  • An attorney reviews the evidence and devises a strategy to win a case or to decide whether to settle out of court.
  • A manager analyzes customer feedback forms and uses this information to develop a customer service training session for employees.

Why Do Employers Value Critical Thinking Skills?

Employers want job candidates who can evaluate a situation using logical thought and offer the best solution.

Someone with critical thinking skills can be trusted to make decisions independently, and will not need constant handholding.

Hiring a critical thinker means that micromanaging won't be required. Critical thinking abilities are among the most sought-after skills in almost every industry and workplace. You can demonstrate critical thinking by using related keywords in your resume and cover letter and during your interview.

How to Demonstrate Critical Thinking in a Job Search

If critical thinking is a key phrase in the job listings you are applying for, be sure to emphasize your critical thinking skills throughout your job search.

Add Keywords to Your Resume

You can use critical thinking keywords (analytical, problem solving, creativity, etc.) in your resume. When describing your work history, include top critical thinking skills that accurately describe you. You can also include them in your resume summary, if you have one.

For example, your summary might read, “Marketing Associate with five years of experience in project management. Skilled in conducting thorough market research and competitor analysis to assess market trends and client needs, and to develop appropriate acquisition tactics.”

Mention Skills in Your Cover Letter

Include these critical thinking skills in your cover letter. In the body of your letter, mention one or two of these skills, and give specific examples of times when you have demonstrated them at work. Think about times when you had to analyze or evaluate materials to solve a problem.

Show the Interviewer Your Skills

You can use these skill words in an interview. Discuss a time when you were faced with a particular problem or challenge at work and explain how you applied critical thinking to solve it.

Some interviewers will give you a hypothetical scenario or problem, and ask you to use critical thinking skills to solve it. In this case, explain your thought process thoroughly to the interviewer. He or she is typically more focused on how you arrive at your solution rather than the solution itself. The interviewer wants to see you analyze and evaluate (key parts of critical thinking) the given scenario or problem.

Of course, each job will require different skills and experiences, so make sure you read the job description carefully and focus on the skills listed by the employer.

Top Critical Thinking Skills

Keep these in-demand skills in mind as you refine your critical thinking practice —whether for work or school.

Part of critical thinking is the ability to carefully examine something, whether it is a problem, a set of data, or a text. People with analytical skills can examine information, understand what it means, and properly explain to others the implications of that information.

  • Asking Thoughtful Questions
  • Data Analysis
  • Interpretation
  • Questioning Evidence
  • Recognizing Patterns

Communication

Often, you will need to share your conclusions with your employers or with a group of classmates or colleagues. You need to be able to communicate with others to share your ideas effectively. You might also need to engage in critical thinking in a group. In this case, you will need to work with others and communicate effectively to figure out solutions to complex problems.

  • Active Listening
  • Collaboration
  • Explanation
  • Interpersonal
  • Presentation
  • Verbal Communication
  • Written Communication

Critical thinking often involves creativity and innovation. You might need to spot patterns in the information you are looking at or come up with a solution that no one else has thought of before. All of this involves a creative eye that can take a different approach from all other approaches.

  • Flexibility
  • Conceptualization
  • Imagination
  • Drawing Connections
  • Synthesizing

Open-Mindedness

To think critically, you need to be able to put aside any assumptions or judgments and merely analyze the information you receive. You need to be objective, evaluating ideas without bias.

  • Objectivity
  • Observation

Problem-Solving

Problem-solving is another critical thinking skill that involves analyzing a problem, generating and implementing a solution, and assessing the success of the plan. Employers don’t simply want employees who can think about information critically. They also need to be able to come up with practical solutions.

  • Attention to Detail
  • Clarification
  • Decision Making
  • Groundedness
  • Identifying Patterns

More Critical Thinking Skills

  • Inductive Reasoning
  • Deductive Reasoning
  • Noticing Outliers
  • Adaptability
  • Emotional Intelligence
  • Brainstorming
  • Optimization
  • Restructuring
  • Integration
  • Strategic Planning
  • Project Management
  • Ongoing Improvement
  • Causal Relationships
  • Case Analysis
  • Diagnostics
  • SWOT Analysis
  • Business Intelligence
  • Quantitative Data Management
  • Qualitative Data Management
  • Risk Management
  • Scientific Method
  • Consumer Behavior

Key Takeaways

  • Demonstrate you have critical thinking skills by adding relevant keywords to your resume.
  • Mention pertinent critical thinking skills in your cover letter, too, and include an example of a time when you demonstrated them at work.
  • Finally, highlight critical thinking skills during your interview. For instance, you might discuss a time when you were faced with a challenge at work and explain how you applied critical thinking skills to solve it.

University of Louisville. " What is Critical Thinking ."

American Management Association. " AMA Critical Skills Survey: Workers Need Higher Level Skills to Succeed in the 21st Century ."

  • Questions for Each Level of Bloom's Taxonomy
  • Critical Thinking in Reading and Composition
  • Bloom's Taxonomy in the Classroom
  • Introduction to Critical Thinking
  • How To Become an Effective Problem Solver
  • Creativity & Creative Thinking
  • Higher-Order Thinking Skills (HOTS) in Education
  • 6 Skills Students Need to Succeed in Social Studies Classes
  • 2020-21 Common Application Essay Option 4—Solving a Problem
  • College Interview Tips: "Tell Me About a Challenge You Overcame"
  • Types of Medical School Interviews and What to Expect
  • The Horse Problem: A Math Challenge
  • What to Do When the Technology Fails in Class
  • What Are Your Strengths and Weaknesses? Interview Tips for Teachers
  • A Guide to Business Letters Types
  • How to Practice Critical Thinking in 4 Steps

Bookmark this page

Translate this page from English...

*Machine translated pages not guaranteed for accuracy. Click Here for our professional translations.

Defining Critical Thinking

Rational Thinking

  • Reference work entry
  • First Online: 01 January 2020
  • pp 4286–4288
  • Cite this reference work entry

rational thinking when problem solving is defined as the ability to

  • Nikki Blacksmith 3 , 4  

131 Accesses

Analytical thinking ; Rational thinking style ; Reflective thinking

Rational thinking refers to differences across individuals in their tendency and need to process information in an effortful, analytical manner while using a rule-based system of logic.

Introduction

Rational thinking (or more formally, information processing) refers to differences across individuals in their tendency and need to process information in an effortful, analytical manner using a rule-based system of logic (Epstein et al. 1996 ; Scott and Bruce 1995 ; Stanovich and West 1998 ; Phillips et al. 2016 ). In other words, rational thinking is one’s preferred manner or style in which information from the environment is cognitively processed for sense-making. Although rational thinking deals with cognitive functioning, it is not a cognitive ability; it is a conative disposition – a natural tendency, impulse, or directed effort. Cognitive ability (a component of intelligence) refers to the capacity to...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Epstein, S., Pacini, R., Denes-Raj, V., & Heier, H. (1996). Individual differences in intuitive-experiential and analytical-rational thinking styles. Journal of Personality and Social Psychology, 71 , 390–405.

Article   PubMed   Google Scholar  

Evans, J. S. B. T. (2008). Dual-processing accounts of reasoning, judgment, and social cognition. Annual Review of Psychology, 59 , 255–278.

Gigerenzer, G., & Goldstein, D. G. (1996). Reasoning the fast and frugal way: Models of bounded rationality. Psychological Review, 103 , 650–669.

Hamilton, K., Shih, S., & Mohammed, S. (2017). The predictive validity of the decision styles scale: An evaluation across task types. Personality and Individual Differences, 119 , 333–340.

Article   Google Scholar  

Marks, A. D. G., Hine, D. W., Blore, R. L., & Phillips, W. J. (2008). Assessing individual differences in adolescents’ preference for rational and experiential cognition. Personality and Individual Differences, 44 , 42–52.

Phillips, W. J., Fletcher, J. M., Marks, A. D. G., & Hine, D. W. (2016). Thinking styles and decision making: A meta-analysis. Psychological Bulletin, 142 , 260–290.

Reeve, C. L., & Bonaccio, S. (2011). The nature and structure of “intelligence.”. In T. Chamorro-Premuzic, A. Furnham, & S. von Stumm (Eds.), Handbook of individual differences (pp. 187–216). Oxford, England: Wiley-Blackwell.

Google Scholar  

Scott, S. G., & Bruce, R. A. (1995). Decision-making style: The development and assessment of a new measure. Educational and Psychological Measurement, 55 , 818–828.

Stanovich, K. E., & West, R. F. (1998). Individual differences in rational thought. Journal of Experimental Psychology: General, 127 , 161–188.

Stanovich, K. E., West, R. F., & Toplak, M. E. (2016). The rationality quotient: Toward a test of rational thinking . Cambridge, MA: The MIT Press.

Book   Google Scholar  

Download references

Author information

Authors and affiliations.

Foundational Science Research Unit, Consortium Research Fellows Program, Alexandria, VA, USA

Nikki Blacksmith

The George Washington University, Washington, DC, USA

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Nikki Blacksmith .

Editor information

Editors and affiliations.

Oakland University, Rochester, MI, USA

Virgil Zeigler-Hill

Todd K. Shackelford

Section Editor information

Department of Psychology, Wake Forest University, Winston-Salem, NC, USA

John F. Rauthmann

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Cite this entry.

Blacksmith, N. (2020). Rational Thinking. In: Zeigler-Hill, V., Shackelford, T.K. (eds) Encyclopedia of Personality and Individual Differences. Springer, Cham. https://doi.org/10.1007/978-3-319-24612-3_1897

Download citation

DOI : https://doi.org/10.1007/978-3-319-24612-3_1897

Published : 22 April 2020

Publisher Name : Springer, Cham

Print ISBN : 978-3-319-24610-9

Online ISBN : 978-3-319-24612-3

eBook Packages : Behavioral Science and Psychology Reference Module Humanities and Social Sciences Reference Module Business, Economics and Social Sciences

Share this entry

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

How to Apply Rational Thinking in Decision Making

I. introduction.

Have you ever thought about how you make decisions? Every day, in different situations, we need to make a series of decisions – from what to wear or what to eat for breakfast to more significant choices like career moves or financial investments. These decisions can have far-reaching effects on our personal and professional life. That’s why it’s important to approach decision-making in a purposeful and rational manner.

Let’s begin by understanding what rational thinking is: it’s a cognitive process that involves logical and objective reasoning. Basically, it’s a method used to logically process information and make a sensible judgement or decision. It’s about thinking clearly, sensibly, and logically, ensuring our actions are not guided by emotion, bias, or prejudice.

Decisions are an integral part of our lives. However, the quality of these decisions can vary greatly based on how we approach them. Irrational or impulsive decisions can lead to negative consequences or regret. Meanwhile, employing a rational thought process can lead to well-informed, balanced decisions that we can feel confident about.

Rationality is such a pivotal aspect of thoughtful decision-making, and harnessing it can truly be life-changing. In this blog post, we will understand the concept of rational thinking, its role in decision making, and how you can adopt it in your everyday life. By the conclusion of this article, we will also present you with tips to improve these critical thinking skills, and showcase real-life scenarios where rational thinking has proven successful. Let’s embark on this rational journey. It’s decision time!

II. Understanding Rational Thinking

Rational thinking, as the term implies, refers to a certain approach or method that involves the use of reason in processing information and formulating decisions. It encourages us to act based on facts, evidence, and logic rather than succumbing to emotional impulses or personal biases.

A. Detailed Definition of Rational Thinking

Rational thinking, in the broadest sense, is the cognitive process wherein the identification and evaluation of evidence guide an action or belief. Its synonyms include critical thinking, logical reasoning, or analytical thinking, and it is the cornerstone of problem-solving, innovation, and decision-making.

This form of thinking is characterized by deductive and inductive reasoning - where you draw general conclusions from specific observations or specific conclusions from general principles.

“In its essence, rational thinking is a systematic, disciplined process demanding keen intellect and an open mind” - Dr. Janeen DeMarte, Psychologist

B. Core Elements of Rational Thinking

So, what goes into rational thinking? Here are the three major elements that define the process:

1. Objectivity

One of the primary parts of rational thinking is maintaining objectivity. This means having an unbiased outlook and assessing situations based on facts rather than personal feelings or preconceived notions. It involves a scientific approach to thinking, where all available evidence is considered before making a judgment.

Logic is the bedrock of rational thinking. Every argument or conclusion that you make via rational thinking must logically follow from the premises. Anything that contradicts this principle is considered fallacious or invalid.

Lastly, honesty is integral to rational thinking. Often people manipulate facts to match their predetermined conclusion, but rational thinking necessitates an honest approach. It involves being truthful about the facts and accepting the conclusion that follows, no matter how it aligns with initial assumptions or desires.

C. Why Is Rational Thinking Important?

Rational thinking serves as our guiding light to navigate the complexities of the world around us. The more rational we are, the better we can understand reality, solve problems, and make informed decisions. It helps us step out of our emotional chaos and subjective bias, ensuring our decisions are grounded in reason and logic.

The importance of rational thinking is not confined to grandiose decisions, but also to our routine lives. From simply deciding your daily diet to complex decisions like career planning, rational thinking plays an essential role.

“Rational thinking helps us stay aligned with reality, improve the quality of our lives, and bring us closer to our objectives.”

V. Case Study: Successful Rational Decision Making in Real-life Scenarios

Let’s delve into some real-world instances where a rational approach led to successful decision-making outcomes. These case studies provide tangible insight into how rationality can have a profound impact on the decision-making process, and underscores the value of thinking rationally in our daily undertakings.

A. Steve Jobs and the Creation of the iPhone

One celebrated instance of rational decision-making is the creation of the revolutionary product – the iPhone. Steve Jobs, the late co-founder of Apple Inc., is renowned for his resolute decision to push for the iPhone’s development despite facing internal opposition.

Jobs identified the problem – the absence of a substantial mobile device merging a music player and a communication tool. He gathered relevant information about the technological landscape, the market, potential competitors, and customer needs.

Employing logic, he assessed this data objectively and determined that such a product stood a good chance of carving a niche in the market. His bold, rational decision gave birth to one of the world’s most sought-after pieces of technology.

B. Johnson & Johnson’s Tylenol Crisis Response

Another notable example comes from the pharmaceutical industry. In 1982, Johnson & Johnson faced a severe crisis when seven people in Chicago died after consuming its widely popular product, Tylenol, which had been laced with cyanide.

Regardless of the unknown culprit being an external actor, Johnson & Johnson embarked on a highly rational decision-making process. They first recognized the problem – a massive blow to their product’s credibility and potential loss of customer trust.

Information was gathered on the scale of the disaster and potential options to reinstate public confidence. Evincing remarkable honesty, the company opted to recall all Tylenol capsules, costing them over $100 million. This proved to be a rational decision in the long term, as it exemplified their enduring commitment to customer safety and restored their damaged reputation.

C. Elon Musk’s SpaceX Venture

Elon Musk, the founder of SpaceX, offers a more recent example. His decision to enter the space industry was a steep one, as space exploration had been dominated by national governmental organizations, like NASA.

The problem Musk identified was the lack of affordable methods to explore and travel in space. Gathering information about the industry, technological capacities, and prices, he realized with objectivity the huge challenge he faced. However, he saw a possibility where others did not.

SpaceX was established to create more affordable spacecraft and has since successfully launched many missions, proving that a private company can compete in this astoundingly complex field. This indicates that rational thinking and calculated risk-taking can pave the way for ground-breaking revolutions.

VI. Tips to Improve Rational Thinking Skill

Rational thinking isn’t an inborn skill that some are privileged to have and others not. Rather, it’s a learnable skill that can be honed and developed with time, effort, consistency and patience. Here are some methods you can use to elevate your rational thinking:

A. Self-awareness

Cultivating self-awareness is the first step to improving your rational thinking skill. This involves being mindful of your thoughts, feelings, actions, and biases. Question your beliefs and conclusions, and try to understand both the emotion and rationality behind your thoughts.

“> Cultivating self-awareness is like pulling the curtain back on your internal drama, revealing the characters in play and understanding their motivations.”

Being aware of your cognitive biases can also enhance your rational thinking. Cognitive biases are thinking errors we make that can affect our decisions and judgments. For instance, the confirmation bias can block us from accepting new information. By recognizing these biases, we can counteract them and think more rationally.

B. Constant Learning

Rational thinking isn’t a static skill. Instead, it constantly needs fuel in the form of knowledge to grow stronger. Surround yourself with diverse knowledge sources such as books, podcasts, articles, seminars, conversations with people from different walks of life and industry experts. The more information you gather, the more well-rounded your understanding of the world will be, allowing for more sound judgments.

“> Lifelong learning is a limitless source of fuel for rational thoughts. It broadens your experiences and perspectives and helps you make decisions from an informed viewpoint.”

C. Cultivating Patience

Rational thinking requires patience. Quick decisions often lead to irrational outcomes. When you have more patience, you are much more likely to gather all the relevant information and think the situation over before coming to a decision. Be patient, take the time to think, and do not be swayed by the impulsiveness that often accompanies decision-making.

“> Patience is more than simply waiting. It’s the ability to keep a good attitude while working hard, focusing on your goal and trusting in the process.”

Remember, rational thinking is a journey, not a destination, and growth often takes effort to realize. But with consistency, self-awareness, patience, and the desire to learn, you can substantially improve your rational thinking skills and make more informed and logical decisions in your day-to-day life.

VII. Conclusion

In conclusion, it’s clear that rational thinking is a highly beneficial tool when it comes to decision making. Logic, honesty and objectivity are the key elements that enable us to make rational decisions.

“Rational thinking is not just about making decisions that benefit us in the short term, it’s about making decisions that will continue to benefit us in the long run.”

If we let our situations, emotions or biases determine our decisions, we may face unfavorable outcomes. Hence, exercising rationality helps us avoid the negative consequences of irrationality.

Rational thinking doesn’t only enable us to make well thought-out decisions, it also allows us to understand why we make certain decisions. We learnt about a simple step-by-step guide which can be integrated into our everyday life, helping us approach even the most complex problems rationally.

Remember the stories of successful rational decision making we shared? They provide real-life examples of how beneficial rational thinking can be. These people were able to achieve great things by thinking rationally and you can too!

Furthermore, we should always strive to improve our rational thinking skills. This can be achieved by promoting self-awareness, practicing patience, and dedicating ourselves to constant learning.

All in all, it’s important to realize that our decisions shape our lives. Consequently, the way we approach our decisions plays a big role in determining our successes and failures. By incorporating rational thinking into our decision making, we can ensure that we’re making the best possible decisions that will lead us towards our desired outcomes.

To paraphrase a famous quote,

“Every decision we make, and every step we take, is a result of our thinking. Therefore, if we want to change our lives, we must first change our thinking.”

Let’s strive to apply rational thinking in our everyday decision making and see the powerful positive impact it can have on our lives!

VIII. Call to Action

In conclusion, rational thinking plays a crucial role in making sound decisions personally or professionally.

“The key to good decision making is evaluating alternatives carefully and thoroughly. This calls for us to utilize our cognitive abilities rationally.”

Taking the time to analyze situations objectively, consider all feasible options, and logically draw conclusions will greatly improve our decision-making abilities.

Implement Rational Thinking

Now that you have a better understanding of rational thinking’s importance in decision-making, it is time to evaluate your own decision-making processes. Start by identifying opportunities in your daily life where you can apply rational thinking. You may be surprised at how often you encounter decision-making scenarios. From determining what to have for breakfast, choosing the route for your daily commute to making important business decisions, rational thinking can be applied intelligibly.

Continuous Improvement

Enriching rational thinking skills isn’t a process that happens overnight. It requires sustained effort and continuous learning.

  • Try to maintain a continuous self-awareness of your decision-making processes.
  • Aim to always gather relevant information before making decisions.
  • Strive to interpret the given information objectively without any personal bias.
  • Ensure to consider all possible options and outcomes before coming to a conclusion.

In addition, developing patience is equally critical as rushing through decisions can lead to errors in judgment.

“Genius might be the ability to say a profound thing in a simple way.” ~ Charles Bukowski

The beauty of rational thinking lies in its simplicity. It’s about being grounded in reality, and making decisions logically.

Further Resources

While this post provides a good starting point, there’s much more to explore when it comes to rational thinking and decision making. Books, online courses, and workshops can provide in-depth information and practical exercises to help you further improve your rational thinking skills. Search for resources that best suit your learning style, and make a commitment to continuous growth.

Remember, every decision we make shapes our life. Thus, each decision, no matter how small, should be made after thorough rational consideration. Adopt rational thinking today and make it an integral part of your daily life. Your future self will thank you!

Unlock Your Purpose Through Passion

Effective negotiation strategies, 3 steps to improved rational thinking, 5 surprising statistics about rational thinking, 10 irrational thoughts we must eliminate, why do we often lack rational thinking.

SkillsYouNeed

  • LEARNING SKILLS
  • Study Skills
  • Critical Thinking

Search SkillsYouNeed:

Learning Skills:

  • A - Z List of Learning Skills
  • What is Learning?
  • Learning Approaches
  • Learning Styles
  • 8 Types of Learning Styles
  • Understanding Your Preferences to Aid Learning
  • Lifelong Learning
  • Decisions to Make Before Applying to University
  • Top Tips for Surviving Student Life
  • Living Online: Education and Learning
  • 8 Ways to Embrace Technology-Based Learning Approaches

Critical Thinking Skills

  • Critical Thinking and Fake News
  • Understanding and Addressing Conspiracy Theories
  • Critical Analysis
  • Top Tips for Study
  • Staying Motivated When Studying
  • Student Budgeting and Economic Skills
  • Getting Organised for Study
  • Finding Time to Study
  • Sources of Information
  • Assessing Internet Information
  • Using Apps to Support Study
  • What is Theory?
  • Styles of Writing
  • Effective Reading
  • Critical Reading
  • Note-Taking from Reading
  • Note-Taking for Verbal Exchanges
  • Planning an Essay
  • How to Write an Essay
  • The Do’s and Don’ts of Essay Writing
  • How to Write a Report
  • Academic Referencing
  • Assignment Finishing Touches
  • Reflecting on Marked Work
  • 6 Skills You Learn in School That You Use in Real Life
  • Top 10 Tips on How to Study While Working
  • Exam Skills
  • Writing a Dissertation or Thesis
  • Research Methods
  • Teaching, Coaching, Mentoring and Counselling
  • Employability Skills for Graduates

Subscribe to our FREE newsletter and start improving your life in just 5 minutes a day.

You'll get our 5 free 'One Minute Life Skills' and our weekly newsletter.

We'll never share your email address and you can unsubscribe at any time.

What is Critical Thinking?

Critical thinking is the ability to think clearly and rationally, understanding the logical connection between ideas.  Critical thinking has been the subject of much debate and thought since the time of early Greek philosophers such as Plato and Socrates and has continued to be a subject of discussion into the modern age, for example the ability to recognise fake news .

Critical thinking might be described as the ability to engage in reflective and independent thinking.

In essence, critical thinking requires you to use your ability to reason. It is about being an active learner rather than a passive recipient of information.

Critical thinkers rigorously question ideas and assumptions rather than accepting them at face value. They will always seek to determine whether the ideas, arguments and findings represent the entire picture and are open to finding that they do not.

Critical thinkers will identify, analyse and solve problems systematically rather than by intuition or instinct.

Someone with critical thinking skills can:

Understand the links between ideas.

Determine the importance and relevance of arguments and ideas.

Recognise, build and appraise arguments.

Identify inconsistencies and errors in reasoning.

Approach problems in a consistent and systematic way.

Reflect on the justification of their own assumptions, beliefs and values.

Critical thinking is thinking about things in certain ways so as to arrive at the best possible solution in the circumstances that the thinker is aware of. In more everyday language, it is a way of thinking about whatever is presently occupying your mind so that you come to the best possible conclusion.

Critical Thinking is:

A way of thinking about particular things at a particular time; it is not the accumulation of facts and knowledge or something that you can learn once and then use in that form forever, such as the nine times table you learn and use in school.

The Skills We Need for Critical Thinking

The skills that we need in order to be able to think critically are varied and include observation, analysis, interpretation, reflection, evaluation, inference, explanation, problem solving, and decision making.

Specifically we need to be able to:

Think about a topic or issue in an objective and critical way.

Identify the different arguments there are in relation to a particular issue.

Evaluate a point of view to determine how strong or valid it is.

Recognise any weaknesses or negative points that there are in the evidence or argument.

Notice what implications there might be behind a statement or argument.

Provide structured reasoning and support for an argument that we wish to make.

The Critical Thinking Process

You should be aware that none of us think critically all the time.

Sometimes we think in almost any way but critically, for example when our self-control is affected by anger, grief or joy or when we are feeling just plain ‘bloody minded’.

On the other hand, the good news is that, since our critical thinking ability varies according to our current mindset, most of the time we can learn to improve our critical thinking ability by developing certain routine activities and applying them to all problems that present themselves.

Once you understand the theory of critical thinking, improving your critical thinking skills takes persistence and practice.

Try this simple exercise to help you to start thinking critically.

Think of something that someone has recently told you. Then ask yourself the following questions:

Who said it?

Someone you know? Someone in a position of authority or power? Does it matter who told you this?

What did they say?

Did they give facts or opinions? Did they provide all the facts? Did they leave anything out?

Where did they say it?

Was it in public or in private? Did other people have a chance to respond an provide an alternative account?

When did they say it?

Was it before, during or after an important event? Is timing important?

Why did they say it?

Did they explain the reasoning behind their opinion? Were they trying to make someone look good or bad?

How did they say it?

Were they happy or sad, angry or indifferent? Did they write it or say it? Could you understand what was said?

What are you Aiming to Achieve?

One of the most important aspects of critical thinking is to decide what you are aiming to achieve and then make a decision based on a range of possibilities.

Once you have clarified that aim for yourself you should use it as the starting point in all future situations requiring thought and, possibly, further decision making. Where needed, make your workmates, family or those around you aware of your intention to pursue this goal. You must then discipline yourself to keep on track until changing circumstances mean you have to revisit the start of the decision making process.

However, there are things that get in the way of simple decision making. We all carry with us a range of likes and dislikes, learnt behaviours and personal preferences developed throughout our lives; they are the hallmarks of being human. A major contribution to ensuring we think critically is to be aware of these personal characteristics, preferences and biases and make allowance for them when considering possible next steps, whether they are at the pre-action consideration stage or as part of a rethink caused by unexpected or unforeseen impediments to continued progress.

The more clearly we are aware of ourselves, our strengths and weaknesses, the more likely our critical thinking will be productive.

The Benefit of Foresight

Perhaps the most important element of thinking critically is foresight.

Almost all decisions we make and implement don’t prove disastrous if we find reasons to abandon them. However, our decision making will be infinitely better and more likely to lead to success if, when we reach a tentative conclusion, we pause and consider the impact on the people and activities around us.

The elements needing consideration are generally numerous and varied. In many cases, consideration of one element from a different perspective will reveal potential dangers in pursuing our decision.

For instance, moving a business activity to a new location may improve potential output considerably but it may also lead to the loss of skilled workers if the distance moved is too great. Which of these is the more important consideration? Is there some way of lessening the conflict?

These are the sort of problems that may arise from incomplete critical thinking, a demonstration perhaps of the critical importance of good critical thinking.

Further Reading from Skills You Need

The Skills You Need Guide for Students

The Skills You Need Guide for Students

Skills You Need

Develop the skills you need to make the most of your time as a student.

Our eBooks are ideal for students at all stages of education, school, college and university. They are full of easy-to-follow practical information that will help you to learn more effectively and get better grades.

In Summary:

Critical thinking is aimed at achieving the best possible outcomes in any situation. In order to achieve this it must involve gathering and evaluating information from as many different sources possible.

Critical thinking requires a clear, often uncomfortable, assessment of your personal strengths, weaknesses and preferences and their possible impact on decisions you may make.

Critical thinking requires the development and use of foresight as far as this is possible. As Doris Day sang, “the future’s not ours to see”.

Implementing the decisions made arising from critical thinking must take into account an assessment of possible outcomes and ways of avoiding potentially negative outcomes, or at least lessening their impact.

  • Critical thinking involves reviewing the results of the application of decisions made and implementing change where possible.

It might be thought that we are overextending our demands on critical thinking in expecting that it can help to construct focused meaning rather than examining the information given and the knowledge we have acquired to see if we can, if necessary, construct a meaning that will be acceptable and useful.

After all, almost no information we have available to us, either externally or internally, carries any guarantee of its life or appropriateness.  Neat step-by-step instructions may provide some sort of trellis on which our basic understanding of critical thinking can blossom but it doesn’t and cannot provide any assurance of certainty, utility or longevity.

Continue to: Critical Thinking and Fake News Critical Reading

See also: Analytical Skills Understanding and Addressing Conspiracy Theories Introduction to Neuro-Linguistic Programming (NLP)

Encyclopedia of psychology

RATIONAL THINKING

Rational Thinking: A Comprehensive Overview

Rational thinking is a cognitive process that involves using logic and reasoning to analyze a specific problem or situation. It is a process of making decisions based on facts, evidence, and logical conclusions. Rational thinking is a fundamental skill for problem-solving and decision-making. This article provides an overview of rational thinking, including its definition, benefits, and strategies for applying it.

Definition of Rational Thinking

Rational thinking is defined as the usage of logical arguments and evidence-based reasoning to evaluate and understand a situation or problem. It is the process of reasoning logically and objectively in order to reach a conclusion. Rational thinking is contrasted with emotional thinking, which is based on feelings rather than facts and logic.

Benefits of Rational Thinking

Rational thinking has numerous benefits, including the ability to make better decisions, improve problem-solving skills, and develop critical-thinking skills. Rational thinking can also help to avoid irrational decisions that can lead to negative outcomes. Additionally, rational thinking can reduce stress and anxiety, as it allows people to evaluate a situation logically and objectively.

Strategies for Applying Rational Thinking

There are several strategies for applying rational thinking. These include gathering all of the facts and information available, considering all of the potential outcomes of a decision, analyzing the situation from different perspectives, and examining the evidence to make an informed decision. Additionally, it is important to consider the long-term implications of a decision, as well as to remain objective and unbiased.

Rational thinking is a cognitive process that involves using facts, evidence, and logical reasoning to make decisions. It can have numerous benefits, such as improving problem-solving skills, developing critical-thinking skills, and avoiding irrational decisions. There are several strategies for applying rational thinking, including gathering facts and information, considering potential outcomes, and remaining objective and unbiased.

Benson, D. (2019). Rational Thinking: Definition, Benefits, and Strategies. Verywell Mind. https://www.verywellmind.com/what-is-rational-thinking-2794851

Fascione, G. (2013). Benefits of Rational Thinking. Psychology Today. https://www.psychologytoday.com/us/blog/the-decision-tree/201307/benefits-rational-thinking

O’Brien, G. (2019). Rational Thinking: A Definition and Examples. The Balance Careers. https://www.thebalancecareers.com/rational-thinking-definition-and-examples-4169356

Related terms

Reciprocal determinism, recognition technique, recovery of function, redundant coding, referential signal.

Logo for College of DuPage Digital Press

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

7 Module 7: Thinking, Reasoning, and Problem-Solving

This module is about how a solid working knowledge of psychological principles can help you to think more effectively, so you can succeed in school and life. You might be inclined to believe that—because you have been thinking for as long as you can remember, because you are able to figure out the solution to many problems, because you feel capable of using logic to argue a point, because you can evaluate whether the things you read and hear make sense—you do not need any special training in thinking. But this, of course, is one of the key barriers to helping people think better. If you do not believe that there is anything wrong, why try to fix it?

The human brain is indeed a remarkable thinking machine, capable of amazing, complex, creative, logical thoughts. Why, then, are we telling you that you need to learn how to think? Mainly because one major lesson from cognitive psychology is that these capabilities of the human brain are relatively infrequently realized. Many psychologists believe that people are essentially “cognitive misers.” It is not that we are lazy, but that we have a tendency to expend the least amount of mental effort necessary. Although you may not realize it, it actually takes a great deal of energy to think. Careful, deliberative reasoning and critical thinking are very difficult. Because we seem to be successful without going to the trouble of using these skills well, it feels unnecessary to develop them. As you shall see, however, there are many pitfalls in the cognitive processes described in this module. When people do not devote extra effort to learning and improving reasoning, problem solving, and critical thinking skills, they make many errors.

As is true for memory, if you develop the cognitive skills presented in this module, you will be more successful in school. It is important that you realize, however, that these skills will help you far beyond school, even more so than a good memory will. Although it is somewhat useful to have a good memory, ten years from now no potential employer will care how many questions you got right on multiple choice exams during college. All of them will, however, recognize whether you are a logical, analytical, critical thinker. With these thinking skills, you will be an effective, persuasive communicator and an excellent problem solver.

The module begins by describing different kinds of thought and knowledge, especially conceptual knowledge and critical thinking. An understanding of these differences will be valuable as you progress through school and encounter different assignments that require you to tap into different kinds of knowledge. The second section covers deductive and inductive reasoning, which are processes we use to construct and evaluate strong arguments. They are essential skills to have whenever you are trying to persuade someone (including yourself) of some point, or to respond to someone’s efforts to persuade you. The module ends with a section about problem solving. A solid understanding of the key processes involved in problem solving will help you to handle many daily challenges.

7.1. Different kinds of thought

7.2. Reasoning and Judgment

7.3. Problem Solving

READING WITH PURPOSE

Remember and understand.

By reading and studying Module 7, you should be able to remember and describe:

  • Concepts and inferences (7.1)
  • Procedural knowledge (7.1)
  • Metacognition (7.1)
  • Characteristics of critical thinking:  skepticism; identify biases, distortions, omissions, and assumptions; reasoning and problem solving skills  (7.1)
  • Reasoning:  deductive reasoning, deductively valid argument, inductive reasoning, inductively strong argument, availability heuristic, representativeness heuristic  (7.2)
  • Fixation:  functional fixedness, mental set  (7.3)
  • Algorithms, heuristics, and the role of confirmation bias (7.3)
  • Effective problem solving sequence (7.3)

By reading and thinking about how the concepts in Module 6 apply to real life, you should be able to:

  • Identify which type of knowledge a piece of information is (7.1)
  • Recognize examples of deductive and inductive reasoning (7.2)
  • Recognize judgments that have probably been influenced by the availability heuristic (7.2)
  • Recognize examples of problem solving heuristics and algorithms (7.3)

Analyze, Evaluate, and Create

By reading and thinking about Module 6, participating in classroom activities, and completing out-of-class assignments, you should be able to:

  • Use the principles of critical thinking to evaluate information (7.1)
  • Explain whether examples of reasoning arguments are deductively valid or inductively strong (7.2)
  • Outline how you could try to solve a problem from your life using the effective problem solving sequence (7.3)

7.1. Different kinds of thought and knowledge

  • Take a few minutes to write down everything that you know about dogs.
  • Do you believe that:
  • Psychic ability exists?
  • Hypnosis is an altered state of consciousness?
  • Magnet therapy is effective for relieving pain?
  • Aerobic exercise is an effective treatment for depression?
  • UFO’s from outer space have visited earth?

On what do you base your belief or disbelief for the questions above?

Of course, we all know what is meant by the words  think  and  knowledge . You probably also realize that they are not unitary concepts; there are different kinds of thought and knowledge. In this section, let us look at some of these differences. If you are familiar with these different kinds of thought and pay attention to them in your classes, it will help you to focus on the right goals, learn more effectively, and succeed in school. Different assignments and requirements in school call on you to use different kinds of knowledge or thought, so it will be very helpful for you to learn to recognize them (Anderson, et al. 2001).

Factual and conceptual knowledge

Module 5 introduced the idea of declarative memory, which is composed of facts and episodes. If you have ever played a trivia game or watched Jeopardy on TV, you realize that the human brain is able to hold an extraordinary number of facts. Likewise, you realize that each of us has an enormous store of episodes, essentially facts about events that happened in our own lives. It may be difficult to keep that in mind when we are struggling to retrieve one of those facts while taking an exam, however. Part of the problem is that, in contradiction to the advice from Module 5, many students continue to try to memorize course material as a series of unrelated facts (picture a history student simply trying to memorize history as a set of unrelated dates without any coherent story tying them together). Facts in the real world are not random and unorganized, however. It is the way that they are organized that constitutes a second key kind of knowledge, conceptual.

Concepts are nothing more than our mental representations of categories of things in the world. For example, think about dogs. When you do this, you might remember specific facts about dogs, such as they have fur and they bark. You may also recall dogs that you have encountered and picture them in your mind. All of this information (and more) makes up your concept of dog. You can have concepts of simple categories (e.g., triangle), complex categories (e.g., small dogs that sleep all day, eat out of the garbage, and bark at leaves), kinds of people (e.g., psychology professors), events (e.g., birthday parties), and abstract ideas (e.g., justice). Gregory Murphy (2002) refers to concepts as the “glue that holds our mental life together” (p. 1). Very simply, summarizing the world by using concepts is one of the most important cognitive tasks that we do. Our conceptual knowledge  is  our knowledge about the world. Individual concepts are related to each other to form a rich interconnected network of knowledge. For example, think about how the following concepts might be related to each other: dog, pet, play, Frisbee, chew toy, shoe. Or, of more obvious use to you now, how these concepts are related: working memory, long-term memory, declarative memory, procedural memory, and rehearsal? Because our minds have a natural tendency to organize information conceptually, when students try to remember course material as isolated facts, they are working against their strengths.

One last important point about concepts is that they allow you to instantly know a great deal of information about something. For example, if someone hands you a small red object and says, “here is an apple,” they do not have to tell you, “it is something you can eat.” You already know that you can eat it because it is true by virtue of the fact that the object is an apple; this is called drawing an  inference , assuming that something is true on the basis of your previous knowledge (for example, of category membership or of how the world works) or logical reasoning.

Procedural knowledge

Physical skills, such as tying your shoes, doing a cartwheel, and driving a car (or doing all three at the same time, but don’t try this at home) are certainly a kind of knowledge. They are procedural knowledge, the same idea as procedural memory that you saw in Module 5. Mental skills, such as reading, debating, and planning a psychology experiment, are procedural knowledge, as well. In short, procedural knowledge is the knowledge how to do something (Cohen & Eichenbaum, 1993).

Metacognitive knowledge

Floyd used to think that he had a great memory. Now, he has a better memory. Why? Because he finally realized that his memory was not as great as he once thought it was. Because Floyd eventually learned that he often forgets where he put things, he finally developed the habit of putting things in the same place. (Unfortunately, he did not learn this lesson before losing at least 5 watches and a wedding ring.) Because he finally realized that he often forgets to do things, he finally started using the To Do list app on his phone. And so on. Floyd’s insights about the real limitations of his memory have allowed him to remember things that he used to forget.

All of us have knowledge about the way our own minds work. You may know that you have a good memory for people’s names and a poor memory for math formulas. Someone else might realize that they have difficulty remembering to do things, like stopping at the store on the way home. Others still know that they tend to overlook details. This knowledge about our own thinking is actually quite important; it is called metacognitive knowledge, or  metacognition . Like other kinds of thinking skills, it is subject to error. For example, in unpublished research, one of the authors surveyed about 120 General Psychology students on the first day of the term. Among other questions, the students were asked them to predict their grade in the class and report their current Grade Point Average. Two-thirds of the students predicted that their grade in the course would be higher than their GPA. (The reality is that at our college, students tend to earn lower grades in psychology than their overall GPA.) Another example: Students routinely report that they thought they had done well on an exam, only to discover, to their dismay, that they were wrong (more on that important problem in a moment). Both errors reveal a breakdown in metacognition.

The Dunning-Kruger Effect

In general, most college students probably do not study enough. For example, using data from the National Survey of Student Engagement, Fosnacht, McCormack, and Lerma (2018) reported that first-year students at 4-year colleges in the U.S. averaged less than 14 hours per week preparing for classes. The typical suggestion is that you should spend two hours outside of class for every hour in class, or 24 – 30 hours per week for a full-time student. Clearly, students in general are nowhere near that recommended mark. Many observers, including some faculty, believe that this shortfall is a result of students being too busy or lazy. Now, it may be true that many students are too busy, with work and family obligations, for example. Others, are not particularly motivated in school, and therefore might correctly be labeled lazy. A third possible explanation, however, is that some students might not think they need to spend this much time. And this is a matter of metacognition. Consider the scenario that we mentioned above, students thinking they had done well on an exam only to discover that they did not. Justin Kruger and David Dunning examined scenarios very much like this in 1999. Kruger and Dunning gave research participants tests measuring humor, logic, and grammar. Then, they asked the participants to assess their own abilities and test performance in these areas. They found that participants in general tended to overestimate their abilities, already a problem with metacognition. Importantly, the participants who scored the lowest overestimated their abilities the most. Specifically, students who scored in the bottom quarter (averaging in the 12th percentile) thought they had scored in the 62nd percentile. This has become known as the  Dunning-Kruger effect . Many individual faculty members have replicated these results with their own student on their course exams, including the authors of this book. Think about it. Some students who just took an exam and performed poorly believe that they did well before seeing their score. It seems very likely that these are the very same students who stopped studying the night before because they thought they were “done.” Quite simply, it is not just that they did not know the material. They did not know that they did not know the material. That is poor metacognition.

In order to develop good metacognitive skills, you should continually monitor your thinking and seek frequent feedback on the accuracy of your thinking (Medina, Castleberry, & Persky 2017). For example, in classes get in the habit of predicting your exam grades. As soon as possible after taking an exam, try to find out which questions you missed and try to figure out why. If you do this soon enough, you may be able to recall the way it felt when you originally answered the question. Did you feel confident that you had answered the question correctly? Then you have just discovered an opportunity to improve your metacognition. Be on the lookout for that feeling and respond with caution.

concept :  a mental representation of a category of things in the world

Dunning-Kruger effect : individuals who are less competent tend to overestimate their abilities more than individuals who are more competent do

inference : an assumption about the truth of something that is not stated. Inferences come from our prior knowledge and experience, and from logical reasoning

metacognition :  knowledge about one’s own cognitive processes; thinking about your thinking

Critical thinking

One particular kind of knowledge or thinking skill that is related to metacognition is  critical thinking (Chew, 2020). You may have noticed that critical thinking is an objective in many college courses, and thus it could be a legitimate topic to cover in nearly any college course. It is particularly appropriate in psychology, however. As the science of (behavior and) mental processes, psychology is obviously well suited to be the discipline through which you should be introduced to this important way of thinking.

More importantly, there is a particular need to use critical thinking in psychology. We are all, in a way, experts in human behavior and mental processes, having engaged in them literally since birth. Thus, perhaps more than in any other class, students typically approach psychology with very clear ideas and opinions about its subject matter. That is, students already “know” a lot about psychology. The problem is, “it ain’t so much the things we don’t know that get us into trouble. It’s the things we know that just ain’t so” (Ward, quoted in Gilovich 1991). Indeed, many of students’ preconceptions about psychology are just plain wrong. Randolph Smith (2002) wrote a book about critical thinking in psychology called  Challenging Your Preconceptions,  highlighting this fact. On the other hand, many of students’ preconceptions about psychology are just plain right! But wait, how do you know which of your preconceptions are right and which are wrong? And when you come across a research finding or theory in this class that contradicts your preconceptions, what will you do? Will you stick to your original idea, discounting the information from the class? Will you immediately change your mind? Critical thinking can help us sort through this confusing mess.

But what is critical thinking? The goal of critical thinking is simple to state (but extraordinarily difficult to achieve): it is to be right, to draw the correct conclusions, to believe in things that are true and to disbelieve things that are false. We will provide two definitions of critical thinking (or, if you like, one large definition with two distinct parts). First, a more conceptual one: Critical thinking is thinking like a scientist in your everyday life (Schmaltz, Jansen, & Wenckowski, 2017).  Our second definition is more operational; it is simply a list of skills that are essential to be a critical thinker. Critical thinking entails solid reasoning and problem solving skills; skepticism; and an ability to identify biases, distortions, omissions, and assumptions. Excellent deductive and inductive reasoning, and problem solving skills contribute to critical thinking. So, you can consider the subject matter of sections 7.2 and 7.3 to be part of critical thinking. Because we will be devoting considerable time to these concepts in the rest of the module, let us begin with a discussion about the other aspects of critical thinking.

Let’s address that first part of the definition. Scientists form hypotheses, or predictions about some possible future observations. Then, they collect data, or information (think of this as making those future observations). They do their best to make unbiased observations using reliable techniques that have been verified by others. Then, and only then, they draw a conclusion about what those observations mean. Oh, and do not forget the most important part. “Conclusion” is probably not the most appropriate word because this conclusion is only tentative. A scientist is always prepared that someone else might come along and produce new observations that would require a new conclusion be drawn. Wow! If you like to be right, you could do a lot worse than using a process like this.

A Critical Thinker’s Toolkit 

Now for the second part of the definition. Good critical thinkers (and scientists) rely on a variety of tools to evaluate information. Perhaps the most recognizable tool for critical thinking is  skepticism (and this term provides the clearest link to the thinking like a scientist definition, as you are about to see). Some people intend it as an insult when they call someone a skeptic. But if someone calls you a skeptic, if they are using the term correctly, you should consider it a great compliment. Simply put, skepticism is a way of thinking in which you refrain from drawing a conclusion or changing your mind until good evidence has been provided. People from Missouri should recognize this principle, as Missouri is known as the Show-Me State. As a skeptic, you are not inclined to believe something just because someone said so, because someone else believes it, or because it sounds reasonable. You must be persuaded by high quality evidence.

Of course, if that evidence is produced, you have a responsibility as a skeptic to change your belief. Failure to change a belief in the face of good evidence is not skepticism; skepticism has open mindedness at its core. M. Neil Browne and Stuart Keeley (2018) use the term weak sense critical thinking to describe critical thinking behaviors that are used only to strengthen a prior belief. Strong sense critical thinking, on the other hand, has as its goal reaching the best conclusion. Sometimes that means strengthening your prior belief, but sometimes it means changing your belief to accommodate the better evidence.

Many times, a failure to think critically or weak sense critical thinking is related to a  bias , an inclination, tendency, leaning, or prejudice. Everybody has biases, but many people are unaware of them. Awareness of your own biases gives you the opportunity to control or counteract them. Unfortunately, however, many people are happy to let their biases creep into their attempts to persuade others; indeed, it is a key part of their persuasive strategy. To see how these biases influence messages, just look at the different descriptions and explanations of the same events given by people of different ages or income brackets, or conservative versus liberal commentators, or by commentators from different parts of the world. Of course, to be successful, these people who are consciously using their biases must disguise them. Even undisguised biases can be difficult to identify, so disguised ones can be nearly impossible.

Here are some common sources of biases:

  • Personal values and beliefs.  Some people believe that human beings are basically driven to seek power and that they are typically in competition with one another over scarce resources. These beliefs are similar to the world-view that political scientists call “realism.” Other people believe that human beings prefer to cooperate and that, given the chance, they will do so. These beliefs are similar to the world-view known as “idealism.” For many people, these deeply held beliefs can influence, or bias, their interpretations of such wide ranging situations as the behavior of nations and their leaders or the behavior of the driver in the car ahead of you. For example, if your worldview is that people are typically in competition and someone cuts you off on the highway, you may assume that the driver did it purposely to get ahead of you. Other types of beliefs about the way the world is or the way the world should be, for example, political beliefs, can similarly become a significant source of bias.
  • Racism, sexism, ageism and other forms of prejudice and bigotry.  These are, sadly, a common source of bias in many people. They are essentially a special kind of “belief about the way the world is.” These beliefs—for example, that women do not make effective leaders—lead people to ignore contradictory evidence (examples of effective women leaders, or research that disputes the belief) and to interpret ambiguous evidence in a way consistent with the belief.
  • Self-interest.  When particular people benefit from things turning out a certain way, they can sometimes be very susceptible to letting that interest bias them. For example, a company that will earn a profit if they sell their product may have a bias in the way that they give information about their product. A union that will benefit if its members get a generous contract might have a bias in the way it presents information about salaries at competing organizations. (Note that our inclusion of examples describing both companies and unions is an explicit attempt to control for our own personal biases). Home buyers are often dismayed to discover that they purchased their dream house from someone whose self-interest led them to lie about flooding problems in the basement or back yard. This principle, the biasing power of self-interest, is likely what led to the famous phrase  Caveat Emptor  (let the buyer beware) .  

Knowing that these types of biases exist will help you evaluate evidence more critically. Do not forget, though, that people are not always keen to let you discover the sources of biases in their arguments. For example, companies or political organizations can sometimes disguise their support of a research study by contracting with a university professor, who comes complete with a seemingly unbiased institutional affiliation, to conduct the study.

People’s biases, conscious or unconscious, can lead them to make omissions, distortions, and assumptions that undermine our ability to correctly evaluate evidence. It is essential that you look for these elements. Always ask, what is missing, what is not as it appears, and what is being assumed here? For example, consider this (fictional) chart from an ad reporting customer satisfaction at 4 local health clubs.

rational thinking when problem solving is defined as the ability to

Clearly, from the results of the chart, one would be tempted to give Club C a try, as customer satisfaction is much higher than for the other 3 clubs.

There are so many distortions and omissions in this chart, however, that it is actually quite meaningless. First, how was satisfaction measured? Do the bars represent responses to a survey? If so, how were the questions asked? Most importantly, where is the missing scale for the chart? Although the differences look quite large, are they really?

Well, here is the same chart, with a different scale, this time labeled:

rational thinking when problem solving is defined as the ability to

Club C is not so impressive any more, is it? In fact, all of the health clubs have customer satisfaction ratings (whatever that means) between 85% and 88%. In the first chart, the entire scale of the graph included only the percentages between 83 and 89. This “judicious” choice of scale—some would call it a distortion—and omission of that scale from the chart make the tiny differences among the clubs seem important, however.

Also, in order to be a critical thinker, you need to learn to pay attention to the assumptions that underlie a message. Let us briefly illustrate the role of assumptions by touching on some people’s beliefs about the criminal justice system in the US. Some believe that a major problem with our judicial system is that many criminals go free because of legal technicalities. Others believe that a major problem is that many innocent people are convicted of crimes. The simple fact is, both types of errors occur. A person’s conclusion about which flaw in our judicial system is the greater tragedy is based on an assumption about which of these is the more serious error (letting the guilty go free or convicting the innocent). This type of assumption is called a value assumption (Browne and Keeley, 2018). It reflects the differences in values that people develop, differences that may lead us to disregard valid evidence that does not fit in with our particular values.

Oh, by the way, some students probably noticed this, but the seven tips for evaluating information that we shared in Module 1 are related to this. Actually, they are part of this section. The tips are, to a very large degree, set of ideas you can use to help you identify biases, distortions, omissions, and assumptions. If you do not remember this section, we strongly recommend you take a few minutes to review it.

skepticism :  a way of thinking in which you refrain from drawing a conclusion or changing your mind until good evidence has been provided

bias : an inclination, tendency, leaning, or prejudice

  • Which of your beliefs (or disbeliefs) from the Activate exercise for this section were derived from a process of critical thinking? If some of your beliefs were not based on critical thinking, are you willing to reassess these beliefs? If the answer is no, why do you think that is? If the answer is yes, what concrete steps will you take?

7.2 Reasoning and Judgment

  • What percentage of kidnappings are committed by strangers?
  • Which area of the house is riskiest: kitchen, bathroom, or stairs?
  • What is the most common cancer in the US?
  • What percentage of workplace homicides are committed by co-workers?

An essential set of procedural thinking skills is  reasoning , the ability to generate and evaluate solid conclusions from a set of statements or evidence. You should note that these conclusions (when they are generated instead of being evaluated) are one key type of inference that we described in Section 7.1. There are two main types of reasoning, deductive and inductive.

Deductive reasoning

Suppose your teacher tells you that if you get an A on the final exam in a course, you will get an A for the whole course. Then, you get an A on the final exam. What will your final course grade be? Most people can see instantly that you can conclude with certainty that you will get an A for the course. This is a type of reasoning called  deductive reasoning , which is defined as reasoning in which a conclusion is guaranteed to be true as long as the statements leading to it are true. The three statements can be listed as an  argument , with two beginning statements and a conclusion:

Statement 1: If you get an A on the final exam, you will get an A for the course

Statement 2: You get an A on the final exam

Conclusion: You will get an A for the course

This particular arrangement, in which true beginning statements lead to a guaranteed true conclusion, is known as a  deductively valid argument . Although deductive reasoning is often the subject of abstract, brain-teasing, puzzle-like word problems, it is actually an extremely important type of everyday reasoning. It is just hard to recognize sometimes. For example, imagine that you are looking for your car keys and you realize that they are either in the kitchen drawer or in your book bag. After looking in the kitchen drawer, you instantly know that they must be in your book bag. That conclusion results from a simple deductive reasoning argument. In addition, solid deductive reasoning skills are necessary for you to succeed in the sciences, philosophy, math, computer programming, and any endeavor involving the use of logic to persuade others to your point of view or to evaluate others’ arguments.

Cognitive psychologists, and before them philosophers, have been quite interested in deductive reasoning, not so much for its practical applications, but for the insights it can offer them about the ways that human beings think. One of the early ideas to emerge from the examination of deductive reasoning is that people learn (or develop) mental versions of rules that allow them to solve these types of reasoning problems (Braine, 1978; Braine, Reiser, & Rumain, 1984). The best way to see this point of view is to realize that there are different possible rules, and some of them are very simple. For example, consider this rule of logic:

therefore q

Logical rules are often presented abstractly, as letters, in order to imply that they can be used in very many specific situations. Here is a concrete version of the of the same rule:

I’ll either have pizza or a hamburger for dinner tonight (p or q)

I won’t have pizza (not p)

Therefore, I’ll have a hamburger (therefore q)

This kind of reasoning seems so natural, so easy, that it is quite plausible that we would use a version of this rule in our daily lives. At least, it seems more plausible than some of the alternative possibilities—for example, that we need to have experience with the specific situation (pizza or hamburger, in this case) in order to solve this type of problem easily. So perhaps there is a form of natural logic (Rips, 1990) that contains very simple versions of logical rules. When we are faced with a reasoning problem that maps onto one of these rules, we use the rule.

But be very careful; things are not always as easy as they seem. Even these simple rules are not so simple. For example, consider the following rule. Many people fail to realize that this rule is just as valid as the pizza or hamburger rule above.

if p, then q

therefore, not p

Concrete version:

If I eat dinner, then I will have dessert

I did not have dessert

Therefore, I did not eat dinner

The simple fact is, it can be very difficult for people to apply rules of deductive logic correctly; as a result, they make many errors when trying to do so. Is this a deductively valid argument or not?

Students who like school study a lot

Students who study a lot get good grades

Jane does not like school

Therefore, Jane does not get good grades

Many people are surprised to discover that this is not a logically valid argument; the conclusion is not guaranteed to be true from the beginning statements. Although the first statement says that students who like school study a lot, it does NOT say that students who do not like school do not study a lot. In other words, it may very well be possible to study a lot without liking school. Even people who sometimes get problems like this right might not be using the rules of deductive reasoning. Instead, they might just be making judgments for examples they know, in this case, remembering instances of people who get good grades despite not liking school.

Making deductive reasoning even more difficult is the fact that there are two important properties that an argument may have. One, it can be valid or invalid (meaning that the conclusion does or does not follow logically from the statements leading up to it). Two, an argument (or more correctly, its conclusion) can be true or false. Here is an example of an argument that is logically valid, but has a false conclusion (at least we think it is false).

Either you are eleven feet tall or the Grand Canyon was created by a spaceship crashing into the earth.

You are not eleven feet tall

Therefore the Grand Canyon was created by a spaceship crashing into the earth

This argument has the exact same form as the pizza or hamburger argument above, making it is deductively valid. The conclusion is so false, however, that it is absurd (of course, the reason the conclusion is false is that the first statement is false). When people are judging arguments, they tend to not observe the difference between deductive validity and the empirical truth of statements or conclusions. If the elements of an argument happen to be true, people are likely to judge the argument logically valid; if the elements are false, they will very likely judge it invalid (Markovits & Bouffard-Bouchard, 1992; Moshman & Franks, 1986). Thus, it seems a stretch to say that people are using these logical rules to judge the validity of arguments. Many psychologists believe that most people actually have very limited deductive reasoning skills (Johnson-Laird, 1999). They argue that when faced with a problem for which deductive logic is required, people resort to some simpler technique, such as matching terms that appear in the statements and the conclusion (Evans, 1982). This might not seem like a problem, but what if reasoners believe that the elements are true and they happen to be wrong; they will would believe that they are using a form of reasoning that guarantees they are correct and yet be wrong.

deductive reasoning :  a type of reasoning in which the conclusion is guaranteed to be true any time the statements leading up to it are true

argument :  a set of statements in which the beginning statements lead to a conclusion

deductively valid argument :  an argument for which true beginning statements guarantee that the conclusion is true

Inductive reasoning and judgment

Every day, you make many judgments about the likelihood of one thing or another. Whether you realize it or not, you are practicing  inductive reasoning   on a daily basis. In inductive reasoning arguments, a conclusion is likely whenever the statements preceding it are true. The first thing to notice about inductive reasoning is that, by definition, you can never be sure about your conclusion; you can only estimate how likely the conclusion is. Inductive reasoning may lead you to focus on Memory Encoding and Recoding when you study for the exam, but it is possible the instructor will ask more questions about Memory Retrieval instead. Unlike deductive reasoning, the conclusions you reach through inductive reasoning are only probable, not certain. That is why scientists consider inductive reasoning weaker than deductive reasoning. But imagine how hard it would be for us to function if we could not act unless we were certain about the outcome.

Inductive reasoning can be represented as logical arguments consisting of statements and a conclusion, just as deductive reasoning can be. In an inductive argument, you are given some statements and a conclusion (or you are given some statements and must draw a conclusion). An argument is  inductively strong   if the conclusion would be very probable whenever the statements are true. So, for example, here is an inductively strong argument:

  • Statement #1: The forecaster on Channel 2 said it is going to rain today.
  • Statement #2: The forecaster on Channel 5 said it is going to rain today.
  • Statement #3: It is very cloudy and humid.
  • Statement #4: You just heard thunder.
  • Conclusion (or judgment): It is going to rain today.

Think of the statements as evidence, on the basis of which you will draw a conclusion. So, based on the evidence presented in the four statements, it is very likely that it will rain today. Will it definitely rain today? Certainly not. We can all think of times that the weather forecaster was wrong.

A true story: Some years ago psychology student was watching a baseball playoff game between the St. Louis Cardinals and the Los Angeles Dodgers. A graphic on the screen had just informed the audience that the Cardinal at bat, (Hall of Fame shortstop) Ozzie Smith, a switch hitter batting left-handed for this plate appearance, had never, in nearly 3000 career at-bats, hit a home run left-handed. The student, who had just learned about inductive reasoning in his psychology class, turned to his companion (a Cardinals fan) and smugly said, “It is an inductively strong argument that Ozzie Smith will not hit a home run.” He turned back to face the television just in time to watch the ball sail over the right field fence for a home run. Although the student felt foolish at the time, he was not wrong. It was an inductively strong argument; 3000 at-bats is an awful lot of evidence suggesting that the Wizard of Ozz (as he was known) would not be hitting one out of the park (think of each at-bat without a home run as a statement in an inductive argument). Sadly (for the die-hard Cubs fan and Cardinals-hating student), despite the strength of the argument, the conclusion was wrong.

Given the possibility that we might draw an incorrect conclusion even with an inductively strong argument, we really want to be sure that we do, in fact, make inductively strong arguments. If we judge something probable, it had better be probable. If we judge something nearly impossible, it had better not happen. Think of inductive reasoning, then, as making reasonably accurate judgments of the probability of some conclusion given a set of evidence.

We base many decisions in our lives on inductive reasoning. For example:

Statement #1: Psychology is not my best subject

Statement #2: My psychology instructor has a reputation for giving difficult exams

Statement #3: My first psychology exam was much harder than I expected

Judgment: The next exam will probably be very difficult.

Decision: I will study tonight instead of watching Netflix.

Some other examples of judgments that people commonly make in a school context include judgments of the likelihood that:

  • A particular class will be interesting/useful/difficult
  • You will be able to finish writing a paper by next week if you go out tonight
  • Your laptop’s battery will last through the next trip to the library
  • You will not miss anything important if you skip class tomorrow
  • Your instructor will not notice if you skip class tomorrow
  • You will be able to find a book that you will need for a paper
  • There will be an essay question about Memory Encoding on the next exam

Tversky and Kahneman (1983) recognized that there are two general ways that we might make these judgments; they termed them extensional (i.e., following the laws of probability) and intuitive (i.e., using shortcuts or heuristics, see below). We will use a similar distinction between Type 1 and Type 2 thinking, as described by Keith Stanovich and his colleagues (Evans and Stanovich, 2013; Stanovich and West, 2000). Type 1 thinking is fast, automatic, effortful, and emotional. In fact, it is hardly fair to call it reasoning at all, as judgments just seem to pop into one’s head. Type 2 thinking , on the other hand, is slow, effortful, and logical. So obviously, it is more likely to lead to a correct judgment, or an optimal decision. The problem is, we tend to over-rely on Type 1. Now, we are not saying that Type 2 is the right way to go for every decision or judgment we make. It seems a bit much, for example, to engage in a step-by-step logical reasoning procedure to decide whether we will have chicken or fish for dinner tonight.

Many bad decisions in some very important contexts, however, can be traced back to poor judgments of the likelihood of certain risks or outcomes that result from the use of Type 1 when a more logical reasoning process would have been more appropriate. For example:

Statement #1: It is late at night.

Statement #2: Albert has been drinking beer for the past five hours at a party.

Statement #3: Albert is not exactly sure where he is or how far away home is.

Judgment: Albert will have no difficulty walking home.

Decision: He walks home alone.

As you can see in this example, the three statements backing up the judgment do not really support it. In other words, this argument is not inductively strong because it is based on judgments that ignore the laws of probability. What are the chances that someone facing these conditions will be able to walk home alone easily? And one need not be drunk to make poor decisions based on judgments that just pop into our heads.

The truth is that many of our probability judgments do not come very close to what the laws of probability say they should be. Think about it. In order for us to reason in accordance with these laws, we would need to know the laws of probability, which would allow us to calculate the relationship between particular pieces of evidence and the probability of some outcome (i.e., how much likelihood should change given a piece of evidence), and we would have to do these heavy math calculations in our heads. After all, that is what Type 2 requires. Needless to say, even if we were motivated, we often do not even know how to apply Type 2 reasoning in many cases.

So what do we do when we don’t have the knowledge, skills, or time required to make the correct mathematical judgment? Do we hold off and wait until we can get better evidence? Do we read up on probability and fire up our calculator app so we can compute the correct probability? Of course not. We rely on Type 1 thinking. We “wing it.” That is, we come up with a likelihood estimate using some means at our disposal. Psychologists use the term heuristic to describe the type of “winging it” we are talking about. A  heuristic   is a shortcut strategy that we use to make some judgment or solve some problem (see Section 7.3). Heuristics are easy and quick, think of them as the basic procedures that are characteristic of Type 1.  They can absolutely lead to reasonably good judgments and decisions in some situations (like choosing between chicken and fish for dinner). They are, however, far from foolproof. There are, in fact, quite a lot of situations in which heuristics can lead us to make incorrect judgments, and in many cases the decisions based on those judgments can have serious consequences.

Let us return to the activity that begins this section. You were asked to judge the likelihood (or frequency) of certain events and risks. You were free to come up with your own evidence (or statements) to make these judgments. This is where a heuristic crops up. As a judgment shortcut, we tend to generate specific examples of those very events to help us decide their likelihood or frequency. For example, if we are asked to judge how common, frequent, or likely a particular type of cancer is, many of our statements would be examples of specific cancer cases:

Statement #1: Andy Kaufman (comedian) had lung cancer.

Statement #2: Colin Powell (US Secretary of State) had prostate cancer.

Statement #3: Bob Marley (musician) had skin and brain cancer

Statement #4: Sandra Day O’Connor (Supreme Court Justice) had breast cancer.

Statement #5: Fred Rogers (children’s entertainer) had stomach cancer.

Statement #6: Robin Roberts (news anchor) had breast cancer.

Statement #7: Bette Davis (actress) had breast cancer.

Judgment: Breast cancer is the most common type.

Your own experience or memory may also tell you that breast cancer is the most common type. But it is not (although it is common). Actually, skin cancer is the most common type in the US. We make the same types of misjudgments all the time because we do not generate the examples or evidence according to their actual frequencies or probabilities. Instead, we have a tendency (or bias) to search for the examples in memory; if they are easy to retrieve, we assume that they are common. To rephrase this in the language of the heuristic, events seem more likely to the extent that they are available to memory. This bias has been termed the  availability heuristic   (Kahneman and Tversky, 1974).

The fact that we use the availability heuristic does not automatically mean that our judgment is wrong. The reason we use heuristics in the first place is that they work fairly well in many cases (and, of course that they are easy to use). So, the easiest examples to think of sometimes are the most common ones. Is it more likely that a member of the U.S. Senate is a man or a woman? Most people have a much easier time generating examples of male senators. And as it turns out, the U.S. Senate has many more men than women (74 to 26 in 2020). In this case, then, the availability heuristic would lead you to make the correct judgment; it is far more likely that a senator would be a man.

In many other cases, however, the availability heuristic will lead us astray. This is because events can be memorable for many reasons other than their frequency. Section 5.2, Encoding Meaning, suggested that one good way to encode the meaning of some information is to form a mental image of it. Thus, information that has been pictured mentally will be more available to memory. Indeed, an event that is vivid and easily pictured will trick many people into supposing that type of event is more common than it actually is. Repetition of information will also make it more memorable. So, if the same event is described to you in a magazine, on the evening news, on a podcast that you listen to, and in your Facebook feed; it will be very available to memory. Again, the availability heuristic will cause you to misperceive the frequency of these types of events.

Most interestingly, information that is unusual is more memorable. Suppose we give you the following list of words to remember: box, flower, letter, platypus, oven, boat, newspaper, purse, drum, car. Very likely, the easiest word to remember would be platypus, the unusual one. The same thing occurs with memories of events. An event may be available to memory because it is unusual, yet the availability heuristic leads us to judge that the event is common. Did you catch that? In these cases, the availability heuristic makes us think the exact opposite of the true frequency. We end up thinking something is common because it is unusual (and therefore memorable). Yikes.

The misapplication of the availability heuristic sometimes has unfortunate results. For example, if you went to K-12 school in the US over the past 10 years, it is extremely likely that you have participated in lockdown and active shooter drills. Of course, everyone is trying to prevent the tragedy of another school shooting. And believe us, we are not trying to minimize how terrible the tragedy is. But the truth of the matter is, school shootings are extremely rare. Because the federal government does not keep a database of school shootings, the Washington Post has maintained their own running tally. Between 1999 and January 2020 (the date of the most recent school shooting with a death in the US at of the time this paragraph was written), the Post reported a total of 254 people died in school shootings in the US. Not 254 per year, 254 total. That is an average of 12 per year. Of course, that is 254 people who should not have died (particularly because many were children), but in a country with approximately 60,000,000 students and teachers, this is a very small risk.

But many students and teachers are terrified that they will be victims of school shootings because of the availability heuristic. It is so easy to think of examples (they are very available to memory) that people believe the event is very common. It is not. And there is a downside to this. We happen to believe that there is an enormous gun violence problem in the United States. According the the Centers for Disease Control and Prevention, there were 39,773 firearm deaths in the US in 2017. Fifteen of those deaths were in school shootings, according to the Post. 60% of those deaths were suicides. When people pay attention to the school shooting risk (low), they often fail to notice the much larger risk.

And examples like this are by no means unique. The authors of this book have been teaching psychology since the 1990’s. We have been able to make the exact same arguments about the misapplication of the availability heuristics and keep them current by simply swapping out for the “fear of the day.” In the 1990’s it was children being kidnapped by strangers (it was known as “stranger danger”) despite the facts that kidnappings accounted for only 2% of the violent crimes committed against children, and only 24% of kidnappings are committed by strangers (US Department of Justice, 2007). This fear overlapped with the fear of terrorism that gripped the country after the 2001 terrorist attacks on the World Trade Center and US Pentagon and still plagues the population of the US somewhat in 2020. After a well-publicized, sensational act of violence, people are extremely likely to increase their estimates of the chances that they, too, will be victims of terror. Think about the reality, however. In October of 2001, a terrorist mailed anthrax spores to members of the US government and a number of media companies. A total of five people died as a result of this attack. The nation was nearly paralyzed by the fear of dying from the attack; in reality the probability of an individual person dying was 0.00000002.

The availability heuristic can lead you to make incorrect judgments in a school setting as well. For example, suppose you are trying to decide if you should take a class from a particular math professor. You might try to make a judgment of how good a teacher she is by recalling instances of friends and acquaintances making comments about her teaching skill. You may have some examples that suggest that she is a poor teacher very available to memory, so on the basis of the availability heuristic you judge her a poor teacher and decide to take the class from someone else. What if, however, the instances you recalled were all from the same person, and this person happens to be a very colorful storyteller? The subsequent ease of remembering the instances might not indicate that the professor is a poor teacher after all.

Although the availability heuristic is obviously important, it is not the only judgment heuristic we use. Amos Tversky and Daniel Kahneman examined the role of heuristics in inductive reasoning in a long series of studies. Kahneman received a Nobel Prize in Economics for this research in 2002, and Tversky would have certainly received one as well if he had not died of melanoma at age 59 in 1996 (Nobel Prizes are not awarded posthumously). Kahneman and Tversky demonstrated repeatedly that people do not reason in ways that are consistent with the laws of probability. They identified several heuristic strategies that people use instead to make judgments about likelihood. The importance of this work for economics (and the reason that Kahneman was awarded the Nobel Prize) is that earlier economic theories had assumed that people do make judgments rationally, that is, in agreement with the laws of probability.

Another common heuristic that people use for making judgments is the  representativeness heuristic (Kahneman & Tversky 1973). Suppose we describe a person to you. He is quiet and shy, has an unassuming personality, and likes to work with numbers. Is this person more likely to be an accountant or an attorney? If you said accountant, you were probably using the representativeness heuristic. Our imaginary person is judged likely to be an accountant because he resembles, or is representative of the concept of, an accountant. When research participants are asked to make judgments such as these, the only thing that seems to matter is the representativeness of the description. For example, if told that the person described is in a room that contains 70 attorneys and 30 accountants, participants will still assume that he is an accountant.

inductive reasoning :  a type of reasoning in which we make judgments about likelihood from sets of evidence

inductively strong argument :  an inductive argument in which the beginning statements lead to a conclusion that is probably true

heuristic :  a shortcut strategy that we use to make judgments and solve problems. Although they are easy to use, they do not guarantee correct judgments and solutions

availability heuristic :  judging the frequency or likelihood of some event type according to how easily examples of the event can be called to mind (i.e., how available they are to memory)

representativeness heuristic:   judging the likelihood that something is a member of a category on the basis of how much it resembles a typical category member (i.e., how representative it is of the category)

Type 1 thinking : fast, automatic, and emotional thinking.

Type 2 thinking : slow, effortful, and logical thinking.

  • What percentage of workplace homicides are co-worker violence?

Many people get these questions wrong. The answers are 10%; stairs; skin; 6%. How close were your answers? Explain how the availability heuristic might have led you to make the incorrect judgments.

  • Can you think of some other judgments that you have made (or beliefs that you have) that might have been influenced by the availability heuristic?

7.3 Problem Solving

  • Please take a few minutes to list a number of problems that you are facing right now.
  • Now write about a problem that you recently solved.
  • What is your definition of a problem?

Mary has a problem. Her daughter, ordinarily quite eager to please, appears to delight in being the last person to do anything. Whether getting ready for school, going to piano lessons or karate class, or even going out with her friends, she seems unwilling or unable to get ready on time. Other people have different kinds of problems. For example, many students work at jobs, have numerous family commitments, and are facing a course schedule full of difficult exams, assignments, papers, and speeches. How can they find enough time to devote to their studies and still fulfill their other obligations? Speaking of students and their problems: Show that a ball thrown vertically upward with initial velocity v0 takes twice as much time to return as to reach the highest point (from Spiegel, 1981).

These are three very different situations, but we have called them all problems. What makes them all the same, despite the differences? A psychologist might define a  problem   as a situation with an initial state, a goal state, and a set of possible intermediate states. Somewhat more meaningfully, we might consider a problem a situation in which you are in here one state (e.g., daughter is always late), you want to be there in another state (e.g., daughter is not always late), and with no obvious way to get from here to there. Defined this way, each of the three situations we outlined can now be seen as an example of the same general concept, a problem. At this point, you might begin to wonder what is not a problem, given such a general definition. It seems that nearly every non-routine task we engage in could qualify as a problem. As long as you realize that problems are not necessarily bad (it can be quite fun and satisfying to rise to the challenge and solve a problem), this may be a useful way to think about it.

Can we identify a set of problem-solving skills that would apply to these very different kinds of situations? That task, in a nutshell, is a major goal of this section. Let us try to begin to make sense of the wide variety of ways that problems can be solved with an important observation: the process of solving problems can be divided into two key parts. First, people have to notice, comprehend, and represent the problem properly in their minds (called  problem representation ). Second, they have to apply some kind of solution strategy to the problem. Psychologists have studied both of these key parts of the process in detail.

When you first think about the problem-solving process, you might guess that most of our difficulties would occur because we are failing in the second step, the application of strategies. Although this can be a significant difficulty much of the time, the more important source of difficulty is probably problem representation. In short, we often fail to solve a problem because we are looking at it, or thinking about it, the wrong way.

problem :  a situation in which we are in an initial state, have a desired goal state, and there is a number of possible intermediate states (i.e., there is no obvious way to get from the initial to the goal state)

problem representation :  noticing, comprehending and forming a mental conception of a problem

Defining and Mentally Representing Problems in Order to Solve Them

So, the main obstacle to solving a problem is that we do not clearly understand exactly what the problem is. Recall the problem with Mary’s daughter always being late. One way to represent, or to think about, this problem is that she is being defiant. She refuses to get ready in time. This type of representation or definition suggests a particular type of solution. Another way to think about the problem, however, is to consider the possibility that she is simply being sidetracked by interesting diversions. This different conception of what the problem is (i.e., different representation) suggests a very different solution strategy. For example, if Mary defines the problem as defiance, she may be tempted to solve the problem using some kind of coercive tactics, that is, to assert her authority as her mother and force her to listen. On the other hand, if Mary defines the problem as distraction, she may try to solve it by simply removing the distracting objects.

As you might guess, when a problem is represented one way, the solution may seem very difficult, or even impossible. Seen another way, the solution might be very easy. For example, consider the following problem (from Nasar, 1998):

Two bicyclists start 20 miles apart and head toward each other, each going at a steady rate of 10 miles per hour. At the same time, a fly that travels at a steady 15 miles per hour starts from the front wheel of the southbound bicycle and flies to the front wheel of the northbound one, then turns around and flies to the front wheel of the southbound one again, and continues in this manner until he is crushed between the two front wheels. Question: what total distance did the fly cover?

Please take a few minutes to try to solve this problem.

Most people represent this problem as a question about a fly because, well, that is how the question is asked. The solution, using this representation, is to figure out how far the fly travels on the first leg of its journey, then add this total to how far it travels on the second leg of its journey (when it turns around and returns to the first bicycle), then continue to add the smaller distance from each leg of the journey until you converge on the correct answer. You would have to be quite skilled at math to solve this problem, and you would probably need some time and pencil and paper to do it.

If you consider a different representation, however, you can solve this problem in your head. Instead of thinking about it as a question about a fly, think about it as a question about the bicycles. They are 20 miles apart, and each is traveling 10 miles per hour. How long will it take for the bicycles to reach each other? Right, one hour. The fly is traveling 15 miles per hour; therefore, it will travel a total of 15 miles back and forth in the hour before the bicycles meet. Represented one way (as a problem about a fly), the problem is quite difficult. Represented another way (as a problem about two bicycles), it is easy. Changing your representation of a problem is sometimes the best—sometimes the only—way to solve it.

Unfortunately, however, changing a problem’s representation is not the easiest thing in the world to do. Often, problem solvers get stuck looking at a problem one way. This is called  fixation . Most people who represent the preceding problem as a problem about a fly probably do not pause to reconsider, and consequently change, their representation. A parent who thinks her daughter is being defiant is unlikely to consider the possibility that her behavior is far less purposeful.

Problem-solving fixation was examined by a group of German psychologists called Gestalt psychologists during the 1930’s and 1940’s. Karl Dunker, for example, discovered an important type of failure to take a different perspective called  functional fixedness . Imagine being a participant in one of his experiments. You are asked to figure out how to mount two candles on a door and are given an assortment of odds and ends, including a small empty cardboard box and some thumbtacks. Perhaps you have already figured out a solution: tack the box to the door so it forms a platform, then put the candles on top of the box. Most people are able to arrive at this solution. Imagine a slight variation of the procedure, however. What if, instead of being empty, the box had matches in it? Most people given this version of the problem do not arrive at the solution given above. Why? Because it seems to people that when the box contains matches, it already has a function; it is a matchbox. People are unlikely to consider a new function for an object that already has a function. This is functional fixedness.

Mental set is a type of fixation in which the problem solver gets stuck using the same solution strategy that has been successful in the past, even though the solution may no longer be useful. It is commonly seen when students do math problems for homework. Often, several problems in a row require the reapplication of the same solution strategy. Then, without warning, the next problem in the set requires a new strategy. Many students attempt to apply the formerly successful strategy on the new problem and therefore cannot come up with a correct answer.

The thing to remember is that you cannot solve a problem unless you correctly identify what it is to begin with (initial state) and what you want the end result to be (goal state). That may mean looking at the problem from a different angle and representing it in a new way. The correct representation does not guarantee a successful solution, but it certainly puts you on the right track.

A bit more optimistically, the Gestalt psychologists discovered what may be considered the opposite of fixation, namely  insight . Sometimes the solution to a problem just seems to pop into your head. Wolfgang Kohler examined insight by posing many different problems to chimpanzees, principally problems pertaining to their acquisition of out-of-reach food. In one version, a banana was placed outside of a chimpanzee’s cage and a short stick inside the cage. The stick was too short to retrieve the banana, but was long enough to retrieve a longer stick also located outside of the cage. This second stick was long enough to retrieve the banana. After trying, and failing, to reach the banana with the shorter stick, the chimpanzee would try a couple of random-seeming attempts, react with some apparent frustration or anger, then suddenly rush to the longer stick, the correct solution fully realized at this point. This sudden appearance of the solution, observed many times with many different problems, was termed insight by Kohler.

Lest you think it pertains to chimpanzees only, Karl Dunker demonstrated that children also solve problems through insight in the 1930s. More importantly, you have probably experienced insight yourself. Think back to a time when you were trying to solve a difficult problem. After struggling for a while, you gave up. Hours later, the solution just popped into your head, perhaps when you were taking a walk, eating dinner, or lying in bed.

fixation :  when a problem solver gets stuck looking at a problem a particular way and cannot change his or her representation of it (or his or her intended solution strategy)

functional fixedness :  a specific type of fixation in which a problem solver cannot think of a new use for an object that already has a function

mental set :  a specific type of fixation in which a problem solver gets stuck using the same solution strategy that has been successful in the past

insight :  a sudden realization of a solution to a problem

Solving Problems by Trial and Error

Correctly identifying the problem and your goal for a solution is a good start, but recall the psychologist’s definition of a problem: it includes a set of possible intermediate states. Viewed this way, a problem can be solved satisfactorily only if one can find a path through some of these intermediate states to the goal. Imagine a fairly routine problem, finding a new route to school when your ordinary route is blocked (by road construction, for example). At each intersection, you may turn left, turn right, or go straight. A satisfactory solution to the problem (of getting to school) is a sequence of selections at each intersection that allows you to wind up at school.

If you had all the time in the world to get to school, you might try choosing intermediate states randomly. At one corner you turn left, the next you go straight, then you go left again, then right, then right, then straight. Unfortunately, trial and error will not necessarily get you where you want to go, and even if it does, it is not the fastest way to get there. For example, when a friend of ours was in college, he got lost on the way to a concert and attempted to find the venue by choosing streets to turn onto randomly (this was long before the use of GPS). Amazingly enough, the strategy worked, although he did end up missing two out of the three bands who played that night.

Trial and error is not all bad, however. B.F. Skinner, a prominent behaviorist psychologist, suggested that people often behave randomly in order to see what effect the behavior has on the environment and what subsequent effect this environmental change has on them. This seems particularly true for the very young person. Picture a child filling a household’s fish tank with toilet paper, for example. To a child trying to develop a repertoire of creative problem-solving strategies, an odd and random behavior might be just the ticket. Eventually, the exasperated parent hopes, the child will discover that many of these random behaviors do not successfully solve problems; in fact, in many cases they create problems. Thus, one would expect a decrease in this random behavior as a child matures. You should realize, however, that the opposite extreme is equally counterproductive. If the children become too rigid, never trying something unexpected and new, their problem solving skills can become too limited.

Effective problem solving seems to call for a happy medium that strikes a balance between using well-founded old strategies and trying new ground and territory. The individual who recognizes a situation in which an old problem-solving strategy would work best, and who can also recognize a situation in which a new untested strategy is necessary is halfway to success.

Solving Problems with Algorithms and Heuristics

For many problems there is a possible strategy available that will guarantee a correct solution. For example, think about math problems. Math lessons often consist of step-by-step procedures that can be used to solve the problems. If you apply the strategy without error, you are guaranteed to arrive at the correct solution to the problem. This approach is called using an  algorithm , a term that denotes the step-by-step procedure that guarantees a correct solution. Because algorithms are sometimes available and come with a guarantee, you might think that most people use them frequently. Unfortunately, however, they do not. As the experience of many students who have struggled through math classes can attest, algorithms can be extremely difficult to use, even when the problem solver knows which algorithm is supposed to work in solving the problem. In problems outside of math class, we often do not even know if an algorithm is available. It is probably fair to say, then, that algorithms are rarely used when people try to solve problems.

Because algorithms are so difficult to use, people often pass up the opportunity to guarantee a correct solution in favor of a strategy that is much easier to use and yields a reasonable chance of coming up with a correct solution. These strategies are called  problem solving heuristics . Similar to what you saw in section 6.2 with reasoning heuristics, a problem solving heuristic is a shortcut strategy that people use when trying to solve problems. It usually works pretty well, but does not guarantee a correct solution to the problem. For example, one problem solving heuristic might be “always move toward the goal” (so when trying to get to school when your regular route is blocked, you would always turn in the direction you think the school is). A heuristic that people might use when doing math homework is “use the same solution strategy that you just used for the previous problem.”

By the way, we hope these last two paragraphs feel familiar to you. They seem to parallel a distinction that you recently learned. Indeed, algorithms and problem-solving heuristics are another example of the distinction between Type 1 thinking and Type 2 thinking.

Although it is probably not worth describing a large number of specific heuristics, two observations about heuristics are worth mentioning. First, heuristics can be very general or they can be very specific, pertaining to a particular type of problem only. For example, “always move toward the goal” is a general strategy that you can apply to countless problem situations. On the other hand, “when you are lost without a functioning gps, pick the most expensive car you can see and follow it” is specific to the problem of being lost. Second, all heuristics are not equally useful. One heuristic that many students know is “when in doubt, choose c for a question on a multiple-choice exam.” This is a dreadful strategy because many instructors intentionally randomize the order of answer choices. Another test-taking heuristic, somewhat more useful, is “look for the answer to one question somewhere else on the exam.”

You really should pay attention to the application of heuristics to test taking. Imagine that while reviewing your answers for a multiple-choice exam before turning it in, you come across a question for which you originally thought the answer was c. Upon reflection, you now think that the answer might be b. Should you change the answer to b, or should you stick with your first impression? Most people will apply the heuristic strategy to “stick with your first impression.” What they do not realize, of course, is that this is a very poor strategy (Lilienfeld et al, 2009). Most of the errors on exams come on questions that were answered wrong originally and were not changed (so they remain wrong). There are many fewer errors where we change a correct answer to an incorrect answer. And, of course, sometimes we change an incorrect answer to a correct answer. In fact, research has shown that it is more common to change a wrong answer to a right answer than vice versa (Bruno, 2001).

The belief in this poor test-taking strategy (stick with your first impression) is based on the  confirmation bias   (Nickerson, 1998; Wason, 1960). You first saw the confirmation bias in Module 1, but because it is so important, we will repeat the information here. People have a bias, or tendency, to notice information that confirms what they already believe. Somebody at one time told you to stick with your first impression, so when you look at the results of an exam you have taken, you will tend to notice the cases that are consistent with that belief. That is, you will notice the cases in which you originally had an answer correct and changed it to the wrong answer. You tend not to notice the other two important (and more common) cases, changing an answer from wrong to right, and leaving a wrong answer unchanged.

Because heuristics by definition do not guarantee a correct solution to a problem, mistakes are bound to occur when we employ them. A poor choice of a specific heuristic will lead to an even higher likelihood of making an error.

algorithm :  a step-by-step procedure that guarantees a correct solution to a problem

problem solving heuristic :  a shortcut strategy that we use to solve problems. Although they are easy to use, they do not guarantee correct judgments and solutions

confirmation bias :  people’s tendency to notice information that confirms what they already believe

An Effective Problem-Solving Sequence

You may be left with a big question: If algorithms are hard to use and heuristics often don’t work, how am I supposed to solve problems? Robert Sternberg (1996), as part of his theory of what makes people successfully intelligent (Module 8) described a problem-solving sequence that has been shown to work rather well:

  • Identify the existence of a problem.  In school, problem identification is often easy; problems that you encounter in math classes, for example, are conveniently labeled as problems for you. Outside of school, however, realizing that you have a problem is a key difficulty that you must get past in order to begin solving it. You must be very sensitive to the symptoms that indicate a problem.
  • Define the problem.  Suppose you realize that you have been having many headaches recently. Very likely, you would identify this as a problem. If you define the problem as “headaches,” the solution would probably be to take aspirin or ibuprofen or some other anti-inflammatory medication. If the headaches keep returning, however, you have not really solved the problem—likely because you have mistaken a symptom for the problem itself. Instead, you must find the root cause of the headaches. Stress might be the real problem. For you to successfully solve many problems it may be necessary for you to overcome your fixations and represent the problems differently. One specific strategy that you might find useful is to try to define the problem from someone else’s perspective. How would your parents, spouse, significant other, doctor, etc. define the problem? Somewhere in these different perspectives may lurk the key definition that will allow you to find an easier and permanent solution.
  • Formulate strategy.  Now it is time to begin planning exactly how the problem will be solved. Is there an algorithm or heuristic available for you to use? Remember, heuristics by their very nature guarantee that occasionally you will not be able to solve the problem. One point to keep in mind is that you should look for long-range solutions, which are more likely to address the root cause of a problem than short-range solutions.
  • Represent and organize information.  Similar to the way that the problem itself can be defined, or represented in multiple ways, information within the problem is open to different interpretations. Suppose you are studying for a big exam. You have chapters from a textbook and from a supplemental reader, along with lecture notes that all need to be studied. How should you (represent and) organize these materials? Should you separate them by type of material (text versus reader versus lecture notes), or should you separate them by topic? To solve problems effectively, you must learn to find the most useful representation and organization of information.
  • Allocate resources.  This is perhaps the simplest principle of the problem solving sequence, but it is extremely difficult for many people. First, you must decide whether time, money, skills, effort, goodwill, or some other resource would help to solve the problem Then, you must make the hard choice of deciding which resources to use, realizing that you cannot devote maximum resources to every problem. Very often, the solution to problem is simply to change how resources are allocated (for example, spending more time studying in order to improve grades).
  • Monitor and evaluate solutions.  Pay attention to the solution strategy while you are applying it. If it is not working, you may be able to select another strategy. Another fact you should realize about problem solving is that it never does end. Solving one problem frequently brings up new ones. Good monitoring and evaluation of your problem solutions can help you to anticipate and get a jump on solving the inevitable new problems that will arise.

Please note that this as  an  effective problem-solving sequence, not  the  effective problem solving sequence. Just as you can become fixated and end up representing the problem incorrectly or trying an inefficient solution, you can become stuck applying the problem-solving sequence in an inflexible way. Clearly there are problem situations that can be solved without using these skills in this order.

Additionally, many real-world problems may require that you go back and redefine a problem several times as the situation changes (Sternberg et al. 2000). For example, consider the problem with Mary’s daughter one last time. At first, Mary did represent the problem as one of defiance. When her early strategy of pleading and threatening punishment was unsuccessful, Mary began to observe her daughter more carefully. She noticed that, indeed, her daughter’s attention would be drawn by an irresistible distraction or book. Fresh with a re-representation of the problem, she began a new solution strategy. She began to remind her daughter every few minutes to stay on task and remind her that if she is ready before it is time to leave, she may return to the book or other distracting object at that time. Fortunately, this strategy was successful, so Mary did not have to go back and redefine the problem again.

Pick one or two of the problems that you listed when you first started studying this section and try to work out the steps of Sternberg’s problem solving sequence for each one.

a mental representation of a category of things in the world

an assumption about the truth of something that is not stated. Inferences come from our prior knowledge and experience, and from logical reasoning

knowledge about one’s own cognitive processes; thinking about your thinking

individuals who are less competent tend to overestimate their abilities more than individuals who are more competent do

Thinking like a scientist in your everyday life for the purpose of drawing correct conclusions. It entails skepticism; an ability to identify biases, distortions, omissions, and assumptions; and excellent deductive and inductive reasoning, and problem solving skills.

a way of thinking in which you refrain from drawing a conclusion or changing your mind until good evidence has been provided

an inclination, tendency, leaning, or prejudice

a type of reasoning in which the conclusion is guaranteed to be true any time the statements leading up to it are true

a set of statements in which the beginning statements lead to a conclusion

an argument for which true beginning statements guarantee that the conclusion is true

a type of reasoning in which we make judgments about likelihood from sets of evidence

an inductive argument in which the beginning statements lead to a conclusion that is probably true

fast, automatic, and emotional thinking

slow, effortful, and logical thinking

a shortcut strategy that we use to make judgments and solve problems. Although they are easy to use, they do not guarantee correct judgments and solutions

udging the frequency or likelihood of some event type according to how easily examples of the event can be called to mind (i.e., how available they are to memory)

judging the likelihood that something is a member of a category on the basis of how much it resembles a typical category member (i.e., how representative it is of the category)

a situation in which we are in an initial state, have a desired goal state, and there is a number of possible intermediate states (i.e., there is no obvious way to get from the initial to the goal state)

noticing, comprehending and forming a mental conception of a problem

when a problem solver gets stuck looking at a problem a particular way and cannot change his or her representation of it (or his or her intended solution strategy)

a specific type of fixation in which a problem solver cannot think of a new use for an object that already has a function

a specific type of fixation in which a problem solver gets stuck using the same solution strategy that has been successful in the past

a sudden realization of a solution to a problem

a step-by-step procedure that guarantees a correct solution to a problem

The tendency to notice and pay attention to information that confirms your prior beliefs and to ignore information that disconfirms them.

a shortcut strategy that we use to solve problems. Although they are easy to use, they do not guarantee correct judgments and solutions

Introduction to Psychology Copyright © 2020 by Ken Gray; Elizabeth Arnott-Hill; and Or'Shaundra Benson is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Cognition and Instruction/Problem Solving, Critical Thinking and Argumentation

We are constantly surrounded by ambiguities, falsehoods, challenges or situations in our daily lives that require our Critical Thinking , Problem Solving Skills , and Argumentation skills . While these three terms are often used interchangeably, they are notably different. Critical thinking enables us to actively engage with information that we are presented with through all of our senses, and to think deeply about such information. This empowers us to analyse, critique, and apply knowledge, as well as create new ideas. Critical thinking can be considered the overarching cognitive skill of problem solving and argumentation. With critical thinking, although there are logical conclusions we can arrive at, there is not necessarily a 'right' idea. What may seem 'right' is often very subjective. Problem solving is a form of critical thinking that confronts learners with decisions to be made about best possible solutions, with no specific right answer for well-defined and ill-defined problems. One method of engaging with Problem Solving is with tutor systems such as Cognitive Tutor which can modify problems for individual students as well as track their progress in learning. Particular to Problem Solving is Project Based Learning which focuses the learner on solving a driving question, placing the student in the centre of learning experience by conducting an extensive investigation. Problem Based Learning focuses on real-life problems that motivate the student with experiential learning. Further, Design Thinking uses a specific scaffold system to encourage learners to develop a prototype to solve a real-world problem through a series of steps. Empathy, practical design principles, and refinement of prototyping demonstrate critical thought throughout this process. Likewise, argumentation is a critical thinking process that does not necessarily involve singular answers, hence the requirement for negotiation in argumentative thought. More specifically, argumentation involves using reasoning to support or refute a claim or idea. In comparison problem solving may lead to one solution that could be considered to be empirical.

This chapter provides a theoretical overview of these three key topics: the qualities of each, their relationship to each other, as well as practical classroom applications.

Learning Outcomes:

  • Defining Critical Thought and its interaction with knowledge
  • Defining Problem Solving and how it uses Critical Thought to develop solutions to problems
  • Introduce a Cognitive Tutor as a cognitive learning tool that employs problem solving to enhance learning
  • Explore Project Based Learning as a specific method of Problem Solving
  • Examine Design Thinking as a sub-set of Project Based Learning and its scaffold process for learning
  • Define Argumentation and how it employs a Critical Though process
  • Examine specific methodologies and instruments of application for argumentation
  • 1.1 Defining critical thinking
  • 1.2 Critical thinking as a western construct
  • 1.3 Critical thinking in other parts of the world
  • 1.4 Disposition and critical thinking
  • 1.5 Self-regulation and critical thinking
  • 1.6.1 Venn Diagrams
  • 1.6.2.1 The classroom environment
  • 1.6.3.1 Socratic Method
  • 1.6.3.2 Bloom’s Taxonomy
  • 1.6.3.3 Norman Webb’s Depth of Knowledge
  • 1.6.3.4 Williams Model
  • 1.6.3.5 Wiggins & McTighe’s Six Facets of Understanding
  • 2.1.1.1.1 Structure Of The Classroom
  • 2.2.1.1 Instructional Implications
  • 2.2.2.1 Instructional Implications
  • 2.3.1 Mind set
  • 2.3.2.1.1 Instructional Implications
  • 2.4 Novice Versus Expert In Problem Solving
  • 2.5.1 An overview of Cognitive Tutor
  • 2.5.2.1 ACT-R theory
  • 2.5.2.2 Production rules
  • 2.5.2.3 Cognitive model and model tracing
  • 2.5.2.4 Knowledge tracing
  • 2.5.3.1 Cognitive Tutor® Geometry
  • 2.5.3.2 Genetics Cognitive Tutor
  • 2.6.1 Theorizing Solutions for Real World Problems
  • 2.6.2 Experience is the Foundation of Learning
  • 2.6.3 Self-Motivation Furthers Student Learning
  • 2.6.4 Educators Find Challenges in Project Based Learning Implementation
  • 2.6.5 Learner Need for Authentic Results through Critical Thought
  • 2.7.1 Using the Process of Practical Design for Real-World Solutions
  • 2.7.2 Critical Thought on Design in the Artificial World
  • 2.7.3 Critical Thinking as Disruptive Achievement
  • 2.7.4 Designers are Not Scientific?
  • 2.7.5 21st Century Learners and the Need for Divergent Thinking
  • 3.1 Educators Find Challenges in Project Based Learning Implementation
  • 3.2 Learner Need for Authentic Results through Critical Thought
  • 3.3 Critical Thinking as Disruptive Achievement
  • 3.4.1 Argumentation Stages
  • 3.5 The Impact of Argumentation on Learning
  • 4.1.1 Production, Analysis, and Evaluation
  • 4.2 How Argumentation Improves Critical Thinking
  • 5.1 Teaching Tactics
  • 5.2.1 The CoRT Thinking Materials
  • 5.2.2 The Feuerstein Instrumental Enrichment Program (FIE)
  • 5.2.3 The Productive Thinking Program
  • 5.2.4 The IDEAL Problem Solver
  • 5.3.1 Dialogue and Argumentation
  • 5.3.2 Science and Argumentation
  • 5.3.3.1 Historical Thinking - The Big Six
  • 5.4 Instructing through Academic Controversy
  • 7.1 External links
  • 8 References

Critical thinking

Critical thinking and its relationship to other cognitive skills

Critical thinking is an extremely valuable aspect of education. The ability to think critically often increases over the lifespan as knowledge and experience is acquired, but it is crucial to begin the process of this development as early on as possible. Research has indicated that critical thinking skills are correlated with better transfer of knowledge, while a lack of critical thinking skills has been associated with biased reasoning [1] . Before children even begin formal schooling, they develop critical thinking skills at home because of interactions with parents and caregivers [2] . As well, critical thinking appears to improve with explicit instruction [3] . Being able to engage in critical thought is what allows us to make informed decisions in situations like elections, in which candidates present skewed views of themselves and other candidates. Without critical thinking, people would fall prey to fallacious information and biased reasoning. It is therefore important that students are introduced to critical thought and are encouraged to utilize critical thinking skills as they face problems.

Defining critical thinking

In general, critical thinking can be defined as the process of evaluating arguments and evidence to reach a conclusion that is the most appropriate and valid among other possible conclusions. Critical thinking is a dynamic and reflective process, and it is primarily evidence-based [4] . Thinking critically involves being able to criticize information objectively and explore opposing views, eventually leading to a conclusion based on evidence and careful thought. Critical thinkers are skeptical of information given to them, actively seek out evidence, and are not hesitant to take on decision-making and complex problem solving tasks [5] . Asking questions, debating topics, and critiquing the credibility of sources are all activities that involve thinking critically. As outlined by Glaser (1941), critical thinking involves three main components: a disposition for critical thought, knowledge of critical thinking strategies, and some ability to apply the strategies [6] . Having a disposition for critical thought is necessary for applying known strategies.

Critical thinking, which includes cognitive processes such as weighing and evaluating information, leads to more thorough understanding of an issue or problem. As a type of reflection, critical thinking also promotes an awareness of one's own perceptions, intentions, feelings and actions. [7]

Critical thinking as a western construct

Critical thinking is considered to be essential for all democratic citizens

In modern education, critical thinking is taken for granted as something that people universally need and should acquire, especially at a higher educational level [8] [9] . However, critical thinking is a human construct [10] - not a scientific fact - that is tied to Ancient Greek philosophy and beliefs [11] .

The link to Ancient Greece relates both to Ancient Greek priorities of logic over emotion [11] , as well as its democratic principles. Various authors, including Elder & Paul [12] , Moon [8] , and Stanlick & Strawser [13] share the view that critical thinking questioning back to the time of Socrates . Likewise, Morgan & Saxton (2006) associate critical thinking with a fundamental requirement of all democratic citizens [14] .

An additional connection with Ancient Greece involves the Socratic Method. The Socratic Method involves a conversation between two or more people in which they ask and answer questions to challenge each other’s theses using logic and reason [15] . Such debates are subject to the issue of objective/subjective dualism in that the purpose of debate is the belief that there is a ‘right answer’, yet the ability to conduct such a debate demonstrates the subjectivity of any thesis [15] .

Because of this strong connection to Ancient Greece, critical thinking is generally considered to be a western construct. This is further amplified another western construct called Bloom’s Taxonomy , which is considered to be the essence of critical thinking in modern education [16] .

Since critical thinking is a human construct, notions of what constitutes critical thinking vary considerably from person to person. Moon (2007) lists 21 common notions of critical thinking provided by people from her workshops, and then provides her own 2-page definition of the term [8] . One view of critical thinking is that it involves a set of skills that enables one to reach defensible conclusions and make decisions in a domain or context in which one has some prior knowledge [10] . Another view is that critical thinking involves the use of systematic logic and reasoning, which while not necessarily producing empirical answers nevertheless uses a rational and scientific approach [17] . Ultimately, Moon concludes that there is no right or wrong definition [8] .

Critical thinking in other parts of the world

Scholars argue that while the critical thinking construct is linked to western, democratic nations, that does not mean that other non-western cultures do not possess or use similar constructs that involve critical thinking [18] . Instead, “there are different ways or forms of reasoning” [19] ; for example, Asian approaches to debates involve finding connections between conflictive arguments in order for such ideas to coexist [18] . This is due to eastern values regarding face-saving [8] . In contrast, western approaches are often viewed as being competitive: attacking the views of others while defending one's own position. Despite this dichotomous generalisation, eastern and western approaches have more similarities than they would first seem. With regards to the diplomatic Asian approach to debating, western approaches also involve compromise and negotiation for the very reason that ideas are often complex and that there can be many ‘right’ answers [14] . Similarly, the extent to which other cultures adopt western notions of critical thinking is determined by cultural values. In Muslim cultures, for example, the value of critical thinking is link to views on the appropriateness of voicing one’s views [20] .

Disposition and critical thinking

It has been suggested that critical thinking skills alone are not sufficient for the application of critical thinking – a disposition for critical thinking is also necessary [5] . A disposition for critical thought differs from cognitive skills. A disposition is better explained as the ability to consciously choose a skill, rather than just the ability to execute the skill [4] . Having a disposition for critical thinking can include such things as genuine interest and ability in intellectual activities. Perkins et al. (2000) expand on the idea of the necessity for a critical thinking disposition, and indicate three aspects involved in critical thinking disposition: an inclination for engaging in intellectual behaviours; a sensitivity to opportunities, in which such behaviours may be engaged; and a general ability for engaging in critical thought [5] . Halpern (1998) suggests that this critical thinking disposition must include a willingness to continue with tasks that seem difficult, openmindedness, and a habit of planning [5] . In fact, in a cognitive skills study conducted by Clifford et al. (2004), they discovered that a disposition for critical thinking was associated with better overall critical thinking skills [4] .

These are characteristics of one's attitude or personality that facilitate the process of developing CT skills:

  • Inquisitive
  • Truthseeking
  • Open-minded
  • Confidence in reasoning

There are many factors that can influence one's disposition towards CT; the first of these is culture [5] . There are many aspects of culture that can impact the ability for people to think critically. For instance, religion can negatively impact the development of CT [5] . Many religions are founded upon faith, which often requires wholehearted belief without evidence or support. The nature of organized religion counters the very premise of CT, which is to evaluate the validity and credibility of any claim. Growing up in an environment such as this can be detrimental to the development of CT skills. This kind of environment can dampen dispositions that question religious views or examine the validity of religion. Another cultural factor that can be detrimental to a CT disposition is that of authority [5] . When a child is raised under the conditions of an authoritarian parenting style, it can be detrimental to many aspects of their lives, but especially to their CT skills, as they are taught not to question the credibility of authority and often receive punishment if they do. This is also applicable in the classroom [5] . Classroom environments that foster a disposition for critical thinking in which teachers who do not foster an atmosphere of openness or allow students to question what they are taught can impact CT development as well. Classrooms where questions are rejected or home environments in which there is a high level of parental power and control can all affect the ability of students to think critically. What is more, students will have been conditioned not to think this way for their entire lives [5] . However, despite these cultural limitations, there are ways in which a disposition for CT can be fostered in both the home and the classroom.

Classroom structure is a primary way in which CT dispositions can be highlighted. Fostering a classroom structure in which students are a part of the decision making process of what they are studying can be very helpful in creating CT dispositions [5] . Such structures help students become invested in what they are learning as well as promote a classroom atmosphere in which students may feel free to question the teacher, as well as other students' opinions and beliefs about different subjects. Allowing the freedom to scrutinize and evaluate information that has been given to students is an effective way of creating a classroom environment that can encourage students to develop CT dispositions. This freedom allows for the students to remain individuals within the larger classroom context, and gives them the power to evaluate and make decisions on their own. Allowing the students to share power in the classroom can be extremely beneficial in helping the students stay motivated and analytical of classroom teachings [5] . Teachers can also employ a variety of techniques that can help students become autonomous in the classroom. Giving students the opportunity to take on different roles can be effective in creating CT dispositions, such as making predictions and contemplating problems [5] . Allowing students to engage with problems that are presented, instead of just teaching them what the teacher or textbook believes to be true, is essential for students to develop their own opinions and individual, though. In addition to this, gathering data and information on the subject is an important part of developing CT dispositions. Doing so allows for students to go out and find resources that they themselves can analyze and come to conclusions on their own [5] . Using these aspects of CT students can most effectively relate to the predictions that were first made and critique the validity of the findings [5] .

Self-regulation and critical thinking

In conjunction with instructing CT, teachers also need to keep in mind the self-regulation of their students. Students need to be able to maintain motivation and have a proactive attitude towards their own learning when learning a new skill. In an article by Phan (2010), he argues that self-regulated students that have better goal setting have more personal responsibility for their learning, can maintain their motivation, are more cognitively flexible, and hence are more inclined to utilize CT. Since CT skills are highly reflective, they help in self-regulated learning (SRL), and in turn, self-regulatory strategies aid in developing CT skills. These two cognitive practices are assets to students’ growth and development [7] .

Self-Regulation provides students with the basic meta-cognitive awareness required for proactive learning. This pro-activity allows students to engage in the cognitive processes of CT, such as evaluation, reflection and inference. Through one’s meta-cognitive ability to assess one’s own thoughts, one develops the capability to become autonomous in one’s learning [7] . Instead of having a supervisor overlook every task, the learner can progress at their own pace while monitoring their performance, thereby engaging in SRL. Part of this process would include periodic reflection upon the strategies that one uses when completing a task. This reflection can facilitate the student’s learning by using CT to evaluate which strategies best suit their own learning based on their cognitive needs.

The complex nature of CT suggests that it requires a long developmental process requiring guidance, practice and reinforcement. To facilitate this process, self-monitoring as a first step to self-regulation can jump-start reflective thought through assessing one’s own educational performance. This assessment promotes self-efficacy through generating motivational beliefs about one’s academic capabilities [7] . From there, through practice, students can extend their CT skills beyond themselves and into their educational contexts. With practice, students use their meta-cognitive strategies as a basis for developing CT in the long run.

Critical thinking strategies

rational thinking when problem solving is defined as the ability to

Psychologists and educators have discovered many different strategies for the development of critical thinking. Among these strategies are some that may be very familiar, such as concept maps or Venn diagrams , as well as some that may be less familiar, such as appeal-question stimuli strategies [21] . Concept mapping is particularly useful for illustrating the relationships between ideas and concepts, while Venn diagrams are often used to represent contrasting ideas [21] .

Venn Diagrams

Venn diagrams are used frequently in elementary grade levels and continue to be used as a contrast/compare tool throughout secondary school. An example of a situation in which a Venn diagram activity may be appropriate is during a science class. Instructors may direct students to develop a Venn diagram comparing and contrasting different plants or animals. Concept maps may be introduced in elementary grades, although they are most often used in the secondary and post-secondary levels. Concept maps are an interactive and versatile way to encourage students to engage with the course material. A key aspect of concept mapping is how it requires students to reflect on previously learned information and make connections. In elementary grades, concept maps can be introduced as a project, while later, possibly in college or university, students may use them as a study strategy. At the elementary level, students can use concept maps to make connections about the characters, settings, or plot in a story they have read. When introducing concept maps, teachers may provide students with a list of words or phrases and instruct the students to illustrate the connections between them in the form of a concept map. Asking questions can also be a simple and engaging way to develop critical thought. Teachers may begin by asking the students questions about the material, and then encouraging students to come up with their own questions. In secondary and post-secondary education, students may use questions as a way to assess the credibility of a source. At the elementary school level, questions can be used to assess students' understanding of the material, while also encouraging them to engage in critical thought by questioning the actions of characters in a story or the validity of an experiment. Appeal-question stimuli, founded by Svobodová, involves a process of students asking questions regarding their reading comprehension [21] .

Discussions

Using discussions as a way to develop students’ critical thinking skills can be a particularly valuable strategy for teachers. Peer interactions provide a basis for developing particular critical thinking skills, such as perspective taking and cooperation, which may not be as easily taught through instruction. A large part of discussions, of course, is language. Klooster (2002) suggested that critical thinking begins with asking questions [21] . Similarly, Vygotsky has claimed that language skills can be a crucial precursor for higher level thought processes [2] . As children develop larger vocabularies, they are better able to understand reading material and can then begin to think abstractly about the material and engage in thoughtful discussions with peers about what they understood [2] .

Studies have indicated that cross-age peer discussions may be particularly helpful in facilitating the development of critical thinking. Cross-age peer groups can be effective because of the motivation children tend to have when working with peers of different ages [2] . Younger children often look up to the older children as mentors and valuable sources of knowledge and experience, while older children feel a sense of maturity and a responsibility to share their knowledge and experience with younger students [2] . These cross-age peer discussions also provide students with the challenge of tailoring their use of language to the other group members in order to make their points understandable [2] . An example of cross-age peer groups that is relatively common in Canadian schools is the big buddy programs, where intermediate grade students are assigned a primary grade buddy to help over the course of the school year. Big buddies may help their little buddies with projects, advice, or school events. The big buddy/little buddy programs can be effective as younger students look up to their big buddies, and the big buddies feel a responsibility to help their little buddy. One important factor to be considered with cross-age peer discussions, as noted by Hattie (2006), is that these discussions should be highly structured activities facilitated by a teacher in order to ensure that students understand their group responsibilities [2] .

The classroom environment

Having an environment that is a safe place for students to ask questions and share ideas is extremely valuable for creating a classroom that encourages critical thinking. It has been suggested that students are more likely to develop a disposition for critical thinking when they are able to participate in the organization and planning of their classroom and class activities [5] . In these classrooms, students are legitimately encouraged by their teacher to engage in the decision making process regarding the functioning of the classroom [5] . It is also important for teachers to model the desired types of critical thought, by questioning themselves and other authorities in a respectful and appropriate manner [5] . Studies have indicated higher levels of cognitive engagement among students in classrooms with teachers who are enthusiastic and responsive [22] . Therefore, teachers should be encouraging and inclusive, and allow student engagement in classroom planning processes when possible.

Critical questions

Research is increasingly supporting the idea that critical thinking can be explicitly taught [23] . The use of critical questioning in education is of particular importance, because by teaching critical questioning, educators are actively modelling critical thinking processes. One of the key issues with teaching critical thinking in education is that students merely witness the product of critical thinking on the part of the teacher, i.e. they hear the conclusions that the teacher has reached through critical thinking [9] . Whereas an experienced critical thinker uses critical questions, these questions are implicit and not normally verbalised. However, for students to understand critical questioning and critical thinking strategies, the students must see the process of critical thinking. Modelling the formation and sequencing of critical questions explicitly demonstrates the thought process of how one can reach a logical conclusion.

There various methods of teaching critical questioning. The frameworks discussed below are among the most famous of these. All have their own strengths and weaknesses in terms of ease-of-use, complexity, and universality. Each of these methods approaches critical thinking with a specific definition of this human concept. As such, one’s own definition of critical thinking will likely affect one’s receptiveness to a specific critical questioning framework.

 Socrates

Socratic Method

One of the key features of western approaches to critical thinking involves the importance of critical questioning, which is linked to the Socratic Method from Ancient Greece traditions. Whether answering existing questions posed or creating new questions to be considered, critical thinking involves questions, whether explicitly / implicitly, consciously / unconsciously [13] . Browne & Keeley (2006) base their definition of critical thinking specifically on the involvement of critical questions [24] .

Answers to critical questions are not necessarily empirical. They may involve reasoning and be logical, but are nevertheless subject to alternative views from others, thus making all views both subjective and objective at the same time. Elder & Paul (2009) separate such critical questions into three categories [12] :

  • Questions that have a correct answer, which can be determined using knowledge
  • Questions that are open to subjective answers that cannot be judged
  • Questions that produce objective answers that are judged based the quality of evidence and reasoning used

Books on critical questioning tend to be influenced heavily by the Socratic Method, and they make a distinction between ‘good’ and ‘bad’ questions. Good questions are those that are relevant to the topic at hand and that take a logical, systematic approach [14] [13] , while bad questions are those that are not relevant to the topic, are superficial, and are sequenced haphazardly. Elder & Paul (2009) argue that “[i]t is not possible to be a good thinker and a poor questioner.” [25] In other words, if a person cannot thinking of relevant and logical questions, they will be unable to reach any rational conclusions.

Additionally, as indicated above, critical thinking requires more than just asking the right questions. There is a direct relationship between critical thinking and knowledge [23] . One can possess knowledge, but not know how to apply it. Conversely, one can have good critical questioning skills, but lack the knowledge to judge the merits of an answer.

In terms of teaching critical questioning using the Socratic Method, it is essential to appreciate that there is no set of questions that one can follow, since the type of critical questions needed is based on the actual context. Consequently, the examples presented by different authors vary quite considerably. Nevertheless, there are specific guidelines one can follow [26] :

  • Use critical questions to identify and understand the situation, issues, viewpoints and conclusions
  • Use critical questions to search for assumptions, ambiguity, conflicts, or fallacies
  • Use critical questions to evaluate the effects of the ideas

Part 1 of the Socratic Method is more of an information gathering stage, using questions to find out essential details, to clarify ideas or opinions, and to determine objectives. Part 2 uses the information from Part 1 and then uses questions to probe for underlying details that could provide reasons for critiquing the accuracy of the idea. Part 3 uses questions to reflect upon the consequences of such ideas.

Conklin (2012) separates the above three parts into six parts [27] :

  • Using questions to understand
  • Using questions to determine assumptions
  • Using questions to discover reasons / evidence
  • Using questions to determine perspectives
  • Using questions to determine consequences
  • Using questions to evaluate a given question

Here are some sample questions for each part [28] :

Questions for understanding:

  • Why do you think that?
  • What have you studied about this topic so far?
  • How does this relate to what you are studying now?

Questions that determine assumptions

  • How could you check that assumption?
  • What else could be assumed?
  • What are your views on that? Do you agree or disagree?

Questions that discover reasons / evidence

  • How can you be sure?
  • Why is this happening?
  • What evidence do you have to back up your opinion?

Questions that determine perspectives

  • How could you look at this argument another way?
  • Which perspective is better?

Questions that determine consequences

  • How does it affect you?
  • What impact does that have?

Questions that evaluate a given question

  • Why was I asked this question?
  • Which questions led to the most interesting answers?
  • What other questions should be asked?

Depending on the text, the Socratic Method can be extraordinarily elaborate, making it challenging for educators to apply. Conklin (2012) states that a teacher would need to spend time planning such questions in advance, rather than expect to produce them during a lesson [27] .

Bloom’s Taxonomy

Bloom’s Taxonomy was originally designed in 1956 to determine cognitive educational objectives and assess students’ higher-order thinking skills [29] . Since then, though, it has become adapted and used as a useful tool for promoting critical thinking skills, particularly through critical questioning [30] . These critical questions involve Bloom’s categories of understanding, applying, analysing, synthesising and evaluating. Such categories can be seen to relate to the Socratic Method promoted by other authors, i.e. the importance of questioning to understanding, analyse and evaluate. Moon (2007) believes that “‘evaluation’, ‘reflection’ and ‘understanding’” are key aspects of critical thinking [8] , which should therefore appear in any notion of critical thinking. At the same time, Bloom’s Taxonomy generates a natural set of questions that can be adapted to various contexts [31] .

In one example, a teacher uses a picture of a New York speakeasy bar. Using Bloom’s Taxonomy, the teacher could ask and model the following critical questions [14] :

  • KNOWLEDGE: What do you see in the picture?
  • COMPREHENSION: What do people do in places like that?
  • ANALYSIS: Why are there so many policemen in the picture?
  • APPLICATION: What similar situations do we see nowadays?
  • SYNTHESIS: What if there were no laws prohibiting such behaviour?
  • EVALUATION: How would you feel if you were one of these people? Why?

Norman Webb's Depth of Knowledge

Norman Webb’s Depth of Knowledge

Webb’s Depth of Knowledge (DOK) taxonomy was produced in 2002 in response to Bloom’s Taxonomy [32] . In contrast with Bloom’s Taxonomy, Webb’s DOK focuses on considering thinking in terms of complexity of thinking rather than difficulty [32] .

Webb’s DOK has four levels:

  • Recall & reproduction
  • Working with skills & concepts
  • Short-term strategic thinking
  • Extended strategic thinking

Level 1 aligns with Bloom’s level of remembering and recalling information. Example critical questions in this level would include:

  • What is the name of the protagonist?
  • What did Oliver Twist ask Fagin?

Level 2 involves various skills, such as classifying, comparing, predicting, gathering, and displaying. Critical questions can be derived from these skill sets, including the following:

  • How do these two ideas compare?
  • How would you categorise these objects?
  • How would you summarize the text?

Level 3 involves analysis and evaluation, once again aligning with Bloom’s Taxonomy.

  • What conclusions can you reach?
  • What theory can you generate to explain this?
  • What is the best answer? Why?

At the same time, Level 3 of DOK shares similarities with the Socratic Method in that the individual must defend their views.

Level 4 is the most elaborate and challenging level. It involves making interdisciplinary connections and the creation of new ideas / solutions.

Since DOK becomes increasingly elaborate with levels and leads to the requirement to defend one’s position using logic and evidence, there are parallels with the Socratic Method. At the same time, because is used to develop standards in assessing critical thinking, it shares similarities with Bloom’s Taxonomy.

Williams Model

 The KWL method shares some similarities to the 'wonder' aspect of the Williams Model

The Williams Model was designed by Frank Williams in the 1970s [27] . Unlike other methods, the Williams Model was designed specifically to promote creative thinking using critical questioning [27] . This model involves the following aspects:

  • Flexibility
  • Elaboration
  • Originality
  • Risk taking
  • Imagination

Critical questions regarding fluency follow a sort of brainstorming approach in that the questions are designed to generates ideas and options [27] . For ‘flexibility’, the questions are designed to produce variations on existing ideas. ‘Elaboration’ questions are about building upon existing ideas and developing the level of detail. As the name suggests, critical questions for ‘originality’ are for promoting the development of new ideas. The ‘curiosity’ aspect of the Williams Model bears a similarity with that of the ‘Wonder’ stage of the Know Wonder Learn (KWL) system [33] . ‘Risk taking’ questions are designed to provoke experimentation. Although the name ‘complexity’ may sound similar to ‘elaboration’, it is instead about finding order among chaos, making connections, and filling in gaps of information. The final aspect is ‘Imagination’, which involves using questions to visualise.

Wiggins & McTighe’s Six Facets of Understanding

Wiggins & McTighe’s Six Facets of Understanding

Wiggins & McTighe’s ‘Six Facets of Understanding’ are all based on deep understanding aspects of critical thinking [34] . The method is used for teachers to design questions for students to promote critical thinking [34] . The six facets are Explanation, Interpretation, Application, Perspective, Empathy, and Self-Knowledge [35] .

‘Why’ and ‘How’ questions dominate the ‘Explanation’ facet in developing theory and reasoning [36] :

  • How did this happen? Why do you think this?
  • How does this connect to the other theory?

Interpretation questions encourage reading between the lines, creating analogies or metaphors, and creating written or visual scenarios to illustrate the idea. Questions include:

  • How would you explain this idea in other words?
  • Why do you think that there is conflict between the two sides?
  • Why is it important to know this?

Application questions are about getting students to use knowledge. Part of this comes from predicting what will happen based on prior experience. Another aspect involves learning from the past. Critical questions in this facet include:

  • How might we prevent this happening again?
  • What do you think will happen?
  • How does this work?

Perspective questions involves not only looking at ideas from other people’s perspectives, but also determining what people’s points of views are. In comparison with Empathy questions, though, Perspective questions involve more of an analytical and critical examination [35] . Here are some example questions:

  • What are the different points of view concerning this topic?
  • Whose is speaking in the poem?
  • Whose point of view is being expressed?
  • How might this look from the other person’s perspective?

Empathy questions involve perspective-taking, including empathy, in order to show an open mind to considering what it would feel like to walk in another person’s shoes.

  • How would you feel in the same situation?
  • What would it be like to live in those conditions?
  • How would you react if someone did that your family?

Self-knowledge questions are primarily designed to encourage self reflection and to develop greater self awareness [35] . In particular, Self-Knowledge questions reveal one’s biases, values, and prejudices and how they influence our judgment of others. Critical questions in this facet include:

  • How has my life shaped my view on this topic?
  • What do I really know about the lives of people in that community?
  • What knowledge or experience do I lack?
  • How do I know what I know? Where did that information / idea come from?

Questions within the Six Facets of Understanding all incorporate the following attributes [36] :

  • They are open ended
  • They require deep thought
  • They require critical thinking
  • They promote transfer of knowledge
  • They are designed to lead to follow-up questions
  • They require answers that are substantiated

For examples of critical questioning in action in a classroom environment, view the External Link section at the bottom of this page.

Problem Solving

In everyday life we are surrounded by a plethora of problems that require solutions and our attention to resolve them to reach our goals [37] . We may be confronted with problems such as: needing to determine the best route to get to work, what to wear for an interview, how to do well on an argumentative essay or needing to find the solution to a quadratic equation. A problem is present in situations where there is a desire to solve the problem, however the solution is not obvious to the solver [38] . Problem solving is the process of finding the solutions to these problems. [39] . Although they are related, critical thinking differs fundamentally from problem solving. Critical thought is actually a process that can be applied to problem solving. For example, students may find themselves engaging in critical thought when they encounter ill-defined problems that require them to consider many options or possible answers. In essence, those who are able to think critically are able to solve problems effectively [40] .

rational thinking when problem solving is defined as the ability to

This chapter on problem solving will first differentiate between Well-defined Problems and Ill-defined Problems , then explain uses of conceptualizing and visually representing problems within the context of problem solving and finally we will discuss how mental set may impede successful problem solving.

Well-defined and Ill-defined Problems

Problems can be categorized into two types: ill-defined or well-defined [37] Cognitive Psychology and Instruction (5th Ed). New York: Pearson.</ref> to the problem at hand. An example of a well-defined problem is an algebraic problem (ex: 2x - 29 = 7) where one must find the value of x. Another example may be converting the weight of the turkey from kilograms to pounds. In both instances these represent well-defined problems as there is one correct solution and a clearly defined way of finding that solution.

In contrast, ill-defined problems represent those we may face in our daily lives, the goals are unclear and they have information that is conflicting, incomplete or inconclusive [41] . An example of an ill-defined problem may be “how do we solve climate change?” or “how should we resolve poverty” as there is no one right answer to these problems. These problems yield the possibility to many different solutions as there isn’t a universally agreed upon strategy for solving them. People approach these problems differently depending on their assumptions, application of theory or values that they use to inform their approach [42] . Furthermore, each solution to a problem has its own unique strengths and weaknesses. [42] .

Table 1. Summarizes the difference between well-defined and ill-defined problems.

Differences in Solving Ill-defined and Well-defined Problems

In earlier times, researchers assumed both types of problems were solved in similar ways [44] , more contemporary research highlights some distinct differences between processes behind finding a solution.

Kitchener (1983) proposed that well-defined problems did not involve assumptions regarding Epistemological Beliefs [37] because they have a clear and definite solution, while ill-defined problems require these beliefs due to not having a clear and particular solution [45] . In support of this idea, Schraw, Dunkle and Bendixen conducted an experiment with 200 participants, where they found that performance in well-defined problems is not predictive of one's performance on ill-defined problems, as ill-defined problems activated different beliefs about knowledge. [46]

Furthermore Shin, Jonassen and McGee (2003), [43] found that solving ill-defined problems brought forth different skills than those found in well-structured problems. In well-structured problems domain knowledge and justification skills highly predicted problem-solving scores, whereas scores on ill-structured tasks were predictive of argumentation, attitudes and metacognition in an astronomy simulation.

Aligned with these findings, Cho and Jonassen (2002) [47] found that groups solving ill-structured problems produced more argumentation and problem solving strategies due to the importance of considering a wide variety of solutions and perspectives. In contrast, the same argumentation technique distracted the participant's activities when they dealt with well-defined problems. This research highlights the potential differences in the processes behind solving ill-defined and well-defined problems.

Implications Of The Classroom Environment

The fundamental differences between well-structured and ill-structured problems implicate that solving ill-structured problems calls for different skills, strategies, and approaches than well-structured problems [43] . Meanwhile, most tasks in the educational setting are designed around engaging learners in solving well-structured problems that are found at the end of textbook chapters or on standardized tests. [48] . Unfortunately the strategies used for well-defined problems have little application to ill-defined problems that are likely to be encountered day to day [49] as simplified problem solving strategies used for the well-structured designs have been found to have almost no similarities to real-life problems [48]

This demonstrates the need to restructure classrooms in a way that facilitates the student problem solving of ill-structured problems. One way we may facilitate this is through asking students questions that exemplify the problems found in everyday life [50] . This type of approach is called problem based learning and this type of classroom structure students are given the opportunity to address questions by collecting and compiling evidence, data and information from a plethora of sources [51] . In doing so students learn to analyze the information,data and information, while taking into consideration the vast interpretations and perspectives in order to present and explain their findings [51] .

Structure Of The Classroom

In problem-based learning, students work in small groups to where they explore meaningful problems, identify the information needed to solve the given problem, and devise effective approaches for the solution [50] . Students utilize these strategies, analyze and consider their results to devise new strategies until they have come up with an effective solution [50] . The teacher’s role in this classroom structure is to guide the process, facilitate participation and pose questions to elicit reflections and critical thinking about their findings [50] . In addition teachers may also provide traditional lectures and explanations that are intended to support student inquiry [50] .

In support of the argument to implement a problem-based approach to problem solving, a meta-analysis conducted by Dochy, Segers, Van den Bossche, & Gijbels (2003), found problem-based learning to be superior to traditional styles of learning though in supporting flexible problem solving, application of knowledge, and hypothesis generation. [52] Furthermore, Williams, Hemstreet, Liu, and Smith (1998) found that this approach fostered greater gains in conceptual understanding in science [53] . Lastly Gallagher, Stepien, & Rosenthal (1992), found that in comparing traditional vs. project-based approaches students in problem-based learning demonstrate an ability to define problems. [54] These findings highlight the benefits of problem-based learning on understanding and defining problems in science. Given the positive effects of defining problems this education approach may also be applied to our next sub-topic of conceptualizing problems.

Steps to Problem Solving

There have been five stages consistently found within the literature of problem solving: (1) identifying the problem, (2) representing the problem, (3) choosing the appropriate strategy, (4) implementing the strategy, and (5) assessing the solutions [37] . This overview will focus on the first two stages of problem solving and examine how they influence problem solving.

rational thinking when problem solving is defined as the ability to

Conceptualizing Problems

One of the most tedious and taxing aspects of problem solving is identifying the problem as it requires one to consider the problem through multiple lenses and perspectives without being attached to one particular solution to early on in the task [39] . In addition it is also important to spend time clearly identifying the problem due to the association between time spent "conceptualizing a particular problem and the quality of one's solutions". [37] For example consider the following problem:

Becka baked a chocolate cake in her oven for twenty five minutes. How long would it take her to bake three chocolate cakes?

Most people would jump to the conclusion to multiply twenty five by three, however if we place all three cakes in the oven at a time we find it would take the same time to bake three cakes as it would take to bake one. This example highlights the need to properly conceptualize the problem and look at it from different viewpoints, before rushing to solutions.

Taking this one step further, break down the five steps as the would be used to conceptualize the problem:

Stage 1 - Define the Problem

Stage 2 - Brainstorm Solutions

Stage 3 - Pick a Solution

Stage 4 - Implement the Solution

Stage 5 - Review the Result

Research also supports the importance of taking one's time to clearly identifying the problem before proceeding to other stages. In support of this argument, Getzel and Csikszentmihalyi found that artist students that spend more time identifying the problem when producing their art were rated as having more creative and original pieces than artists who spent less time at this stage [37] . These researchers postulated that in considering a wider scope of options during this initial stage they were able to come up with more original and dynamic solutions.

Furthermore, when comparing the approaches of experienced teachers and novice post-secondary students studying to be teachers, it was found that experienced teachers spent a greater amount of time lesson planning in comparison to post-secondary students when in a placed in a hypothetical classroom. [37] In addition these teachers offered significantly more solutions to problems posed in both ill-defined and well-defined problems. Therefore it is implicated that successful problem solving is associated with the time spent finding the correct problem and the consideration of multiple solutions.

Instructional Implications

One instructional implication we may draw from the literature that supports that the direct relationship between time spent on conceptualizing a problem and the quality of the solution, is that teachers should encourage students to spend as much time as possible at this stage [37] . In providing this knowledge and by monitoring student’s problem solving processes to ensure that they “linger” when conceptualizing problems, we may facilitate effective problem solving [37] .

Representing the Problem

Problem Representation refers to how the known information about a particular problem is organized [37] . In abstract representation of a problem, we merely think or speak about the problem without externally visually representing [37] . In representing a problem tangibly this is done by creating a visual representation on paper, computer, etc. of the data though graphs, stories, symbols, pictures or equations. These visual representations [37] may be helpful they can help us keep track of solutions and steps to a problem, which can particularly be useful when encountering complex problems.

rational thinking when problem solving is defined as the ability to

For example if we look at Dunker's Buddhist Monk example [37]  :

In the morning a Buddhist monk walks outside at sunrise to climb up the mountain to get to the temple at the peak. He reaches the temple just prior to sunset. A couple days later, he departs from the temple at sunrise to climb back down the mountain, travelling quicker than he did during his ascent as he is going down the mountain. Can you show a location along the path that the monk would have passed on both at the exact time of the day? [37]

In solely using abstraction, this problem is seemingly impossible to solve due to the vast amount of information, how it is verbally presented and the amount of irrelevant information present in the question. In using a visual representation we are able to create a mental image of where the two points would intersect and are better able to come up with a solution [55] .

Research supports the benefits of visual representation when confronted with difficult problems. Martin and Schwartz [56] found greater usage of external representations when confronted with a difficult task and they had intermittent access to resources, which suggests that these representations are used as a tool when problems are too complex without external aids. Results found that while creating the initial visual representation itself took up time, those who created these visual representations solved tasks with greater efficiency and accuracy.

Another benefit is that these visual representations may foster problem solving abilities by enabling us to overcome our cognitive biases. In a study conducted by Chambers and Reisberg [57] , participants were asked to look at the image below then close their eyes and form a mental image. When asked to recall their mental image of the photo and see if there were any alternate possibilities of what the photo could be, none of the participants were able to do so. However when participants were given the visual representation of the photo they were quickly able to manipulate the position of the photo to come up with an alternate explanation of what the photo could be. This shows how visual representations may be used in education by learners to counteract mental sets, which will be discussed in the next section.

As shown above, relying on abstraction can often overload one’s cognitive resources due to short- term memory being limited to seven items of information at a time [37] . Many problems surpass these limits disabling us being able to hold all the relevant information needed to solve a problem in our working memory [37] . Therefore it is implicated that in posing problems teachers should represent them written or visually in order to reduce the cognitive load. Lastly another implication is that as teachers we may increase problem-solving skills through demonstrating to students different types of external representations that can be used to show the relevant information pertaining to the problem. These representations may include different types of graphs, charts and imagery, which all can serve as tools for students in coming up with an effective solution, representing relevant information and reducing cognitive load

Challenges of Problem Solving

As discussed above there are many techniques to facilitate the problem solving process, however there are factors that can also hinder this process. For example: one’s past experiences can often impede problem solving as they can provide a barrier in looking at novel solutions, approaches or ideas [58] .

A mind set refers to one's tendency to be influenced by one's past experiences in approaching tasks. [58] Mental set refers to confining ourselves to using solutions that have worked in the past rather than seeking out alternative approaches. Mental sets can be functional in certain situation as in using strategies that have worked before we are quickly able to come up with solutions. However, they can also eliminate other potential and more effective solutions.

rational thinking when problem solving is defined as the ability to

Functional Fixedness

Functional Fixedness is a type of mental set that refers to our tendency to focus on a specific function of an object (ie. what we traditionally use it for) while overlooking other potential novel functions of that object. [37]

A classic example of functional fixedness is the candle problem [59] . Consider you are at a table with a box full of tacks, one candle, and matches, you are then asked to mount the lit candle on the wall corkscrew board wall as quickly as possible, and make sure that this doesn't cause any wax to melt on the table. Due to functional fixedness you might first be inclined to pin the candle to the wall as that is what tacks are typically used for, similar to participants in this experiment. However, this is the incorrect solution as it would cause the wax to melt on the table.

The most effective solution requires you to view the box containing the tacks as a platform for the candle rather than it's traditional use as a receptacle. In emptying the box, we may use it as a platform for the candle and then use the tacks inside to attach the box to the wall. It is difficult to initially arrive at this solution as we tend to fixate on the function of the box of holding the tacks and have difficulty designating an alternate function to the box (ie. as a platform as opposed to a receptacle). This experiment demonstrates how prior knowledge can lead to fixation and can hinder problem solving.

Techniques to Overcome Functional Fixedness

As proposed by McCaffrey (2012), [60] one way to overcome functional fixedness is to break the object into parts. In doing so we may ask two fundamental questions “can it be broken down further” and “does my description of the part imply a use”. To explain this we can use McCaffrey’s steel ring figure-8 example. In this scenario the subject is given two steel rings, a candle and a match, they are asked to make the two steel rings into a figure 8. Looking at the tools provided to the subject they might decide that the wax from the candle could potentially hold the two pieces of steel together when heated up. However the wax would not be strong enough. It leaves them with a problem, how do they attach the two steel rings to make them a figure eight.

In being left with the wick as a tool, and labelling it as such we become fixated on seeing the primary function of the wick as giving off light, which hinders our ability to come up with a solution for creating a figure-8. In order to effectively solve problem we must break down our concept of the wick down further. In seeing a wick as just a waxed piece of string, we are able to get past functional fixedness and see the alternate functions of the string. In doing so we may come to the conclusion and see the waxed string as being able to be used to tie the two rings together. In showing the effectiveness of this approach McCaffrey (2012) found that people trained to use this technique solved 67% more problems than the control group [60] .

Given the effectiveness of this approach, it is implicated that one way we may promote Divergent Thinking is through teaching students to consider: "whether the object may be broken down further" [60] and "whether the description of the part imply a use" in doing so we may teach students to break down objects to their purest form and make salient the obscure features of a problem. This connects to the previously discussed idea of conceptualization where problem solving effectiveness can be increased through focusing time on defining the problem rather than jumping to conclusions based on our own preconceptions. In the following section we will discuss what strategies experts use when solving problems.

Novice Versus Expert In Problem Solving

Many researchers view effective problem solving as being dependent on two important variables: the amount of experience we have in trying to solve a particular category of problems [61] , which we addressed earlier by demonstrating that in practicing problem solving through engaging in a problem-based approach we may increase problem solving skills. However, the second factor to consider is the amount of domain-specific knowledge that we have to draw upon [61] . Experts possess a vast amount of domain knowledge, which allows them to efficiently apply their knowledge to relevant problems. Experts have a well-organized knowledge of their domain, which impacts they notice and how they arrange, represent and interpret information, this in turn enables them to better recall, reason and solve problems in comparison to novices. [62]

In comparing experts to novices in their problem strategies, experts are able to organize their knowledge around the deep structure in important ideas or concepts in their domain, such as what kind of solution strategy is required to solve the problem [63] . In contrast novices group problems based on surface structure of the problems, such as the objects that appear in the problem. [63]

Experts also spend more time than novices analyzing and identifying problems at the beginning of the problem-solving process. Experts take more time in thinking and planning before implementing solutions and use a limited set of strategies that are optimal in allowing them to richer and more effective solutions to the given problem. [64]

In addition experts will engage in deeper and more complete problem representation novices, in using external representations such as sketches and diagrams to represent information and solve problems. In doing so they are able to solve problems quicker and come up with better solutions. [65]

Given the literature above it is evident that problem solving and expertise overlap as the key strategies that experts utilize are also provided as effective problem solving strategies. Therefore, we may conclude that experts not only have a vast knowledge of their domain, they also know and implement the most effective strategies in order to solve problem more efficiently and effectively in comparison to novices. [65] In the next section we will discuss the connection between problem solving and critical thinking.

Cognitive Tutor for Problem Solving

Cognitive Tutor is a kind of Intelligent Tutoring Systems. [66] It can assign different problems to students according to their individual basis, trace users’ solution steps, provide just-in-time feedback and hint, and implement mastery learning criteria. [67]

According to Anderson and colleague, [67] the students who worked with LISP tutors completed the problems 30% faster and 43% outperformed than their peers with the help of teachers in mini-course. Also, college students who employed ACT Programming Tutor (APT) with the function of immediate feedback finished faster on a set of problems and 25% better on tests than the students who received the conventional instruction. [68] In addition, in high school geometry school settings, students who used Geometry Proof Tutor (GPT) for in- class problem solving had a letter grade scores higher than their peers who participated in traditional classroom problem-solving activities on a subsequent test. [69]

An overview of Cognitive Tutor

In 1985, Anderson, Boyle, and Reigser added the discipline of cognitive psychology to the Intelligent Tutoring Systems. Since then, the intelligent tutoring system adopted this approach to construct cognitive models for students to gain knowledge was named Cognitive Tutors. [67] The most widely used Cognitive Tutor is Cognitive Tutor® Algebra I. [69] Carnegie Learning, Inc., the trademark owner, is developing full- scale Cognitive Tutor®, including Algebra I, II, Bridge to Algebra, Geometry, and Integrated Math I, II, III. Cognitive Tutor® now includes Spanish Modules, as well.

Cognitive Tutors support the idea of learning by doing, an important part of human tutoring, which to provide students the performance opportunities to apply the objective skills or concepts and content related feedback. [69] To monitor students’ performance, Cognitive Tutors adopt two Algorithms , model tracing and knowledge tracing. Model tracing can provide immediate feedback, and give content-specific advice based on every step of the students’ performance trace. [67] Knowledge tracing can select appropriate tasks for every user to achieve mastery learning according to the calculation of one’s prior knowledge. [67] [69]

Cognitive Tutors can be created and applied to different curriculum or domains to help students learn, as well as being integrated into classroom learning as adaptive software. The curriculum and domains include mathematics in middle school and high school, [66] [68] [70] genetics in post-secondary institutions, [71] and programming. [67] [68] [72] [73]

Cognitive Tutors yielded huge impacts on the classroom, student motivation, and student achievement. [74] Regarding the effectiveness of Cognitive Tutors, research evidence supports more effectiveness of Cognitive Tutors than classroom instruction. [67] [75] [76] [68]

The Theoretical Background of Cognitive Tutor

Act-r theory.

The theoretical background of Cognitive Tutors is ACT-R theory of learning and performance, which distinguishes between procedural knowledge and declarative knowledge. [67] According to the ACT-R theory, procedural knowledge cannot be directly absorbed into people’s heads, and it can be presented in the notation of if-then Production rules. The only way to acquire procedural knowledge is learning by doing.

Production rules

Production rules characterize how students, whether they beginning learners or advanced learners, think in a domain or subject. [67] Production rules can represent students' informal or intuitive thinking. [77] The informal or intuitive forms of thinking are usually different from what textbook taught, and students might gain such patterns of thinking outside from school. [78] Heuristic methods, such us providing a plan of actions for problem-solving instead of giving particular operation; [79] and non-traditional strategies, such as working with graphics rather than symbols when solving equation, [69] can be represented in production rules as well.

Cognitive model and model tracing


Cognitive model is constructed on both ACT-R theory and empirical studies of learners. [69] All the solutions and typical misconceptions of learners are represented in the production system of the cognitive model.

For example, there are three strategies of solving an algebra equation, 2(3+X)=10. Strategy 1 is multiplying 2 across the sum (3+X); Strategy 2 is dividing both sides of the equation by 2; Strategy 3 shows the misconception of failing to multiply 2 across the sum (3+X). Since there are various methods of each task, students can choose their way of solving problems.

Model tracing is an algorithm that can run forward along every student’s learning steps and provide instant context-specific feedback. If a student chooses the correct answer, for example, using strategy 1 or strategy 2 to solve the equation, the Cognitive Tutor® will accept the action and provide the student next task. If the student’s mistake match a common misconception, such as using strategy 3, the Cognitive Tutor will highlight this step as incorrect and provide a just-in- time feedback, such as you also need to multiply X by 2. If the student’s mistake does not match any of the production rule in the cognitive model, which means that the student does not use any of the strategies above, the Cognitive Tutor® will flag this step as an error in red and italicized. Students can ask for advice or hint any time when solving problems. According to Corbett, [68] there are three levels of advice. The first level is to accomplish a particular goal; the second level is to offer general ideas of achieving the goal, and the third level is to give students detailed advice on how to solve the problem in the current context.

Knowledge tracing

Knowledge tracing can monitor the growing number of production rules during the problem solving process. Every student can choose one production rule every step of his or her way of solving problems, and Cognitive Tutors can calculate an updated estimate of the probability of the student has learned the particular rule. [68] [69] The probability estimates of the rules are integrated into the interface and displayed in the skill-meter. Using probability estimates, the Cognitive Tutors can select appropriate tasks or problems according to students’ individual needs.

Effectiveness

Cognitive tutor® geometry.

Aleven and Koedinger conducted two experiments to examine whether Cognitive Tutor® can scaffold self-explanation effectively in high school geometry class settings. [66] The findings suggested that “problem-solving practice with a Cognitive Tutor® is even more effective when the students explain their steps by providing references to problem-solving principles.” [80]

In geometry learning, it could happen when students have over-generalized production rules in their prior knowledge, and thus leading shallow encoding and learning. For instance, a student may choose the correct answer and go to next step base on the over-generalized production rule, if an angle looks equal to another, then it is , instead of real understanding. According to Aleven & Koedinger, self-explanation can promote more general encoding during problem-solving practice for it can push students to think more and reflect explicitly on the rules in the domain of geometry. [66]

All the geometry class in the experiments includes classroom discussion, small-group activities, lectures, and solving problems with Cognitive Tutor®. In both of the experiments, students are required to solve problems with the help of the Cognitive Tutor®. However, the Cognitive Tutor® were provided with two different versions, the new version can support self-explanation which is also called guided learning by doing and explaining, [66] and the other cannot. Theses additional features of the new version required students to justify each step by entering geometry principles or referring the principles to an online glossary of geometry knowledge, as well as providing explanations and solutions according to students’ individual choice. Also, the form of explanation in the new version is different from speech-based explanations mentioned in another experiment on self-explanation. The researchers found that students who use the new version of the Cognitive Tutor® were not only better able to give accurate explanation, but also able to deeper understand the domain rules. Thus, the students were able to transfer those learned rules to new situations better, avoiding shallow encoding and learning.

Genetics Cognitive Tutor

Corbett et al. (2010) conducted two evaluations of the Genetics Cognitive Tutor in seven different kinds of biology courses in 12 universities in America. The findings suggested the effectiveness of implementing Genetics Cognitive Tutor in post-secondary institution genetic problem-solving practice settings. [81]

In the first evaluation, the participants used the Genetics Cognitive Tutor with their class activities or homework assignments. The software has 16 modules with about 125 problems in five general genetic topics. Genetics Cognitive Tutor utilized the cognitive model of genetics problem solving knowledge to provide step-by-step help, and both model tracing and knowledge tracing. With the average correctness of pretest (43%) and post-test (61%), the average improvements of using Genetic Cognitive Tutors was 18%. In the second empirical evaluations, the researchers examined whether the knowledge tracing can correctly predict students’ knowledge. The finding suggested that the algorithm of knowledge tracing is capable of accurately estimating every student performance on the paper- and-pencil post-test.

Project Based Learning and Design Thinking

Theorizing solutions for real world problems.

Project Based Learning is a concept that is meant to place the student at the center of learning. The learner is expected to take on an active role in their learning by responding to a complex challenge or question through an extended period of investigation. Project Based Learning is meant for students to acknowledge the curriculum of their class, but also access the knowledge that they already have to solve the problem challenge. At its roots, project-based learning is an activity in which students develop an understanding of a topic based on a real-life problem or issue and requires learners to have a degree of responsibility in designing their learning activity [82] . Blummenfeld et al. (1991) states that Project Based Learning allows students to be responsible for both their initial question, activities, and nature of their artifacts [83] .

Project based learning is based on five criteria [84]

rational thinking when problem solving is defined as the ability to

Challenges are based on authentic, real-world problems that require learners to engage through an inquiry process and demonstrate understanding through active or experiential learning. An example would be elementary or secondary students being asked by their teacher to solve a school problem – such as how to deal with cafeteria compost. Students would be encouraged to work in groups to develop solutions for this problem within specific criteria for research, construction, and demonstration of their idea as learners are cognitively engaged with subject matter over an extended period of time keeping them motivated [83] . The result is complex learning that defines its success is more than as more than the sum of the parts [85] . Project Based Learning aims at learners coordinating skills of knowledge, collaboration, and a final project presentation. This type of schema construction allows learners to use concrete training to perform concrete results. The learner uses previous knowledge to connect with new information and elaborate on their revised perception of a topic [85] . In Project Based Learning this would constitute the process of information gathering and discussing this information within a team to decide on a final solution for the group-instructed problem.

Unlike Problem-Based Learning, experiential learning within a constructivist pedagogy, is the basis of Project Based Learning, and learners show their knowledge, or lack there of, by working towards a real solution through trial and error on a specific driving question. The philosophy of Experiential experiential learning education comes from the theories developed by John Dewey in his work Education and Experience. Dewey argues that experience is shown to be a continuous process of learning by arousing curiosity, strengthen initiative, and is a force in moving the learner towards further knowledge [86] . The experiential aspect of Project Based Learning through working towards solutions for real world problems ties learner’s solutions to practical constructs. Learners must make up the expected gap in their knowledge through research and working together in a collaborative group. The experiential learning through Project Based Learning is focused on a driving question usually presented by the teacher. It is this focus that students must respond to with a designed artifact to show acquired knowledge.

The constructivist methodology of Project Based Learning is invoked through the guided discovery process set forth by the instructor, unlike pure discovery which has been criticised for student having too much freedom [87] , Project Based Learning involves a specific question driven by the instructor to focus the process of investigation. This form of constructivist pedagogy has shown to promote cognitive processing that is most effective in this type of learning environment [87] . Project Based Learning provides a platform for learners to find their own solutions to the teacher driven question, but also have a system in which to discover, analyze, and present. Therefore, Project Based Learning delivers beneficial cognitive meaningful learning by selecting, organizing, and integrating knowledge [87] .

Experience is the Foundation of Learning

Project Based Learning is a branch of education theory that is based on the idea of learning through doing. John Dewey indicated that teachers and schools should help learners to achieve greater depth in correlation between theory and real-world through experiential and constructivist methods. Dewey stated that education should contain an experiential continuum and a democratization of education to promote a better quality of human experience [86] . These two elements are consistent with Project Based Learning through the application of authentic, real world problems and production of artifacts as solutions, and the learner finding their own solutions through a collaborative effort with in a group. Blumenfeld et al. mentions that the value in Project Based Learning comes from questions that students can relate to including personal health and welfare, community concerns, or current events [83] .

Project Based Learning has basis also in the work of Jean Piaget who surmised that the learner is best served to learn in a constructivist manner – using previous knowledge as a foundation for new learning and connections. The learner’s intelligence is progressed from the assimilation of things in the learner’s environment to alter their original schema by accommodating multiple new schema and assimilating all of this experienced knowledge [88] . Piaget believed in the learner discovering new knowledge for themselves, but that without collaboration the individual would not be able to coherently organize their solution [87] . Project Based Learning acknowledges Piaget’s beliefs on the need for collective communication and its use in assembling new knowledge for the learner.

Self-Motivation Furthers Student Learning

Project Based Learning is perceived as beneficial to learners in various ways including gained knowledge, communication, and creativity. While engaging on a single challenge, learners obtain a greater depth of knowledge. Moreover, abilities in communication, leadership, and inter-social skills are strengthened due to the collaborative nature of Project Based Learning. Students retain content longer and have a better understanding of what they are learning. There are at least four strands of cognitive research to support Project Based Learning [84] – motivation, expertise, contextual factors, and technology.

Motivation of students that is centred on the learning and mastery of subject matter are more inclined to have sustained engagement with their work [89] . Therefore, Project Based Learning discourages public competition in favour of cooperative goals to reduce the threat to individual students and increase focus on learning and mastery [84] . Project Based Learning is designed to allow students to reach goals together, without fear of reprisal or individual criticism. For instance, Helle, et al. completed a study of information system design students who were asked to work on a specific assignment over a seven-month timeline. Students were given questionnaires about their experience during this assignment to determine their motivation level. Helle, et al. examined the motivation of learners in project groups and found intrinsic motivation increased by 0.52 standard deviations, showing that Project Based learner groups used self-motivation more often to complete assignments. Further, the study implied intrinsic motivation increase substantially for those who were lowest in self-regulation [90] .

Learner metacognitive and self-regulation skills are lacking in many students and these are important to master in student development in domains [84] . In the Project Based Learning system the relationship between student and teacher allows the instructor to use scaffolding to introduce more advance forms of inquiry for students to model, thus middle school students and older are very capable of meaningful learning and sophisticated results [91] . Learners would then become experts over time of additional skills sets that they developed on their own within this system.

Contextually, situated cognition is best realized when the material to be used resembles real-life as much as possible [84] , therefore, Project Based Learning provides confidence in learners to succeed in similar tasks outside of school because they no longer associate subjects as artificial boundaries to knowledge transfer. Gorges and Goke (2015) investigated the relationship between student perception of their abilities in major high school subjects and their relating these skills to real-world problem application through an online survey. Learners showed confidence in problem-solving skills and how to apply their learning to real-life situations, as Gorges and Goke [92] report, and that students who used Project Based Learning style learning have increased self-efficacy and self-concepts of ability in math (SD .77), history (SD .72), etc. [92] . Therefore, students are more likely to use domain-specific knowledge outside of an academic setting through increased confidence. Further, a comparison between students immediately after finishing a course and 12 weeks to 2 years provided effect sizes that showed Project Based Learning helped retain much knowledge [92] .

Technology use allows learners to have a more authentic experience by providing users with an environment that includes data, expanded interaction and collaboration, and emulates the use of artifacts [84] . The learner, in accessing technology, can enhance the benefits of Project Based Learning by having more autonomy is finding knowledge and connecting with group members. Creativity is enhanced as students must find innovative solutions to their authentic problem challenges. For instance, using digital-story-telling techniques through Project Based Learning, as stated by Hung and Hwang [93] , to collect data (photos) in elementary class to help answer a specific project question on global warming in science provided a significant increase in tests results (SD 0.64). As well, in order to find answers, learners must access a broad range of knowledge, usually crossing over various disciplines. The end result is that projects are resolved by student groups that use their knowledge and access to additional knowledge (usually through technology) to build a solution to the specific problem.

Educators Find Challenges in Project Based Learning Implementation

One of the main arguments against this type of learning is that the project can become unfocused and not have the appropriate amount of classroom time to build solutions. Educators themselves marginalized Project Based Learning because they lack the training and background knowledge in its implementation. Further financial constraints to provide effective evaluation through technology dissuades teachers as well [94] . The information gained by students could be provided in a lecture-style instruction and can be just as effective according to critics. Further, the danger is in learners becoming off-task in their time spent in the classroom, and if they are not continually focused on the task and the learning content, then the project will not be successful. Educators with traditional backgrounds in teaching find Project Based Learning requires instructors to maintain student connection to content and management of their time – this is not necessarily a style that all teachers can accomplish [94] .Blumenfeld et al. (1998) state that real success from Project Based Learning begins and ends with a focused structure that allows teacher modelling, examples, suggested strategies, distributing guidelines, giving feedback during the activity, and allowing for revision of work [91] .

Learner Need for Authentic Results through Critical Thought

rational thinking when problem solving is defined as the ability to

Project Based Learning is applicable to a number of different disciplines since it has various applications in learning, and is specifically relevant with the 21st century redefinition of education (differentiated, technologically-focused, collaboration, cross-curricular). STEM (Science, Technology, Engineering, Mathematics) is one form of 21st century education that benefits from instructors using Project Based Learning since it natural bridges between domains. The focus of STEM is to prepare secondary students for the rigors of post-secondary education and being able to solve complex problems in teams as would be expected when performing these jobs in the real world after graduation. Many potential occupational areas could benefit from Project Based Learning including medical, engineering, computer design, and education. Project Based Learning allows secondary students the opportunity to broaden their knowledge and become successful in high-stakes situation [95] . Moreover, these same students then develop a depth in knowledge when it comes to reflecting upon their strengths and limitations [95] . The result would be a learner who has developed critical thinking and has had a chance to apply it to real situations. Further the construction of a finished product is a realistic expectation in presenting an authentic result from learning. The product result demands accountability, and learner adherent to instructor expectations as well as constraints for the project [95] .

The learner is disciplined to focus on specific outcomes, understand the parameters of the task, and demonstrate a viable artifact. The implication is that students will be ready to meet the challenges of a high-technology, fast-paced work world where innovation, collaboration, and results-driven product is essential for success. Technology is one area where Project Based Learning can be applied by developing skills in real-world application, thus cognitive tools aforded by new technology will be useful if perceived as essential for the project (as is the case in many real-world applications) [83] .. For example, designers of computer systems with prior knowledge may be able to know how to trouble-shoot an operating system, but they do not really understand how things fit or work together, and they have a false sense of security about their skills [96] .

Design-Thinking as a Sub-set of Project-Based Learning

Using the process of practical design for real-world solutions.

rational thinking when problem solving is defined as the ability to

Design Thinking is a pedagogical approach to teaching through a constructionist methodology of challenge-based problem solving branching off of Project Based learning. It should be understood as a combination of sub-disciplines having design as the subject of their cognitive interests [97] .

An example of design-thinking would be learners engaged with finding a solution to a real-world problem. However, unlike Project Based Learning, design-thinking asks the learner to create a practical solution within a scaffolding process (Figure 3) such as finding a method to deliver clean drinking water to a village. Designers would consider social, economic, and political considerations, but would deliver a final presentation of a working prototype that could be marketable. Hence a water system could be produced to deliver water to villagers, but within the limits of the materials, finances, and local policies in mind. It designates cores principles of empathy, define, ideate, prototype, and test to fulfill the challenges of design. Starting with a goal (solution) in mind, empathise is placed upon creative and practical decision making through design to achieve an improved future result. It draws upon a thinking that requires investigation into the details of a problem to find hidden parameters for a solution-based result. The achieved goal then becomes the launching point for further goal-setting and problem solving. [97]

This type of approach to education is based on the premise that the modern world is full of artificial constructs, and that our civilization historically has relied upon these artifacts to further our progress in technological advances. Herbert Simon, a founder of design-thinking, states that the world that students find themselves in today is much more man-made and artificial that it is a natural world [98] . The challenge of design-thinking is to foster innovation by enhancing student creative thinking abilities [99] . Design-thinking is a tool for scaffolding conventional educational projects into Project Based thinking. Van Merrienbroer (2004) views design-learning as a scaffolding for whole-task practice. It decreases intrinsic cognitive load while learners can practice on the simplest of worked-out examples [87] . Therefore, Design-thinking is currently becoming popular due to its ability to bridge between the justification of what the learner knows and what the learner discovers within the context of 21st century skills and learning. A further example of this process is the design of a product that children will use to increase their physical activity (see video on Design Thinking) and can be explained using the scaffold of Design Thinking:

Critical Thought on Design in the Artificial World

Design-thinking is can be traced back to a specific scholars including Herbert Simon, Donald Schon, and Nigel Cross. Simon published his findings on the gap he found in education of professions in 1969. He observed that techniques in the natural sciences and that just as science strove to show simplicity in the natural world of underlying complex systems, and Simon determined the it was the same for the artificial world as well [100] . Not only should this include the process behind the sciences, but the arts and humanities as well since music, for example involves formal patterns like mathematics (Simon, 136). Hence, the creative designs of everyone is based upon a common language and its application. While Schon builds upon the empathetic characteristics of design-thinking as a Ford Professor of Urban Planning and Education at MIT, referring to this process as an artistic and intuitive process for problem-solving [101] . Schon realized that part of the design process was also the reflection-in-action that must be involved during critical thinking and ideating. Moreover, the solutions for problems do not lie in text-books, but in the designer’s ability to frame their own understanding of the situation [100] . Cross fuses these earlier ideas into a pedagogy surrounding education stating that design-thinking should be part of the general education of both sciences and humanities [97] . He implies that students encouraged to use this style of thinking will improve cognitive development of non-verbal thought and communication [97] .

Critical Thinking as Disruptive Achievement

Design-thinking follows a specific flow from theoretical to practical. It relies upon guided learning to promote effective learner solutions and goes beyond inquiry which has been argued does not work because it goes beyond the limits of long-term memory [97] . Design-thinking requires the learner to have a meta-analysis of their process. Creativity (innovative thought) is evident in design thinking through studies in defocused and focused attention to stimuli in memory activation [97] . Hu et al. (2010) developed a process of disrupted thinking in elementary students by having them use logical methods of critical thought towards specific design projects, over a four-year period, through specific lesson techniques. The results show that these students had increased thinking ability (SD .78) and that these effects have a long-term transfer increasing student academic achievement [102] . This shows use of divergent and convergent thinking in the creative process, and both of these process of thought has been noted to be important in the process of creativity (Goldschmidt, 2016, p 2) and demonstrates the Higher Order Thinking that is associated with long-term memory. Design-thinking specifically demonstrates the capability of having learners develop

Designers are Not Scientific?

Design-thinking critics comment that design is in itself not a science or cognitive method of learning, and is a non-scientific activity due to the use of intuitive processes [97] . The learner is not truly involved within a cognitive practice (scientific process of reasoning). However, the belief of Cross is that design itself is a science to be studied, hence it can be investigated with systematic and reliable methods of investigation [97] . Further, Schon states that there is connection between theory and practice that in design thinking means that there is a loyalty to developing a theoretical idea into a real world prototype [101] . Design-thinking is a process of scientific cognitive practice that does constitute technical rationality [101] and using this practice to understand the limits of their design that includes a reflective practice and meta. Further, this pedagogy is the application for the natural gap between theory and practice for most ideas, by allowing the learner to step beyond normal instruction and practice to try something new and innovative to come up with a solution. Design-thinking rejects heuristically-derived responses based on client or expert appreciation to take on an unforeseen form [101] .

21st Century Learners and the Need for Divergent Thinking

Design-thinking is exceptionally positioned for use with 21st century skills based around technological literacy. Specifically, it is meant to assist the learner in developing creative and critical skills towards the application of technology. Designing is a distinct form of thinking that creates a qualitative relationship to satisfy a purpose [103] . Moreover, in a world that is rapidly becoming technologized, design-thinking the ability to make decisions based upon feel, be able to pay attention to nuances, and appraise the consequences of one’s actions [103] . The designer needs to be able to think outside the perceived acceptable solution and look to use current technology. Therefore, learners using design thinking are approaching all forms of technology as potential applications for a solution. Prototyping might include not just a hardware application, but also the use of software. Cutting-edge technologies such as Augmented Reality and Virtual Reality would be acceptable forms of solutions for design challenges. Specific application of design-thinking is, therefore applicable to areas of study that require technological adaptation and innovation. Specifically, the K-12 BC new curriculum (2016) has a specific focus on Applied Design, Skills, and Technologies that calls for all students to have knowledge of design-thinking throughout their entire education career and its application towards the advancement of technology. Therefore, Design Thinking is a relative and essential component to engaging student critical thought process.

Argumentation

Argumentation is the process of assembling and communicating reasons for or against an idea, that is, the act of making and presenting arguments. CT in addition to clear communication makes a good argument. It is the process through which one rationally solves problems, issues and disputes as well as resolving questions [104] .

The practice of argumentation consists of two dimensions: dialogue and structure [105] . The dialogue in argumentative discussions focus on specific speech acts – actions done through language (i.e. accept, reject, refute, etc.) – that help advance the speaker’s position. The structure of an argument helps distinguish the different perspectives in discussion and highlight positions for which speakers are arguing [105] .

One of the main arguments against this type of learning is that the project can become unfocused and not have the appropriate amount of classroom time to build solutions. Educators themselves marginalize PBL* because they lack the training and background knowledge in its implementation. Further financial constraints to provide effective evaluation through technology dissuades teachers as well (Efstratia, 2014, p 1258). The information gained by students could be provided in a lecture-style instruction and can be just as effective according to critics. Further, the danger is in learners becoming off-task in their time spent in the classroom, and if they are not continually focused on the task and the learning content, then the project will not be successful. Educators with traditional backgrounds in teaching find Project Based Learning requires instructors to maintain student connection to content and management of their time – this is not necessarily a style that all teachers can accomplish (Efstratia, 2014, p 1258).

Project Based Learning is applicable to a number of different disciplines since it has various applications in learning, and is specifically relevant with the 21st century redefinition of education (differentiated, technologically-focused, collaboration, cross-curricular). STEM (Science, Technology, Engineering, Mathematics) is one form of 21st century education that benefits from instructors using Project Based Learning since it natural bridges between domains. The focus of STEM is to prepare secondary students for the rigors of post-secondary education and being able to solve complex problems in teams as would be expected when performing these jobs in the real world after graduation. Many potential occupational areas could benefit from Project Based Learning including medical, engineering, computer design, and education.

Project Based Learning allows secondary students the opportunity to broaden their knowledge and become successful in high-stakes situation (Capraro, et al., 2013, p 2). Moreover, these same students then develop a depth in knowledge when it comes to reflecting upon their strengths and limitations (Capraro, et al., 2013, p 2). The result would be a learner who has developed critical thinking and has had a chance to apply it to real situations. Further the construction of a finished product is a realistic expectation in presenting an authentic result from learning. The product result demands accountability, and learner adherent to instructor expectations as well as constraints for the project (Capraro, et al., 2013, p 2). The learner is disciplined to focus on specific outcomes, understand the parameters of the task, and demonstrate a viable artifact. The implication is that students will be ready to meet the challenges of a high-technology, fast-paced work world where innovation, collaboration, and results-driven product is essential for success. Technology is one area where Project Based Learning can be applied by developing skills in real-world application. For example, designers of computer systems with prior knowledge may be able to know how to trouble-shoot an operating system, but they do not really understand how things fit or work together, and they have a false sense of security about their skills (Gary, 2013, p 1).

Design-thinking follows a specific flow from theoretical to practical. It relies upon guided learning to promote effective learner solutions and goes beyond inquiry which has been argued does not work because it goes beyond the limits of long-term memory (Lazonder and Harmsen, 2016, p 2). Design-thinking requires the learner to have a meta-analysis of their process. Creativity (innovative thought) is evident in design thinking through studies in defocused and focused attention to stimuli in memory activation (Goldschmidt, 2016, p 1). Hu et al. (2010) developed a process of disrupted thinking in elementary students by having them use logical methods of critical thought towards specific design projects, over a four-year period, through specific lesson techniques. The results show that these students had increased thinking ability (SD .78) and that these effects have a long-term transfer increasing student academic achievement (Hu, et al. 2010, p 554). This shows use of divergent and convergent thinking in the creative process, and both of these process of thought has been noted to be important in the process of creativity (Goldschmidt, 2016, p 2) and demonstrates the Higher Order Thinking that is associated with long-term memory. Design-thinking specifically demonstrates the capability of having learners develop.

The Process of Argumentation

Argumentation stages.

The psychological process of argumentation that allows one the produce, analyze and evaluate arguments [106] . These stages will be discussed in more detail later in this chapter.

The Impact of Argumentation on Learning

Argumentation does not only impact the development of CT and vice versa, it affects many other aspects of learning as well. For instance, a study conducted in a junior high school science class showed that when students engaged in argumentation, they drew heavily on their prior knowledge and experiences [107] . Not only did argumentation enable the students to use their prior knowledge, it also helped them consolidate knowledge and elaborate on their understanding of the subject at a higher level [107] . These are just a few of the ways in which argumentation can be seen to impact aspects of learning other than the development of CT.

Video: Argumentation in Education: https://www.youtube.com/watch?v=YHm5xUZmCDg

The Relationship between Critical Thinking and Argumentation

Argumentation and CT appear to have a close relationship in instruction. Many studies have shown the impact that both of these elements can have on one another. Data suggests that when CT is infused into instruction it impacts the ability of students to argue [108] tasks that involve both critical thinking and creative thinking must be of an argumentative nature [109] , and that argument analysis and storytelling can improve CT [110] . In other words it would appear that both CT and argumentation impact the development of each other in students and that both impact other aspects of learning and cognition.

How Critical Thinking Improves Argumentation

CT facilitates the evaluation of the information necessary to make an argument. It aids in the judgement of the validity of each position. It is used to assess the credibility of sources and helps in approaching the issue from multiple points of view. The elements of CT and argumentation have many common features. For example, examining evidence and counter-evidence of a statement and the information that backs up these claims are both facets of creating a sound argument and thinking critically.

The impact of how CT explicitly impacts one’s ability to argue and reason with reference to the aforementioned four CT components will be examined in this section. First, there needs to be an examination of the aspects of CT and how they can be impacted by argumentation. The first component, knowledge, as stated by Bruning et. al (2011), actively shapes the way in which one resolves problems [111] . Therefore, it is essential that students have a solid foundation of knowledge of whatever it is that they are arguing. The ability to use well founded information in order to effectively analyze the credibility of new information is imperative for students who wish to increase their argumentative abilities. The second component of CT that is important for argumentation is inference . As Chesñevar and Simari (2007) discuss in their examination of how we develop arguments, inference and deduction are essential aspects of reaching new conclusions from knowledge that is already known or proven [112] .

rational thinking when problem solving is defined as the ability to

In other words, the ability to reach conclusions from known information is pivotal in developing and elaborating an argument. As well, the use of induction , a part of the CT process, is important to argumentation. As Bruning et al. suggest, the ability to make a general conclusion from known information is an essential part of the CT process [111] . Ontañón and Plaza (2015) make the argument that induction can be used in argumentation through communication with one another. Moreover, making inductions of general conclusions using the complete information that every member of the group can provide shows how interaction can be helpful through the use of induction in argumentation [113] . Therefore, it can be seen how induction, an important part of CT, can have a significant impact on argumentation and collaboration. The final component of CT, that may be the most important in its relationship to argumentation, is evaluation . The components of Evaluation indicated by Bruning et al. are analyzing, judging and weighing. These are three essential aspects of creating a successful argument [111] . Hornikx and Hahn (2012) provide a framework for three key elements of argumentation that are heavily attached in these Bruning et al.'s three aspects of CT [106] .

Production, Analysis, and Evaluation

The three aspects of argumentation that Hornikx and Hahn focus on in their research is the production , analysis and evaluation of arguments [106] . Producing an argument uses the key aspects of CT; there must be evaluation, analysis, judgement and weighing of the argument that one wishes to make a stand on. Analysis of arguments and analysis in CT go hand in hand, there must be a critical analysis of information and viewpoints in order to create a successful and fully supported argument. As well, evaluation is used similarly in argumentation as it is derived from CT. Assessing the credibility of sources and information is an essential part in finding articles and papers that can assist someone in making an informed decision. The final aspect of evaluation in critical thinking is metacognition, thinking about thinking or monitoring one's own thoughts [111] . Monitoring one's own thoughts and taking time to understand the rationality of the decisions that one makes is also a significant part of argumentation. According to Pinto et al.’s research, there is a strong correlation between one's argumentation ability and metacognition. [114] In other words, the ability to think about one’s own thoughts and the validity of those thoughts correlates positively with the ability to formulate sound arguments. The transfer of thoughts into speech/argumentation shows that CT influences argumentation dramatically, however some research suggests that the two interact in different ways as well. It can clearly be seen through the research presented that argumentation is heavily influenced by CT skills, such as knowledge, inference, evaluation and metacognition. However there are also strong implications that instruction of CT in a curriculum can bolster argumentation. A study conducted by Bensley et. al (2010) suggests that when CT skills are directly infused into a course compared to groups that received no CT instruction, those who received CT instruction showed significant gains in their ability of argument analysis [115] . There can be many arguments made for the implication of specific CT skills to impact argumentation, but this research shows that explicit teaching of CT in general can increase the ability of students to more effectively analyze arguments as well. This should be taken into account that Skills Programs mentioned later in this chapter should be instituted if teachers wish to foster argumentation as well as CT in the classroom.

How Argumentation Improves Critical Thinking

Argumentation is a part of the CT process, it clarifies reasoning and the increases one's ability to assess viable information. It is a part of metacognition in the sense that one needs to evaluate their own ideas. CT skills such as induction and/or deduction are used to create a structured and clear argument.

Research by Glassner and Schwarz (2007) shows that argumentation lies at the intersection of critical and creative thinking. They argue that reasoning, which is both critical and creative, is done through argumentation in adolescents. They suggest that reasoning is constantly being influenced by other perspectives and information. The ability to think creatively as well as critically about new information is managed by argumentation [116] . The back and forth process of accommodating, evaluating, and being open minded to new information can be argued as critical and creative thinking working together. However, the way in which one reaches conclusions from information is created from the ability to weigh this information, and then to successfully draw a conclusion regarding the validity of the solution that students come to. There is also a clear correlation of how argumentation helps students to nurture CT skills as well.

It is clear that CT can directly impact argumentation, but this relationship can also be seen as bidirectional, with argumentation instruction developing the CT skills. A study by Gold et al. shows that CT skills can be fostered through the use of argument analysis and storytelling in instruction [117] . This research suggests that argumentation and argument analysis are not only be beneficial to students, but also to older adults. This study was conducted using mature adult managers as participants. The article outlines four skills of CT that can be impacted by the use of argument analysis and storytelling: critique of rhetoric, tradition, authority, and knowledge. These four skills of CT are somewhat deeper than many instructed in high schools and extremely important to develop. The ability of argumentation to impact CT in a way that enables a person to gain a better perspective on their view about these things is essential to developing personal values as well as being able to use argumentation and CT to critique those values when presented with new information. The ability of argumentation to influence the ability of individuals to analyze their own traditions and knowledge is important for all students as it can give them better insight into what they value.

Argumentation is beneficial to CT skills as well as creative thinking skills in high school students. Research done by Demir and İsleyen (2015) shows that argumentation based a science learning approach in 9th graders improves both of types of thinking [118] . The ability of students to use argumentation to foster CT as well as creative thinking can be seen as being very beneficial, as mentioned earlier creative and CT skills use argumentation as a means of reasoning to draw conclusions, it is therefore not surprising that argumentation in instruction also fosters both of these abilities. In summation, it can clearly be seen that there is a link between both argumentation and CT along with many skills in the subset of CT skills. Explicit instruction of both of these concepts seems to foster the growth of the other and can be seen as complementary. In the next sections of this chapter how these aspects can be beneficial if taught within the curriculum and how they go hand in hand in fostering sound reasoning as well as skills that will help students throughout their lives will be examined.

Instructional Application of Argumentation and Critical Thinking

rational thinking when problem solving is defined as the ability to

Teaching Tactics

An effective method for structuring the instruction of CT is to organize the thinking skills into a clear and sequential steps. The order in which these steps aid in guiding the student towards internalizing those steps in order to apply them in their daily lives. By taking a deductive approach, starting from broader skills and narrowing them down to task-specific skills helps the student begin from what they know and generate something that they hadn't known before through CT. In the spirit of CT, a student's awareness of their own skills also plays an important role in their learning. In the classroom, they should be encouraged to reflect upon the process through which they completed a goal rather than just the result. Through the encouragement of reflection, students can become more aware of the necessary thinking skills necessary for tasks, such as Argumentation.

Instructing CT and Argumentation predisposes the instruction to using CT skills first. In designing a plan to teach CT, one must be able to critically evaluate and assess different methods and make an informed decision on which would work best for one's class. There are a variety of approaches towards instructing CT. Descriptive Models consist of explanations of how "good" thinking occurs. Specifically, it focuses on thinking strategies such as heuristics to assess information and how to make decisions. Prescriptive Models consist of explanations of what good thinking should be. In a sense, these models give a prototype, a "prescription", of what good thinking is. This approach is comparatively less applicable and sets a high standard of what is expected of higher order thinking. In addition to evaluating which approach would work best for them, prior to teaching CT, instructors need to carefully select the specific types of CT skills that they want students to learn. This process involves assessing factors such as age range, performance level as well as cognitive ability of one's class in order to create a program that can benefit most of, if not all, the students. A final aspect of instruction to consider as an educator is whether direct or indirect instruction will be used to teach CT. Direct Instruction refers to the explicit teaching of CT skills that emphasizes rules and steps for thinking. This is most effective when solutions to problems are limited or when the cognitive task is easy. In contrast, Indirect Instruction refers to a learner-oriented type of teaching that focuses on the student building their own understanding of thinking. This is most effective when problems are ambiguous, unclear or open to interpretation such as moral or ethical decisions [111] .

One example of indirect CT instruction is through the process of writing literature reviews. According to Chandler and Dedman, having the skills to collect, assess and write literature reviews as well as summarize results of studies requires CT. In a teaching note, they evaluated a BSW (Baccalaureate of Social Work) program that strived to improve CT in undergraduate students. Specifically, they assert that practical writing assignments, such as creating literature reviews, help students combine revision and reflection while expanding their thinking to evaluate multiple perspectives on a topic. They found that upon reframing the assignment as a tool to facilitate students in becoming critical reviewers, students viewed the literature review as a summation of course material in addition to an opportunity to improve critical reading and writing skills. Through questioning during discussions, students were guided to analyze the authority and credibility of their articles. The students actively sought for more evidence to support articles on their topics. They found that students successfully created well synthesized literature reviews at the end of the BSW program [119] . This program used implicit instruction of CT skills through dialogue between instructor and students as well as peer engagement. Instead of explicitly stating specific skills or steps to learn CT, the instructors lead the students to practice CT through an assignment. As students worked on the assignment, they needed to use reasoning, analysis and inferential skills in order to synthesize and draw conclusions around the evidence they found on their topics. Practical application of CT skills through an assignment helped students develop CT through indirect instruction.

rational thinking when problem solving is defined as the ability to

Argument mapping is a way to visualize argumentation. The following are links to argument mapping software: https://www.rationaleonline.com/ http://www.argunet.org/editor/ http://debategraph.org/planet https://www.truthmapping.com/map/1021/#s7164

Skills Programs for CT

These programs aid in the formulation of critical thinking skills through alternative methods of instruction such as problem-solving. They are usually targeted towards special populations such as students with learning disabilities or cognitive deficits.

The CoRT Thinking Materials

The CoRT (Cognitive Research Trust) program is based on de Bono’s idea that thinking skills should be taught in school as a subject [120] . The Thinking Materials are geared towards the improvement of thinking skills. This skills program takes on a Gestalt approach and emphasizes the perceptual factor of problem solving. It usually spans over the course of 2 years and is suitable for a wide age range of children. The lessons strive to develop creative thinking, problem-solving as well as interpersonal skills. The materials are split into 6 units and cover topics such as planning, analyzing, comparing, selecting, evaluating and generating alternatives. A typical unit has leaflets covering a single topic, followed by examples using practice items. The leaflets are usually effective in group settings. The focus of these units are to practice thinking skills, therefore much of the instructional time is spent on practicing the topics brought up in the leaflets [111] .

Much of the empirical research on this stand-alone program revolves around the development of creative thinking, however, it is relatively more extensive in comparison to the other programs mentioned in this chapter. The CoRT program has been shown to improve creativity in gifted students. Al-Faoury and Khwaileh (2014) assessed the effectiveness of the CoRT on gifted students’ creative writing abilities. The students were given a pretest that evaluated the fluency, flexibility and originality in writing creative short stories [120] . Students in the experimental group were taught 20 CoRT lessons in total with 10 from CoRT 1 “Breadth” and 10 from CoRT 4 “Creativity” over the course of three months while the control group received traditional lessons on creative writing. The posttest followed the same parameters as the pretest and the results were analyzed by comparing pre and posttest scores. The researchers found a statistically significant effect of CoRT on the experimental group’s fluency, flexibility and originality scores. The mean scores of the experimental groups in all three elements were higher than the control group [120] . These findings suggest that the CoRT program aids gifted students in creative writing skills as indicated through the use of rhetorical devices (metaphor, analogy, etc.), developing characters through dialogue and the control of complex structures [120] . The flexibility and fluency of writing is also applicable to the practice of argumentation and CT. In developing the ability to articulate and modify ideas, students can transfer these skills from creative writing towards higher-order cognitive processes such as CT and argumentation.

The Feuerstein Instrumental Enrichment Program (FIE)

The FIE is a specialized program focused on mediated learning experiences that strives to develop critical thinking and problem solving skills. Mediation is learning through interaction between the student and the mediator. Similar to Vygotsky's scaffolding, mediation is student-oriented and hinges upon 4 parameters: Intentionality, Reciprocity, Transcendence and Meaning. [121] Intentionality emphasizes the differences between mediation and interaction where the student and mediator have a common goal in mind. Reciprocity involves the student-oriented mentality of mediation, the response of the student hold most importance over academic results. Transcendence focuses on the connectivity of the mediation, it encourages the formation of associations and applications that stretch beyond the scope of the immediate material. Lastly, Meaning in mediation is where the student and mediator explicitly identify "why" and "what for" which promotes dialogue between the two during mediation. [121] [122]

The "instruments" used to facilitate instruction are a series of paper and pencil exercises geared towards practicing internalizing higher order thinking strategies. The instruments cover domains such as analytic perception, spatial organization, categorization, comparison and many more. The implementation of this program varies across countries and is also dependent on the targeted population. A typical program contains 14 units with 3-4 sessions for a few hours every week administered by trained IE staff and teachers. [121]

The Productive Thinking Program

The Productive Thinking Program consists of the development of planning skills, generating and checking hypotheses as well as creating new ideas. This program is designed as a set of 15 lessons aimed at being completed over one semester. The target population of the program is upper-level elementary school students. The lessons are administered through the use of narrative booklets, often taking a detective-like approach to problem solving where the student is the detective solving a mystery. A structured sequence of steps guides the student to attain an objective specific to the lesson at hand. [123] Following the booklet or story, supplementary problems are given in order for students to apply and practice learned skills. [111]

The IDEAL Problem Solver

The IDEAL Problem Solver structures problem-solving as 5 steps using the acronym IDEAL. First, (I)dentify the problem, the solver needs to find out what the problem is. Second, (D)efine the problem involves having a clear picture of the entire problem before trying to solve it. Third, (E)xplore the alternatives, meaning that the solver needs to assess the potential solutions available. Fourth, (A)cting on a plan, that is, applying the solution and doing the act of solving. Lastly, (L)ooking at the effects which encompasses the evaluation of the consequences of the chosen solution. IDEAL is flexible in that it can be adapted to suit a wide age range and different levels of ability in its application. It can also be applied to different domains such as composition or physics. [111]

Instructing Argumentation

Research on argumentation is a comparatively new field of study for education, but has been noted to be of significant importance to almost all educational settings. Grade schools, high schools, and colleges now emphasize the use of argumentation in the classroom as it is seen as the best way for communication and debate in a both vocational and educational settings around the world. [124] A longitudinal study done by Crowell and Kuhn showed that an effective way to help students gain argumentative skills was through consistent and dense application of argumentation in the classroom and as homework. [124] During this longitudinal study, students were exposed to a variety of different methods from which they gained argumentative abilities. The activities employed such as peer collaboration, using computers, reflection activities, individual essays, and small group work all have implications for being valuable in teaching argumentation although it is not clear which ones are the most effective. [124] Data also showed that students all rose to a similar level of argumentative ability, no matter what they scored on argumentative tests before the study began. This shows that even students with seemingly no argumentative skills can be instructed to become as skilled or more skilled than their peers who tested higher than them at the beginning of the study. [124]

Dialogue and Argumentation

Research by Crowell and Kuhn (2011) highlights collaborative dialogical activities as practical interventions in the development of argumentative skills. The researchers implemented a longitudinal argumentative intervention that used topic cycles to structure a middle school philosophy class [125] . The students had class twice a week for 50 minutes each class over the span of three years. The intervention is as follows: first, students were split into small groups on the same side of the argument to generate ideas around the topic (“for” and “against” teams). Then individuals from either side argue with an opponent through an electronic medium. Finally, the students engage in a whole class debate. These three stages were termed Pregame, Game and Endgame, respectively. After the intervention, students were required to write individual essays regarding the topic through which their argumentative skills would be assessed [125] . The results showed an increased in the generation of dual perspective arguments in the intervention group. Such arguments require the arguer to assume the opposing stance to one’s own and reason its implications. This type of argument reflects a higher-order reasoning that requires critical assessment of multiple perspectives. These results did not begin to appear until year two and was only found statistically significant in year three suggesting that argumentative skills have a longer development trajectory than other lower-level cognitive skills [125] . Through this stand-alone intervention, the collaborative aspect of dialogical activities facilitates the development of intellectual dispositions necessary for good argumentation [125] .

rational thinking when problem solving is defined as the ability to

Further research suggests that teaching through the use of collaborative discussions and argumentative dialogue is an effective teaching strategy [105] . Through argumentation, students can acquire knowledge of concepts as well as the foundational ideas behind these concepts. In formulating arguments, students need to generate premises that provide structure to an argument through accepted definitions or claims. Argumentation helps students reveal and clarify misconceptions as well as elaborate on background knowledge. The two aforementioned dimensions of argumentation – dialogue and structure – are often used in assessing and measuring argumentative performance [105] . Specifically, through student-expert dialogue, the students can be guided to give certain arguments and counterarguments depending on the expert’s dialectical decisions [105] . This scaffolding helps the student engage in more critical evaluations that delve deeper into the topic in discussion.

In a study using content and functional coding schemes of argumentative behavior during peer-peer and peer-expert dialogue pairings, Macagno, Mayweg-Paus and Kuhn (2014) found that through student-expert dialogues, students were able to later formulate arguments that dealt with abstract concepts at the root of the issue at hand (i.e. ethical principles, conflict of values) in comparison to peer-peer dialogues [105] . The expert used more specific and sophisticated ways of attacking the student’s argument, such as suggesting an alternative solution to the problem at hand, which in turn enhanced the performance of the student in later meta-dialogues [105] . The results suggest that the practical application of argumentation through collaborate activities facilitates the development of argumentation skills. Similar to CT skills development, rather than teaching, implicit instruction through the practice of argumentation in interactive settings helps its development.

Science and Argumentation

Much of the literature surrounding the application of argumentation in the classroom revolves around the scientific domain. Argumentation is often used as a tool in scientific learning to enhance CT skills, improve class engagement and activate prior knowledge and beliefs around the subject [105] . In order to articulate and refine scientific theories and knowledge, scientists themselves utilize argumentation [104] . Jonassen and Kim (2010) assert that science educators often emphasize the role of argumentation more than other disciplines [126] . Argumentation supports the learning of how to solve well-structures problems as well as ill-structured ones in science, and from there by extension, in daily life. Specifically, the ill-structured ones reflect more practical everyday problems where goals and limitations are unclear and there are multiple solution pathways as well as multiple factors for evaluating possible solutions [104] .

Through argumentation, students learn to use sound reasoning and CT in order to assess and justify their solution to a problem. For example, a well-structured problem would be one posed in a physics class where concrete laws and formulas dictate the solution pathway to a problem or review questions found at the end textbook chapters which require the application of a finite set of concepts and theories. An ill-structured problem would be finding the cause of heart disease in an individual. Multiple developmental and lifestyle factors contribute to this one problem in addition to the various different forms of heart disease that need to be evaluated. This sort of problem requires the application of knowledge from other domains such as nutrition, emotional well-being and genetics. Since ill-structured problems do not have a definite answer, students are provided with an opportunity to formulate arguments that justify their solutions [104] . Through the practice of resolving problems in science, such as these, students can use CT to develop their argumentative ability.

One’s willingness to argue as well as one's ability to argue also play a significant role in learning science [127] . For one science is at its core, extremely argumentative.

If students have to ability to engage in argumentation at an early age then there knowledge of specific content such as science can grow immensely. The main reason for this is argumentative discourse, being able to disagree with others is extremely important because for adolescents they are at an age which is fundamentally social (ie junior to senior high) using this social ability is pivotal as students at this point may have the confidence to disagree with one another. When a student disagrees with another in argument in a classroom setting it gives them an opportunity to explain the way in which they think about the material. This verbalization of one’s own thoughts and ideas on a subject can help with learning the subject immensely [127] . It also allows for the student to reflect upon and expand their ideas as they have to present them to the class which helps with learning. This also provides the opportunity for the student to identify any misconceptions they have about the subject at hand as more than likely they will receive rebuttal arguments from others in their class [127] . All these factors are aspects of CT and contribute to the learning of the concept and conceptual change in the student which is what learning is all about. The nature of adolescent social behaviour could provide a window through which argumentation could benefit their learning in dramatic ways in learning science [127] .

Argumentation, Problem Solving and Critical Thinking in History Education

History education offers learners an abundant opportunity to develop their problem solving and critical thinking skills while broadening their perspective on the human condition. The study of history addresses a knowledge gap; specifically, it is the difference between our knowledge of present day and the “infinite, unorganized and unknowable everything that ever happened”. [128] It has long been understood that the study of history requires critical thought and analytical problem-solving skills. In order to become proficient at the study of history, learners must interpret and construct how we come to know about the past and navigate the connection between the past and the body of knowledge we call history. [129] Unfortunately, history education has been demoted to simply recalling factual information - via the overuse of rote memorization and multiple-choice testing - all of which is placed outside the context of present day. This approach does little to inspire a love of history nor does it support the learner’s ability to construct an understanding of how the past and present are connected.

On the other hand, the study of science and mathematics has for many years been centred around developing skills through problem-solving activities. Students learn basic skills and build upon these skills through a progression of increasingly complex problems in order to further their understanding of scientific theory and mathematical relationships. Specific to science education, learners are taught to think like scientists and approach problems using the scientific method. If this approach works well for science and math education, why should it not be utilized for the teaching of history? [128] . Therefore, to develop historical thinking skills it is necessary for instructors to teach the strategies and problem-solving approaches that are used by professional historians. However, unlike science and mathematics, the problems we solve in history are often ill-defined and may be unanswerable in a definitive sense making it more challenging for students to learn and transfer these skills. The following section will address these challenges and provide support for teaching historical thinking via The Big Six Historical Thinking Concepts (2013).

Historical Thinking - The Big Six

Based upon years of research and first-hand classroom experience, Seixas and Morton (2013) established a set of six competencies essential to the development of historical thinking skills. Much like science and mathematics education discussed above, the Big Six approach to history education allows the learner to progress from simplistic to advanced tasks. Moreover, the Big Six approach is intended to help the learner “move from depending on easily available, commonsense notions of the past to using the culture’s most powerful intellectual tools for understanding history”. (pg 1) [128] Additionally, the Big Six concepts reveal to the learner the difficulties we encounter while attempting to construct a history of the past. The Big Six competencies include the following: historical significance, evidence, continuity and change, cause and consequence, historical perspectives, and the ethical dimension.

Historical Significance

To develop a critical view of history the learner must recognize and define the qualities that makes something (e.g., person, event, social change) historically significant and why they should spend their time learning about this thing. Behaviourist approaches to history education, focusing on the textbook as the main source of information, have caused learners to become passive in their approach to learning about the past. The textbook becomes the authority on what they need to know. Moreover, the sole use of textbooks to teach national history may contribute to the creation of a “master narrative” that limits a student’s access to what is controversial about their country’s past. [130] By shifting the focus away from the textbook, learners may be able to further their critical thinking skills by following the steps historians take to study the past and constructing their own “reasoned decisions about historical significance”. [128] However, even if a learner is provided primary source evidence to construct a narrative of the past but is not taught to recognize the subjective side to historical thinking - why these pieces of evidence were selected, why this topic was selected, and why they are both historically significant - they may not recognize the impacts of human motivation on the construction of historic understanding. Unlike scientific inquiry that relies on a “positivistic definition of rationality”, historical thinking requires learners to acknowledge human motivation - their own motivation in studying the past, their instructors motivation for selecting certain topics of study, and the motivation of those living in the past [131]

Seixas & Morton (2013) cite two elements involved in constructing historical significance: “big, compelling concerns that exist in our lives today, such as environmental sustainability, justice, power, [and] welfare” and “particular events, objects, and people whose historical significance is in question” (pg 16) [128] The intersection between these two elements is where historical significance is found. It is useful here to add Freedman’s (2015), definition of critical historical reasoning . Critical historical reasoning requires us to recognize that the study of history is not objective. Historians “frame their investigations through the questions they pose and the theories they advance” and therefore, learners of history must analyze the “integrity of historical narratives and their pattern of emphasis and omission” (pg 360). [131] Critical historical reasoning aims towards “conscious awareness of the frame one has adopted and the affordances and constraints it imposes” (pg 360) [131] . Therefore, both historians and learners of history must recognize that historical significance is assigned and not an inherent feature of the past, and, importantly, is subject to change.

The second set of competencies described by Seixas and Morton (2013) are based on using evidence to address an inquiry about the past. In a study of the cognitive processes involved in evaluating source documents, Wineburg (1991) lists three heuristics: corroboration, sourcing, and contextualization. Corroboration refers to comparing one piece of evidence to another, sourcing is identifying the author(s) of the evidence prior to reading or viewing the material, and contextualization refers to situating evidence in a specific time and place (pg 77). [132]

This study utilized an expert/novice design to compare how historians and high school students make sense of historic documents. Wineburg (1991) argues that the historians were more successful in the task not because of the “schema-driven processing” common to science and mathematics, but by building a model of the [historic] event through the construction of “context-specific schema tailored to this specific event” (pg 83). [132] Additionally, historians demonstrated greater appreciation for the source of the historic documents compared to the students. This suggests that the students did not make the connection between a document's author and the reliability of the source. As Wineburg states, the historian understands “that there are no free-floating details, only details tied to witnesses, and if witnesses are suspect, so are their details” (pg. 84). [132] This study suggests the potential for historical understanding to be improved by teaching the cognitive strategies historians use to construct history.

Multiple narratives of the past exist as individuals bring their own values and experiences to their interpretations of historical evidence. Recognizing this may push learners beyond accepting historic accounts at face value and pull them towards a more critical approach to history. Inquiry-based guided discovery activities, such as Freedman’s (2015) Vietnam war narrative study, suggest that students may gain an awareness of the way they and others “frame” history through exploring primary source documents and comparing their accounts with standardized accounts (i.e. a textbook). [133] By allowing learners to view history as an interpretation of evidence rather than a fixed body of knowledge, we can promote critical thought through the learners’ creation of inferences based on evidence and construction of arguments to support their inferences.

Continuity and Change

Developing an understanding of continuity and change requires the learner to recognize that these two elements overlap over the chronology of history; some things are changing at the same time that other things remain the same. If students are able to recognize continuity and the processes of change in their own lives they should be able to transfer this understanding to their study of the past. [134] Students should be encouraged to describe and question the rate and depth of historic change as well as consider whether the change should be viewed as progress or decline. [134] The evaluation of historic change as positive or negative is, of course, dependent on the perspective taken by the viewer. An example of continuity through history is the development of cultural identity. Carretero and van Alphen (2014), explored this concept in their study of master narratives in Argentinian high school students. They suggest that identity can be useful to facilitate history education, but could also create misconceptions by the learner confounding past with present (or, presentism), as demonstrated when using “we” to discuss people involved in victorious battles or revolutions of the past which gave shape to a nation (pg 308-309). [130] It is useful, then to teach students to differentiate between periods of history. However, periodization of history, much like everything else in the knowledge domain, is based on interpretation and is dependent on the questions historians ask [134]

Educational technology such as interactive timelines, narrative history games, and online discussion groups may help learners make connections between the past and present. For example, the Museum of Civilization offers a teaching tool on the history of Canadian medicare ( http://www.museedelhistoire.ca/cmc/exhibitions/hist/medicare/medic01e.shtml ). Interactive timelines allow students to see connections between continuity, change, cause, and consequences by visually representing where these elements can be found over historic time. Also, guiding the learners’ exploration of interactive timelines by selecting strong inquiry questions may improve students understanding and facilitate the development of historical thinking. For example, an investigation into the European Renaissance could be framed by the following question: “Did everyone in Europe experience the Renaissance the same way?” Questions such as this are open-ended so as to not restrict where the students takes their inquiry but also suggest a relationship between the changes of the Renaissance and the continuity of European society. Other examples of educational technology that support historical thinking include the “Wold History for us All” ( http://worldhistoryforusall.sdsu.edu/ ) project. This website offers world history units separated into large-scale and local-scale topics and organized by historic period. The lesson plans and resources may allow the learner to making connections between local issues and the broader, global conditions affecting world history. Finally, a case study by Blackenship (2009) suggests that online discussion groups are a useful for developing critical thinking by allowing the teacher to view the students’ thought processes and thereby facilitating formative assessment and informing the type of instructional interventions required by the teacher. Blackenship (2009) cites additional research supporting the use of online discussion because it allows the learners to collect their thoughts before responding to a discussion prompt; they have more time to access prior knowledge and consider their own ideas. [135]

Cause and Consequence

The historical thinking competencies of cause and consequence require learners to become proficient at identifying direct and indirect causes of historic events as well as their immediate and long-term consequences. Effective understanding of the causes of historic change requires the recognition of both the actions of individuals as well as the prevailing conditions of the time. Historical thinking requires students to go beyond simplistic immediate causes and think of history as web of “interrelated causes and consequences, each with various influences” (pg 110). [134] In addition to improving understanding of the past, these competencies may help learners to better understand present-day conflicts and issues. Shreiner (2014) used the novice/expert format to evaluate how people utilize their knowledge of history to make reasoned conclusions about events of the present. Similar to the Wineburg (1991) study discussed above, Shreiner (2014) found the experts were better at contextualizing and using sourcing to critically analyze documents for reliability and utility in establishing a reasoned judgement. Additionally, the study found that while students would use narrative to construct meaning, they typically created schematic narrative templates - general statements about the past which lack specific details & events. [136] Seixas and Morton (2013) caution the use of overly-simplistic timelines of history because they could create a misconception that history is nothing more than a list of isolated events.The study indicates that historical narratives that follow periodization schemes and are characterized by cause-and-effect relationships, as well as change over time, are helpful for understanding contemporary issues. [134] Therefore, it is important that educators work to develop these competencies in students. Much like historic change, the consequences of certain actions in history can be viewed as positive and negative, depending on perspective. This will be discussed in further detail below.

Historical Perspectives and Ethics

The final two historical thinking competencies proposed by Seixas and Morton are historical perspectives and ethics. Historical perspectives refers to analyzing the historical context for conditions that would influence a historic figure to view an event or act in a particular way. This could include religious beliefs, social status, geographic location, time period, prevailing economic and political conditions, and social/cultural conditions. This again requires some interpretation of evidence as oftentimes we do not have evidence that explicitly describes a historic figure’s attitudes and reasons for acting. Primary source documents, such as letters and journals can provide insight but still require the historian to use inference to make sense of the documents and connect the information to a wider historical narrative or biographical sketch of an individual. Additionally, “[h]ard statistics, such as birth and death rates, ages of marriage, literacy rates, and family size... can all help us make inferences about people's experiences, thoughts, and feelings” (pg 143). [134] There are, of course, limitations to how much we can infer about the past; however, Seixas and Morton (2013) suggest that acknowledging the limitations of what we can know about the past is part of “healthy historical thinking” (pg 143). [134] Learners can develop their understanding of historical perspective by observing the contrast between past and present ways of life and worldviews, identifying universal human traits that transcend time periods (e.g., love for a child), and avoiding presentism and anachronism . [134] A greater understanding of historical perspective will be useful for students when encountering conflicting historical accounts as they will be able to see where the historical actors are “coming from” and therefore better understand their actions. Historical perspective and ethics are related. Seixas and Morton (2013) argue that “the ethical dimension of historical thinking helps to imbue the study of history with meaning” (pg 170). [134] To understand the moral reasons for an individual's actions we need to understand the influence of historical, geographical, and cultural context. Additionally, to understand ethical consequences of the past we make moral judgments which require “empathetic understanding[;] an understanding of the differences between our moral universe and theirs” (Seixas and Peck, 2004, pg 113). [137] People with little experience with historical thinking have difficulty separating the moral standards of today’s society with the societies of the past. Additionally, students tend to judge other cultures more critically than their own; oftentimes defending or justifying actions of their own nations. [138] Therefore, Lopez, Carretero and Rodriguez-Moneo (2014) suggest using national narratives of nations different from the learner’s own nation to more effectively develop critical historical thinking. As the learner becomes proficient at analyzing the ethical decisions of the past, they can translate these skills to analyzing present-day ethical questions. Role playing is a useful instructional strategy for teaching historical perspective. Traditional, face-to-face classrooms allow for dramatic role play activities, debates, and mock trials where students can take on the role of an individual or social group from history. Additionally, educational games and websites allow for the integration of technology while using the role play strategy. Whitworth and Berson (2003) found that, in the 1990-2000s, technology in the social studies classroom was focused mostly on using the internet as a digital version of material that would have otherwise been presented in the classroom. They suggest that alternative uses of technology - such as inquiry-based webquests, simulations, and collaborative working environments - promote interaction and critical thinking skills. [139] One example of a learning object that promotes critical thinking through role playing is the Musee-Mccord’s online game collection ( http://www.mccord-museum.qc.ca/en/keys/games/ ). Specifically, the Victorian Period and the Roaring Twenties games allow the learner to progress through the time period and make decisions appropriate to the historic context of the period. These games are paired with relevant resources from the museum collections which can enhance the learner’s depth of understanding of the period. In terms of teaching strategies for the ethical component of history can be explored through historical narratives, debating ethical positions on historic events, and evaluating and critiquing secondary sources of information for ethical judgements.

To summarize, introducing professional historians’ strategies for studying history is widely regarded as a way to improve historical thinking in students. Professional historian’s cognitive processes of corroborating accounts, critically analyzing sources, and establishing historic context are reflected well by Seixas and Morton’s Big Six Historical Thinking Concepts (2013). Historical thinking gives students the skills to problem solve within the context of history and make sense of the past and connect it to the present in order to broaden the learner’s perspective, understand prevailing social conditions, and influence how they interact with the world. See the Historical Thinking Project’s webpage ( http://historicalthinking.ca/lessons ) for instructional ideas for all the historical competencies.

Instructing through Academic Controversy

Using the technique of Academic Controversy could be an effective way of teaching both argumentation and CT skills to students. Academic controversy involves dividing a cooperative group of four in two pairs of students and assigning them opposing positions of an argument or issue, after which the two pairs each argue for their position. The groups then switch their positions and argue again, finally the group of four is asked to come up with an all-around solution to the problem [140] . This activity can be effective in instructing both aspects of argumentation and CT, though it may be a bit dated. The activity is argumentative by nature, making students come up with reasons and claims for two sets of arguments. This equilibrium is important to the argumentative process because provides the students with an opportunity to evaluate the key points of their argument and the opposition's which could be beneficial in any debate. As well, this activity is geared to engage students in a few aspects of CT such as evaluation, since the students must assess each side of the argument. It also engages metacognitive processes as the students must come up with a synthesized conclusion with their peers of their own arguments, a process which requires them to be both analytical and open minded. This activity is a good way of increasing both CT skills and argumentation as it requires students to be open-minded, but also engage in analytical debate.

Suggested Readings

  • Abrami, P.C., Bernard, R.M., Borokhovski, E., Wade, A., Surkes, M.A., Tamim, R., & Zhang, D. (2008). Instructional Interventions Affecting Critical Thinking Skills and Dispositions: A Stage 1 Meta-Analysis. Review of Educational Research, 78(4). 1102-1134. DOI: 10.3102/0034654308326084.
  • Phan, H.P. (2010). Critical thinking as a self-regulatory process component in teaching and learning. Psicothema, 22(2). 284-292.
  • Kozulin, A. & Presseisen, B.Z. (1995). Mediated Learning Experience and Psychological Tools: Vygotsky’s and Feuerstein’s Perspective in a Study of Student Learning. Educational Psychologist, 30(2), 67-75.
  • Crowell, A., & Kuhn, D. (2011). Dialogic Argumentation as a Vehicle for Developing Young Adolescents’ Thinking. Psychological Science, 22(4), 545-552. DOI: 10.1177/0956797611402512.

External links

  • Critical Thinking: How Children Can Start Thinking Deeply, Part 1
  • Critical Thinking for Kids In Action, Part 2
  • Critical Thinking for Kids In Action, Part 3
  • Critical Thinking for Kids In Action, Part 4
  • Critical Thinking Exercises for Kids
  • ↑ Heijltjes, A., Van Gog, T., & Paas, F. (2014). Improving Students' Critical Thinking: Empirical Support for Explicit Instructions Combined with Practice. Applied Cognitive Psychology, 28(4), 518-530.
  • ↑ a b c d e f g Murphy, K. P., Rowe, M. L., Ramani, G., & Silverman, R. (2014). Promoting Critical-Analytic Thinking in Children and Adolescents at Home and in School. Educational Psychology Review, 26(4), 561-578.
  • ↑ Gick, M. L. (1986). Problem-Solving Strategies. Educational Psychologist, 21(1/2), 99-121.
  • ↑ a b c Ku, K. Y., Ho, I. T., Hau, K., & Lau, E. C. (2014). Integrating direct and Inquiry_Based Instruction in the teaching of critical thinking: An intervention study. Instructional Science, 42(2), 251-169.
  • ↑ a b c d e f g h i j k l m n o p q Mathews, S. R., & Lowe, K. (2011). Classroom environments that foster a Disposition for Critical Thinking . Learning Environments Research, 14(1), 59-73.
  • ↑ Glaser, E. M. (1941). An Experiment in the Development of Critical Thinking. Columbia University.
  • ↑ a b c d Phan, H.P. (2010). Critical thinking as a self-regulatory process component in teaching and learning. Psicothema, 22(2). 284-292.
  • ↑ a b c d e f Moon, J. (2007). Critical Thinking: An Exploration of Theory and Practice (1st ed.). London ; New York: Routledge.
  • ↑ a b Kurfiss, J. G. (1988). Critical Thinking: Theory, Research, Practice, and Possibilities: ASHE-ERIC/Higher Education Research Report, Volume 17, Number 2, 1988 (1st ed.). Washington, D.C: Jossey-Bass.
  • ↑ a b Board on Testing and Assessment, Division of Behavioral and Social Sciences and Education, & National Research Council. (2011). Assessing 21st Century Skills: Summary of a Workshop. National Academies Press.
  • ↑ a b Mason, M. (2009). Critical Thinking and Learning. John Wiley & Sons.
  • ↑ a b Elder, L., & Paul, R. (2009). The Art of Asking Essential Questions (5th Edition). Dillon Beach, CA: Foundation for Critical Thinking
  • ↑ a b c Paul, R., & Elder, L. (2007). The Thinker’s Guide to The Art of Socratic Questioning. Dillon Beach, CA: The Foundation for Critical Thinking.
  • ↑ a b c d Morgan, N., & Saxton, J. (2006). Asking Better Questions (2nd ed.). Markham, ON: Pembroke Publishers.
  • ↑ a b Cain, R. B. (2007). The Socratic Method: Plato’s Use of Philosophical Drama. A&C Black.
  • ↑ Harmon, D. A., & Jones, T. S. (2005). Elementary Education: A Reference Handbook. ABC-CLIO.
  • ↑ Stanley, T., & Moore, B. (2013). Critical Thinking and Formative Assessments: Increasing the Rigor in Your Classroom. Routledge.
  • ↑ a b Jung, I., Nishimura, M., & Sasao, T. (2016). Liberal Arts Education and Colleges in East Asia: Possibilities and Challenges in the Global Age. Springer.
  • ↑ Mason, M. (2009). Critical Thinking and Learning. John Wiley & Sons. p. 8.
  • ↑ Davies, M., & Barnett, R. (2015). The Palgrave Handbook of Critical Thinking in Higher Education. Springer.
  • ↑ a b c d Cibáková, D. (2015). Methods of developing critical thinking when working with educative texts. E-Pedagogium, (2), 135-145.
  • ↑ Garcia, T., & Pintrich, P. R. (1992). Critical Thinking and Its Relationship to Motivation, Learning Strategies, and Classroom Experience. 2-30.
  • ↑ a b Halpern, D. F. (2013). Thought and Knowledge: An Introduction to Critical Thinking. Psychology Press.
  • ↑ Browne, M. N., & Keeley, S. M. (2006). Asking the Right Questions: A Guide to Critical Thinking (8th ed.). Upper Saddle River, N.J: Prentice Hall.
  • ↑ Elder, L., & Paul, R. (2009). The Art of Asking Essential Questions (5th Edition). Dillon Beach, CA: Foundation for Critical Thinking. p. 3.
  • ↑ Micarelli, A., Stamper, J., & Panourgia, K. (2016). Intelligent Tutoring Systems: 13th International Conference, ITS 2016, Zagreb, Croatia, June 7-10, 2016. Proceedings. Springer.
  • ↑ a b c d e Conklin, W., & Teacher Created Materials. (2012). Strategies for Developing Higher-Order Thinking Skills, Grades 6 - 12. Shell Education.
  • ↑ http://www.janinesmusicroom.com/socratic-questioning-part-i-the-framework.html
  • ↑ Bloom, B. S., Krathwohl, D. R., & Masia, B. B. (1984). Taxonomy of educational objectives: the classification of educational goals. Longman.
  • ↑ Blosser, P. E. (1991). How to Ask the Right Questions. NSTA Press.
  • ↑ Wang, J.-F., & Lau, R. (2013). Advances in Web-Based Learning -- ICWL 2013: 12th International Conference, Kenting, Taiwan, October 6-9, 2013, Proceedings. Springer.
  • ↑ a b Gregory, G., & Kaufeldt, M. (2015). The Motivated Brain: Improving Student Attention, Engagement, and Perseverance. ASCD.
  • ↑ Carol, K., & Sandi, Z. (2014). Q Tasks, 2nd Edition: How to empower students to ask questions and care about answers. Pembroke Publishers Limited.
  • ↑ a b Doubet, K. J., & Hockett, J. A. (2015). Differentiation in Middle and High School: Strategies to Engage All Learners. ASCD.
  • ↑ a b c http://www.educ.kent.edu/fundedprojects/tspt/units/sixfacets.htm
  • ↑ a b McTighe, J., & Wiggins, G. (2013). Essential Questions: Opening Doors to Student Understanding (1st ed.). Alexandria, Va. USA: Association for Supervision & Curriculum Development.
  • ↑ a b c d e f g h i j k l m n o p q Bruning, G.J. Schraw & M.M. Norby (2011) Cognitive Psychology and Instruction (5th Ed). New York: Pearson.
  • ↑ Anderson, J. R. Cognitive Psychology and Its Implications. New York: Freeman, 1980
  • ↑ a b Mayer, R. E., & Wittrock, R. C. (2006). Problem solving. In P. A. Alexander & P. H. Winne (Eds.), Handbook of educational psychology (2nd ed., pp. 287–304). Mahwah, NJ: Erlbaum.
  • ↑ Snyder, M. J., & Snyder, L. G. (2008). Teaching critical thinking and Problem solving skills. Delta Pi Epsilon Journal, L(2), 90-99.
  • ↑ a b c Voss, J. F. (1988). Problem solving and reasoning in ill-structured domains. In C. Antaki (Ed.), Analyzing everyday explanation: A casebook of methods (pp. 74-93). London: SAGE Publications.
  • ↑ a b Pretz, J. E., Naples, A. J., & Sternberg, R. J. (2003). Recognizing, defining, and representing problems. In J. E. Davidson and R. J. Sternberg (Eds.), The psychology of problem solving (pp. 3–30). Cambridge, UK: Cam- bridge University Press.
  • ↑ a b c d Shin, N., Jonassen, D. H., & McGee, S. (2003). Predictors of Well-Structured and Ill-Structured Problem Solving in an Astronomy Simulation. Journal Of Research In Science Teaching, 40(1), 6-33.8
  • ↑ Simon, D. P. (1978). Information processing theory of human problem solving. In W. K. Estes (Ed.), Handbook of learning and cognitive process. Hillsdale, NJ: Lawrence Erlbau
  • ↑ Kitchener, K.S., Cognition, metacognition, and epistemic cognition. Human Development, 1983. 26: p. 222-232.
  • ↑ Schraw G., Dunkle, M. E., & Bendixen L. D. (1995). Cognitive processes in well-structured and ill-structured problem solving. Applied Cognitive Psychology, 9, 523–538.
  • ↑ Cho, K. L., & Jonassen, D. H. (2002) The effects of argumentation scaffolds on argumentation and problem solving. Educational Technology: Research & Development, 50(3), 5-22.
  • ↑ a b Jonassen, D. H. (2000). Revisiting activity theory as a framework for designing student-centered learning environments. In D. H. Jonassen, S. M. Land, D. H. Jonassen, S. M. Land (Eds.) , Theoretical foundations of learning environments (pp. 89-121). Mahwah, NJ, US: Lawrence Erlbaum Associates Publishers.
  • ↑ Spiro, R. J., Feltovich, P. J., Jacobson, M. J., & Coulson, R. L. (1992). Cognitive flexibility, constructivism, and hypertext: Random access instruction for advanced knowledge acquisition in ill-structured domains. In T. M. Duffy, D. H. Jonassen, T. M. Duffy, D. H. Jonassen (Eds.) , Constructivism and the technology of instruction: A conversation (pp. 57-75). Hillsdale, NJ, England: Lawrence Erlbaum Associates, Inc.
  • ↑ a b c d e Barrows, H. S. (1996). “Problem-based learning in medicine and beyond: A brief overview.” In L. Wilkerson & W. H. Gijselaers (Eds.), Bringing Problem-Based Learning to higher education: Theory and practice (pp. 3-12). San Francisco: Jossey Bass.
  • ↑ a b (Barron, B., & Darling-Hammond, L. (2008). Teaching for meaningful learning: A review of research on inquiry-based and cooperative learning. Powerful Learning: What We Know About Teaching for Understanding (pp. 11-70). San Francisco, CA: Jossey-Bass.)
  • ↑ Dochy, F., Segers, M., Van den Bossche, P., & Gijbels, D. (2003). Effects of problembased learning: A meta-analysis. Learning and Instruction, 13, 533–568.
  • ↑ Williams, D., Hemstreet, S., Liu, M.& Smith, V. (1998). Examining how middle school students use problem-based learning software. Unpublished paper presented at the ED-Media/ED Telecom ‘98 world Conference on Educational Multimedia and Hypermedia & World Conference on Educational Telecommunications, Freiberg, Germany.
  • ↑ Gallagher, S. A., Stepien, W. J., & Rosenthal, H. (1992). The effects of problem based learning on problem solving. Gifted Child Quarterly, 36, 195–200. Gertzman, A., & Kolodner, J. L.
  • ↑ Bruning, G.J. Schraw & M.M. Norby (2011) Cognitive Psychology and Instruction (5th Ed). New York: Pearson.
  • ↑ Martin, L., and D. L. Schwartz. 2009. “Prospective Adaptation in the Use of External Representations.” Cognition and Instruction 27 (4): 370–400. doi:10.1080/
  • ↑ Chambers, D., and D. Reisberg. 1985. “Can Mental Images Be Ambiguous?” Journal of Experimental Psychology: Human A pragmatic perspective on visual representation and creative thinking Perception and Performance 11 (3): 317–328.
  • ↑ a b Öllinger, M., Jones, G., & Knoblich, G. (2008). Investigating the effect of mental set on insight problem solving. Experimental Psychology, 55(4), 269-282. doi:10.1027/1618-3169.55.4.269
  • ↑ Duncker, K. (1945). On Problem Solving. Psychological Monograph, Whole No. 270.
  • ↑ a b c McCaffrey, T. (2012). Innovation relies on the obscure: A key to overcoming the classic problem of functional fixedness. Psychological Science, 23(3), 215-218.
  • ↑ a b Taconis, R., Ferguson-Hessler, M. G. M., & Broekkamp, H. (2002). Teaching science problem solving: An overview of experimental work. Journal of Research in Science Teaching, 38, 442–46
  • ↑ Bransford, J. D., Brown, A. L., & Cocking, R. R. (Eds.). (2000). How people learn: Brain, mind, experience, and school. Washington, DC: National Academies Press.
  • ↑ a b Novick, L. R., & Bassok, M. (2005). Problem solving. In K. Holyoak & R. Morrison (Eds.), The Cambridge handbook of thinking and reasoning (pp. 321–350). Cambridge, UK: Cambridge University Press.
  • ↑ Fuchs, L. S., Fuchs, D., Stuebing, K., Fletcher, J. M., Hamlett, C. L., & Lambert, W. (2008). Problem solving and computational skills: Are they shared or distinct aspects of mathematical cognition? Journal of Educa- tional Psychology, 100, 30–
  • ↑ a b McNeill, K., & Krajcik, J. (2008). Scientific explanations: Characterizing and evaluating the effects of teachers’ instructional practices on student learning. Journal of Research in Science Teaching, 45, 53–78.
  • ↑ a b c d e Aleven, V. A. W. M. M., & Koedinger, K. R. (2002) An effective meta-cognitive strategy: learning by doing and explaining with a computer-based Cognitive Tutor. Cognitive Science, 26(2), 147–179.
  • ↑ a b c d e f g h i Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive Tutors: Lessons learned. Journal of the Learning Sciences, 4(2), 167.
  • ↑ a b c d e f Corbett, A. T., & Anderson, J. R. (2001). Locus of feedback control in computer-based tutoring: Impact on learning rate, achievement and attitudes. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 245–252). New York, NY, USA: ACM.
  • ↑ a b c d e f g Koedinger, K. R., & Corbett, A. (2006). Cognitive tutors. The Cambridge handbook of the learning sciences, 61-77.
  • ↑ Koedinger, K. R. (2002). Toward evidence for instructional design principles: Examples from Cognitive Tutor Math 6. In Proceedings of PME-NA XXXIII (The North American Chapter of the International Group for the Psychology of Mathematics Education).
  • ↑ Corbett, A., Kauffman, L., Maclaren, B., Wagner, A., & J,.ones, E. (2010). A Cognitive Tutor for genetics problem solving: Learning gains and student modeling. Journal of Educational Computing Research, 42(2), 219–239.
  • ↑ Corbett, A. T., & Anderson, J. R. (2008). Knowledge decomposition and sub-goal reification in the ACT programming tutor. Department of Psychology, 81.
  • ↑ Corbett, A. T., & Bhatnagar, A. (1997). Student modelling in the ACT programming tutor: Adjusting a procedural learning model with declarative knowledge. In User modelling (pp. 243-254). Springer Vienna.
  • ↑ Corbett, A. (2002). Cognitive tutor algebra I: Adaptive student modelling in widespread classroom use. In Technology and assessment: Thinking ahead. proceedings from a workshop (pp. 50-62).
  • ↑ Koedinger, K. R. & Anderson, J. R. (1993). Effective use of intelligent software in high school math classrooms. In Proceedings of the World Conference on Artificial Intelligence in Education, (pp. 241-248). Charlottesv
  • ↑ Koedinger, K., Anderson, J., Hadley, W., & Mark, M. (1997). Intelligent tutoring goes to school in the big city. Human-Computer Interaction Institute.
  • ↑ Koedinger, K. R., & Corbett, A. (2006). Cognitive tutors. The Cambridge handbook of the learning sciences, 61-77.
  • ↑ Resnick, L. B. (1987). Learning in school and out. Educational Researcher, 16(9), 13-20.
  • ↑ Polya, G. (1957). How to Solve It: A New Aspect of Mathematical Method. (2nd ed.). Princeton, NJ: Princeton University Press.
  • ↑ <Aleven, V. A. W. M. M., & Koedinger, K. R. (2002). An effective metacognitive strategy: learning by doing and explaining with a computer-based Cognitive Tutor. Cognitive Science, 26(2), 147–179. p. 173
  • ↑ Corbett, A., Kauffman, L., Maclaren, B., Wagner, A., & Jones, E. (2010). A Cognitive Tutor for genetics problem solving: Learning gains and student modelling. Journal of Educational Computing Research, 42(2), 219–239.
  • ↑ Morgan, Alistar. (1983). Theoretical Aspects of Project-Based Learning in Higher Education. British Journal of Educational Technology, 14(1), 66-78.
  • ↑ a b c d Blumenfeld, Phyllis C., Elliot Soloway, Ronald W. MArx, Joseph S. Krajick, Mark Guzdial, Annemarie Palincsar.. (1991). Motivating Project-Based Learning: Sustaining the Doing, Supporting the Learning. Educational Psychologist, 26(3&4), 369-398.
  • ↑ a b c d e f Thomas, John W. (2000). A Review of Research on Project-Based Learning. San Rafael: Autodesk Press.
  • ↑ a b van Merriënboer, J. J. G., Clark, R. E., & de Croock, M. B. M. (2002). Blueprints for complex learning: The 4C/ID-model. Educational Technology Research and Development, 50(2), 39–61. doi:10.1007/bf02504993.
  • ↑ a b Dewey, J. (1938). Experience and education. New York: Macmillan.
  • ↑ a b c d e van Merrienboer, J. J. G., Paul A. Kirschner, & Liesbeth Kester. (2004). Taking the Load off a Learner’s Mind: Instructional Design for Complex Learning. Amsterdam: Open University of the Netherlands.
  • ↑ Piaget, Jean; Cook, Margaret (Trans). The construction of reality in the child. New York, NY, US: Basic Books The construction of reality in the child. (1954). xiii 386 pp. http://dx.doi.org/10.1037/11168-000 .
  • ↑ Ames, C. (1992). Classrooms: goals, structures, and student motivation. Journal of Educational Psychology, 84, 261-271.
  • ↑ Helle, Laura, Paivi Tynjara, Erkki Olkinora, Kristi Lonka. (2007). “Aint nothin’ like the real thing”. Motivation and study processes on a work-based project course in information systems design. British Journal of Educational Psychology, 70(2), 397-411.
  • ↑ a b Joseph Krajcik , Phyllis C. Blumenfeld , Ronald W. Marx , Kristin M. Bass , Jennifer Fredricks & Elliot Soloway (1998) Inquiry in Project-Based Science Classrooms: Initial Attempts by Middle School Students, Journal of the Learning Sciences, 7:3-4, 313-350, DOI: 10.1080/10508406.1998.9672057
  • ↑ a b c Gorges, Julia, Thomas Goke. (2015). How do I Know what I can do? Anticipating expectancy of success regarding novel academic tasks. British Journal of Educational Psyschology, 85(1), 75-90.
  • ↑ Hung, C.-M., Hwang, G.-J., & Huang, I. (2012). A Project-based Digital Storytelling Approach for Improving Students' Learning Motivation, Problem-Solving Competence and Learning Achievement. Educational Technology & Society , 15 (4), 368–379. 
  • ↑ a b Efstratia, Douladeli. (2014). Experiential education through project based learning. Procedia – Social and Behavioral Sciences . 152, 1256-1260.
  • ↑ a b c Capraro, R. M., Capraro, M. M., & Morgan, J. (2013). STEM Project-Based Learning: An Integrated Science, Technology, Engineering, and Mathematics (STEM) Approach (2nd Edition). New York, NY: Sense. 
  • ↑ Gary, Kevin. (2013), Project-Based Learning. Computer. (Vol 48:9). Tempe: Arizona State. 
  • ↑ a b c d e f g h Cross, N. (2007). Designerly ways of knowing . Basel, Switzerland: Birkha¨user.
  • ↑ Simon, H. A. (1996). The sciences of the artificial . Cambridge, MA: MIT Press.
  • ↑ Aflatoony, Leila & Ron Wakkary, (2015). Thoughtful Thinkers: Secondary Schooler’s Learning about Design Thinking. Simon Fraser University: Surrey, BC.
  • ↑ a b Koh, Joyce Hwee Ling, Chin Sing Chai, Benjamin Wong, & Huang-Yao Hong. (2015) Design Thinking for Education. Singapore: Springer Science + Business Media.
  • ↑ a b c d Schon, D. A. (1983). The reflective practitioner: How professionals think in action (Vol. 5126). New York, NY: Basic Books.
  • ↑ Hu, Weiping, Philip Adey, Xiaojuan Jia, Jia Liu, Lei Zhang, Jing Li, Xiaomei Dong. (2010). Effects of a “Learn to Think” Intervention programme on primary school students. British Journal of Educational Psychology . 81(4) 537-557.
  • ↑ a b Wells, Alastair. (2013). The importance of design thinking for technological literacy: a phenomenological perspective . International Journal Technol Des Educ. (23:623-636). DOI 10.1007/s10798-012-9207-7.
  • ↑ a b c d Jonassen, D.H., & Kim, B. (2010). Arguing to learn ad learning to argue: design justifications and guidelines. Education Technology & Research Development, 58(4), 439-457. DOI 10.1007/s11423-009-9143-8.
  • ↑ a b c d e f g h Macagno, F., Mayweg-Paus, W., & Kuhn, D. (2014). Argumentation theory in Education Studies: Coding and Improving Students’ Argumentative Strategies. Topoi, 34, 523-537.
  • ↑ a b c Hornikx, J., & Hahn, U. (2012). Reasoning and argumentation: Towards an integrated psychology of argumentation. Thinking & Reasoning, 18(3), 225-243. DOI: 10.1080/13546783.2012.674715.
  • ↑ a b Aufschnaiter, C., Erduran, S., Osborne, J., & Simon, S. (2008). Arguing to learn and learning to argue: Case studies of how students' argumentation relates to their scientific knowledge. Journal of Research in Science Teaching, 45(1), 101-131. doi:10.1002/tea.20213
  • ↑ Bensley, A., Crowe, D., Bernhardt, P., Buckner, C., & Allman, A. (2010). Teaching and assessing CT skills for argument analysis in psychology. Teaching of Psychology, 37(2), 91-96. doi:10.1080/00986281003626656
  • ↑ Glassner, A., & Schwarz, B. B. (2007). What stands and develops between creative and critical thinking? argumentation?. Thinking Skills and Creativity, 2(1), 10-18. doi:10.1016/j.tsc.2006.10.001
  • ↑ Gold J., Holman D., & Thorpe R. (2002). The role of argument analysis and story telling in facilitating critical thinking. Management Learning, 33(3), 371-388. doi:10.1177/1350507602333005
  • ↑ a b c d e f g h Bruning, R. H., Schraw, G. J., & Norby, M. M. (2011). Cognitive psychology and instruction (5th ed.) Pearson.
  • ↑ Chesñevar, I., & Simari, G. (2007). Modelling inference in argumentation through labelled deduction: Formalization and logical properties. Logica Universalis, 2007, Volume 1, Number 1, Page 93, 1(1), 93-124. doi:10.1007/s11787-006-0005-4
  • ↑ Ontañón, S., & Plaza, E. (2015). Coordinated inductive learning using argumentation-based communication. Autonomous Agents and Multi-Agent Systems, 29(2), 266-304. doi:10.1007/s10458-014-9256-2
  • ↑ Pinto, M., Iliceto, P., & Melagno, S. (2012). Argumentative abilities in metacognition and in metalinguistics: A study on university students. European Journal of Psychology of Education, 27(1), 35-58. doi:10.1007/s10212-011-0064-7
  • ↑ Bensley, A., Crowe, D., Bernhardt, P., Buckner, C., & Allman, A. (2010). Teaching and assessing critical thinking skills for argument analysis in psychology. Teaching of Psychology, 37(2), 91-96. doi:10.1080/00986281003626656
  • ↑ Demir, B., & İsleyen, T. (2015). The effects of argumentation based science learning approach on creative thinking skills of students. Educational Research Quarterly, 39(1), 49-82.
  • ↑ Chandler, S. & Dedman, D.E. (2012). Writing a Literature Review: An Essential Component of Critical Thinking. The Journal of Baccalaureate Social Work, 17. 160-165.
  • ↑ a b c d Al-Faoury, O.H., & Khwaileh, F. (2014). The Effect of Teaching CoRT Program No. (4) Entitles “Creativity” on the Gifted Learners’ Writing in Ein El-Basha Center for Gifted Students. Theory and Practice in Language Studies, 4(11), 2249-2257. doi:10.4304/tpls.4.11.2249-2257.
  • ↑ a b c Kozulin, A. & Presseisen, B.Z. (1995). Mediated Learning Experience and Psychological Tools: Vygotsky’s and Feuerstein’s Perspective in a Study of Student Learning. Educational Psychologist, 30(2), 67-75.
  • ↑ Presseisen, B.Z. & Kozulin, A. (1992). Mediated Learning – The Contributions of Vygotsky and Feuerstein in Theory and Practice.
  • ↑ Schuler, G. (1974). The Effectiveness of the Productive Thinking Program. Paper presented at the Annual Meeting of the American Educational Research Association. Retrieved from: http://www.eric.ed.gov/contentdelivery/servlet/ERICServlet?accno=ED103479 .
  • ↑ a b c d Crowell, A., & Kuhn, D. (2014). Developing dialogic argumentation skills: A 3-year intervention study. Journal of Cognition and Development, 15(2), 363-381. doi:10.1080/15248372.2012.725187
  • ↑ a b c d Crowell, A., & Kuhn, D. (2011). Dialogic Argumentation as a Vehicle for Developing Young Adolescents’ Thinking. Psychological Science, 22(4), 545-552. DOI: 10.1177/0956797611402512.
  • ↑ Jonassen, D.H., & Kim, B. (2010). Arguing to learn ad learning to argue: design justifications and guidelines. Education Technology & Research Development, 58(4), 439-457. DOI 10.1007/s11423-009-9143-8.
  • ↑ a b c d Bathgate, M., Crowell, A., Schunn, C., Cannady, M., & Dorph, R. (2015). The learning benefits of being willing and able to engage in scientific argumentation. International Journal of Science Education, 37(10), 1590-1612. doi:10.1080/09500693.2015.1045958
  • ↑ a b c d e Seixas, P., Morton, T., Colyer, J., & Fornazzari, S. (2013). The Big Six: Historical thinking Concepts. Toronto: Nelson Education.
  • ↑ Osborne, K. (2013). Forward. Seixas, P., Morton, T., Colyer, J., & Fornazzari, S. The Big Six: Historical thinking Concepts. Toronto: Nelson Education.
  • ↑ a b Carretero, M., & van Alphen, F. (2014). Do Master Narratives Change Among High School Students? A Characterization of How National History Is Represented. Cognition and Instruction, 32(3), 290–312. http://doi.org/10.1080/07370008.2014.919298
  • ↑ a b c Freedman, E. B. (2015). “What Happened Needs to Be Told”: Fostering Critical Historical Reasoning in the Classroom. Cognition and Instruction, 33(4), 357–398. http://doi.org/10.1080/07370008.2015.1101465
  • ↑ a b c Wineburg, S. S. (1991). Historical problem solving: A study of the cognitive processes used in the evaluation of documentary and pictorial evidence. Journal of Educational Psychology, 83(1), 73–87. http://doi.org/10.1037/0022-0663.83.1.73
  • ↑ Freedman, E. B. (2015). “What Happened Needs to Be Told”: Fostering Critical Historical Reasoning in the Classroom. Cognition and Instruction, 33(4), 357–398. http://doi.org/10.1080/07370008.2015.1101465
  • ↑ a b c d e f g h i Seixas, P., Morton, T., Colyer, J., & Fornazzari, S. (2013). The Big Six: Historical thinking Concepts. Toronto: Nelson Education.
  • ↑ Blackenship, W. (2009). Making connections: Using online discussion forums to engage students in historical inquiry. Social Education, 73(3), 127-130.
  • ↑ Shreiner, T. L. (2014). Using Historical Knowledge to Reason About Contemporary Political Issues: An Expert–Novice Study. Cognition and Instruction, 32(4), 313–352. http://doi.org/10.1080/07370008.2014.948680
  • ↑ Seixas, P., & Peck, C. (2004). Teaching Historical Thinking. Challenges and Prospects for Canadian Social Studies, 109–117.
  • ↑ Lopez, C., Carretero, M., & Rodriguez-Moneo, M. (2014). Telling a national narrative that is not your own. Does it enable critical historical consumption? Culture & Psychology , 20 (4 ), 547–571. http://doi.org/10.1177/1354067X14554156
  • ↑ Whitworth, S. A., & Berson, M. J. (2003). Computer technology in the social studies: An examination of the effectiveness literature (1996-2001). Contemporary Issues in Technology and Teacher Education [Online serial], 2(4). Retrieved from http://www.citejournal.org/volume-2/issue-4-02/social-studies/computer-technology-in-the-social-studies-an-examination-of-the-effectiveness-literature-1996-2001
  • ↑ Johnson, D. W., & Johnson, R. T. (1993). Creative and critical thinking through academic controversy. The American Behavioral Scientist, 37(1), 40-53. Retrieved from https://www.proquest.com/docview/1306753602

rational thinking when problem solving is defined as the ability to

  • Book:Cognition and Instruction

Navigation menu

How to encourage and train students to think rationally

rational thinking when problem solving is defined as the ability to

We all like to think of ourselves as rational actors, but are we really? Much of what we do is guided by habit, emotion, and cognitive biases that encourage us to take mental shortcuts. For students, this can result in faulty conclusions and ineffective learning strategies. Thus, training students’ rational thinking skills — the ability to draw measured conclusions from data, rules, and logic — can have some very real benefits.

Promoting rational thinking can improve students’ problem-solving skills, making them more capable learners across subject areas. Competent rational thinkers have extra tools to help them focus and manage their emotions , benefits that extend well beyond the classroom. While there’s no one-quick-fix for developing skilled rational thinkers, there are some broad techniques you can use to help students cultivate these abilities over time.

Five techniques to encourage students to think rationally

1. welcome questions from students — no matter how big or small.

It might be obvious, but encouraging and welcoming student questions is an essential step towards making them better, clearer thinkers. Rational thinkers are those that take the time to think about things from different angles and explore gaps in knowledge where they find them. Impress upon students that there are no “stupid questions,” and create a space where it is safe for them to think aloud as they come up with new ideas or question existing ones.

Use tricky questions as an opportunity to find the answers together, either through discussion or research. While it’s not always possible to diverge from the lesson plan, student curiosity should be rewarded with time and attention as much as possible!

2. Focus on systematic problem-solving to train trail and error process

rational thinking when problem solving is defined as the ability to

One of the key principles of rational thinking is that many problems can be solved through thinking, with enough time and effort. The inverse of this is the binary attitude that students either know or don’t know how to do something (until they are shown).

Prompt students to work things out on their own through trial and error before testing their conclusions against those of their classmates. Remind students that making errors is an important part of the learning process, as it provides a chance for them to learn from their mistakes.

If you want to try this out in your classroom, consider assigning a Kialo Edu discussion as an essay alternative . Students can use the comment section to help their classmates sharpen their arguments through multiple rounds of peer feedback.

Rather than assigning a grade yourself, tell students they can choose their own grade once they are happy with their work. Activities like this encourage students to actively seek out constructive criticism as a way of strengthening their own ideas.

3. Allow students to explore the range of potential solutions to a problem

rational thinking when problem solving is defined as the ability to

Jonathan Baron, a notable philosopher on the subject of thinking, identifies “insufficient search” as a major obstacle to thinking effectively. 1 He deems this as the failure to consider more than one possible approach or answer to a given problem.

To train students to think “outside of the box,” give them lots of opportunities to tackle complex topics for which there are no easy — or singularly correct — answers. Open-ended classroom discussions on social and philosophical problems can stimulate this kind of thinking, which some studies have even linked to improvements across foundational skills like reading and math.

If you’re looking for ideas on where to start, Kialo Edu is designed to facilitate this type of wide-ranging discussion, with countless ideas in our library of debate topics to help spark inspiration.

Educators should also take steps to create a classroom culture where students can discuss their ideas freely and won’t feel personally attacked when those ideas are challenged. Emphasize that winning is not the goal of classroom debates, but rather learning something new together.

4. Talk about thinking with your students

For students to develop their rational faculties, they need to be aware of their own thinking. By being more aware, students can train themselves to recognize — and avoid — careless thinking. Reflective practices like learning journals prompt students to visualize how their understanding has progressed with practice and contribute to a growth mindset .

“Showing your work” is also universally applicable, whether students are tackling math problems or defending their position on an ethical question.

5. Practice what you teach by modeling rational thinking

It’s essential that educators model the kind of thinking practices they want students to develop. Be honest about the gaps in your knowledge when they come up, and be willing to change your mind when faced with new evidence. Students should learn that a sign of true intellectual strength is not having been right all along, but having the curiosity and perseverance to work towards the correct answer.

Here at Kialo Edu, we’re passionate about helping to build the next generation of accomplished rational thinkers. That’s why we designed our platform to encourage civil discourse, collaborative learning , and systematic thinking as students work together to build out the different aspects of a debate.

How do you teach your students to think rationally? If you have a technique that works, feel free to reach out and tell us about it on social media, or directly at [email protected]

Looking for more inspiration on how to teach critical thinking in your classroom? We’ve got lots of other resources!

  • Baron, J. (2006). Thinking and Deciding (4th ed., pp.6). Cambridge: Cambridge University Press. doi:10.1017/CBO9780511840265

Want to try Kialo Edu with your class?

Sign up for free and use Kialo Edu to have thoughtful classroom discussions and train students’ argumentation and critical thinking skills.

  • Business Essentials
  • Leadership & Management
  • Credential of Leadership, Impact, and Management in Business (CLIMB)
  • Entrepreneurship & Innovation
  • Digital Transformation
  • Finance & Accounting
  • Business in Society
  • For Organizations
  • Support Portal
  • Media Coverage
  • Founding Donors
  • Leadership Team

rational thinking when problem solving is defined as the ability to

  • Harvard Business School →
  • HBS Online →
  • Business Insights →

Business Insights

Harvard Business School Online's Business Insights Blog provides the career insights you need to achieve your goals and gain confidence in your business skills.

  • Career Development
  • Communication
  • Decision-Making
  • Earning Your MBA
  • Negotiation
  • News & Events
  • Productivity
  • Staff Spotlight
  • Student Profiles
  • Work-Life Balance
  • AI Essentials for Business
  • Alternative Investments
  • Business Analytics
  • Business Strategy
  • Business and Climate Change
  • Design Thinking and Innovation
  • Digital Marketing Strategy
  • Disruptive Strategy
  • Economics for Managers
  • Entrepreneurship Essentials
  • Financial Accounting
  • Global Business
  • Launching Tech Ventures
  • Leadership Principles
  • Leadership, Ethics, and Corporate Accountability
  • Leading Change and Organizational Renewal
  • Leading with Finance
  • Management Essentials
  • Negotiation Mastery
  • Organizational Leadership
  • Power and Influence for Positive Impact
  • Strategy Execution
  • Sustainable Business Strategy
  • Sustainable Investing
  • Winning with Digital Platforms

What Is Creative Problem-Solving & Why Is It Important?

Business team using creative problem-solving

  • 01 Feb 2022

One of the biggest hindrances to innovation is complacency—it can be more comfortable to do what you know than venture into the unknown. Business leaders can overcome this barrier by mobilizing creative team members and providing space to innovate.

There are several tools you can use to encourage creativity in the workplace. Creative problem-solving is one of them, which facilitates the development of innovative solutions to difficult problems.

Here’s an overview of creative problem-solving and why it’s important in business.

Access your free e-book today.

What Is Creative Problem-Solving?

Research is necessary when solving a problem. But there are situations where a problem’s specific cause is difficult to pinpoint. This can occur when there’s not enough time to narrow down the problem’s source or there are differing opinions about its root cause.

In such cases, you can use creative problem-solving , which allows you to explore potential solutions regardless of whether a problem has been defined.

Creative problem-solving is less structured than other innovation processes and encourages exploring open-ended solutions. It also focuses on developing new perspectives and fostering creativity in the workplace . Its benefits include:

  • Finding creative solutions to complex problems : User research can insufficiently illustrate a situation’s complexity. While other innovation processes rely on this information, creative problem-solving can yield solutions without it.
  • Adapting to change : Business is constantly changing, and business leaders need to adapt. Creative problem-solving helps overcome unforeseen challenges and find solutions to unconventional problems.
  • Fueling innovation and growth : In addition to solutions, creative problem-solving can spark innovative ideas that drive company growth. These ideas can lead to new product lines, services, or a modified operations structure that improves efficiency.

Design Thinking and Innovation | Uncover creative solutions to your business problems | Learn More

Creative problem-solving is traditionally based on the following key principles :

1. Balance Divergent and Convergent Thinking

Creative problem-solving uses two primary tools to find solutions: divergence and convergence. Divergence generates ideas in response to a problem, while convergence narrows them down to a shortlist. It balances these two practices and turns ideas into concrete solutions.

2. Reframe Problems as Questions

By framing problems as questions, you shift from focusing on obstacles to solutions. This provides the freedom to brainstorm potential ideas.

3. Defer Judgment of Ideas

When brainstorming, it can be natural to reject or accept ideas right away. Yet, immediate judgments interfere with the idea generation process. Even ideas that seem implausible can turn into outstanding innovations upon further exploration and development.

4. Focus on "Yes, And" Instead of "No, But"

Using negative words like "no" discourages creative thinking. Instead, use positive language to build and maintain an environment that fosters the development of creative and innovative ideas.

Creative Problem-Solving and Design Thinking

Whereas creative problem-solving facilitates developing innovative ideas through a less structured workflow, design thinking takes a far more organized approach.

Design thinking is a human-centered, solutions-based process that fosters the ideation and development of solutions. In the online course Design Thinking and Innovation , Harvard Business School Dean Srikant Datar leverages a four-phase framework to explain design thinking.

The four stages are:

The four stages of design thinking: clarify, ideate, develop, and implement

  • Clarify: The clarification stage allows you to empathize with the user and identify problems. Observations and insights are informed by thorough research. Findings are then reframed as problem statements or questions.
  • Ideate: Ideation is the process of coming up with innovative ideas. The divergence of ideas involved with creative problem-solving is a major focus.
  • Develop: In the development stage, ideas evolve into experiments and tests. Ideas converge and are explored through prototyping and open critique.
  • Implement: Implementation involves continuing to test and experiment to refine the solution and encourage its adoption.

Creative problem-solving primarily operates in the ideate phase of design thinking but can be applied to others. This is because design thinking is an iterative process that moves between the stages as ideas are generated and pursued. This is normal and encouraged, as innovation requires exploring multiple ideas.

Creative Problem-Solving Tools

While there are many useful tools in the creative problem-solving process, here are three you should know:

Creating a Problem Story

One way to innovate is by creating a story about a problem to understand how it affects users and what solutions best fit their needs. Here are the steps you need to take to use this tool properly.

1. Identify a UDP

Create a problem story to identify the undesired phenomena (UDP). For example, consider a company that produces printers that overheat. In this case, the UDP is "our printers overheat."

2. Move Forward in Time

To move forward in time, ask: “Why is this a problem?” For example, minor damage could be one result of the machines overheating. In more extreme cases, printers may catch fire. Don't be afraid to create multiple problem stories if you think of more than one UDP.

3. Move Backward in Time

To move backward in time, ask: “What caused this UDP?” If you can't identify the root problem, think about what typically causes the UDP to occur. For the overheating printers, overuse could be a cause.

Following the three-step framework above helps illustrate a clear problem story:

  • The printer is overused.
  • The printer overheats.
  • The printer breaks down.

You can extend the problem story in either direction if you think of additional cause-and-effect relationships.

4. Break the Chains

By this point, you’ll have multiple UDP storylines. Take two that are similar and focus on breaking the chains connecting them. This can be accomplished through inversion or neutralization.

  • Inversion: Inversion changes the relationship between two UDPs so the cause is the same but the effect is the opposite. For example, if the UDP is "the more X happens, the more likely Y is to happen," inversion changes the equation to "the more X happens, the less likely Y is to happen." Using the printer example, inversion would consider: "What if the more a printer is used, the less likely it’s going to overheat?" Innovation requires an open mind. Just because a solution initially seems unlikely doesn't mean it can't be pursued further or spark additional ideas.
  • Neutralization: Neutralization completely eliminates the cause-and-effect relationship between X and Y. This changes the above equation to "the more or less X happens has no effect on Y." In the case of the printers, neutralization would rephrase the relationship to "the more or less a printer is used has no effect on whether it overheats."

Even if creating a problem story doesn't provide a solution, it can offer useful context to users’ problems and additional ideas to be explored. Given that divergence is one of the fundamental practices of creative problem-solving, it’s a good idea to incorporate it into each tool you use.

Brainstorming

Brainstorming is a tool that can be highly effective when guided by the iterative qualities of the design thinking process. It involves openly discussing and debating ideas and topics in a group setting. This facilitates idea generation and exploration as different team members consider the same concept from multiple perspectives.

Hosting brainstorming sessions can result in problems, such as groupthink or social loafing. To combat this, leverage a three-step brainstorming method involving divergence and convergence :

  • Have each group member come up with as many ideas as possible and write them down to ensure the brainstorming session is productive.
  • Continue the divergence of ideas by collectively sharing and exploring each idea as a group. The goal is to create a setting where new ideas are inspired by open discussion.
  • Begin the convergence of ideas by narrowing them down to a few explorable options. There’s no "right number of ideas." Don't be afraid to consider exploring all of them, as long as you have the resources to do so.

Alternate Worlds

The alternate worlds tool is an empathetic approach to creative problem-solving. It encourages you to consider how someone in another world would approach your situation.

For example, if you’re concerned that the printers you produce overheat and catch fire, consider how a different industry would approach the problem. How would an automotive expert solve it? How would a firefighter?

Be creative as you consider and research alternate worlds. The purpose is not to nail down a solution right away but to continue the ideation process through diverging and exploring ideas.

Which HBS Online Entrepreneurship and Innovation Course is Right for You? | Download Your Free Flowchart

Continue Developing Your Skills

Whether you’re an entrepreneur, marketer, or business leader, learning the ropes of design thinking can be an effective way to build your skills and foster creativity and innovation in any setting.

If you're ready to develop your design thinking and creative problem-solving skills, explore Design Thinking and Innovation , one of our online entrepreneurship and innovation courses. If you aren't sure which course is the right fit, download our free course flowchart to determine which best aligns with your goals.

rational thinking when problem solving is defined as the ability to

About the Author

U.S. flag

An official website of the United States government

The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Browse Titles

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

Hughes RG, editor. Patient Safety and Quality: An Evidence-Based Handbook for Nurses. Rockville (MD): Agency for Healthcare Research and Quality (US); 2008 Apr.

Cover of Patient Safety and Quality

Patient Safety and Quality: An Evidence-Based Handbook for Nurses.

Chapter 6 clinical reasoning, decisionmaking, and action: thinking critically and clinically.

Patricia Benner ; Ronda G. Hughes ; Molly Sutphen .

Affiliations

This chapter examines multiple thinking strategies that are needed for high-quality clinical practice. Clinical reasoning and judgment are examined in relation to other modes of thinking used by clinical nurses in providing quality health care to patients that avoids adverse events and patient harm. The clinician’s ability to provide safe, high-quality care can be dependent upon their ability to reason, think, and judge, which can be limited by lack of experience. The expert performance of nurses is dependent upon continual learning and evaluation of performance.

  • Critical Thinking

Nursing education has emphasized critical thinking as an essential nursing skill for more than 50 years. 1 The definitions of critical thinking have evolved over the years. There are several key definitions for critical thinking to consider. The American Philosophical Association (APA) defined critical thinking as purposeful, self-regulatory judgment that uses cognitive tools such as interpretation, analysis, evaluation, inference, and explanation of the evidential, conceptual, methodological, criteriological, or contextual considerations on which judgment is based. 2 A more expansive general definition of critical thinking is

. . . in short, self-directed, self-disciplined, self-monitored, and self-corrective thinking. It presupposes assent to rigorous standards of excellence and mindful command of their use. It entails effective communication and problem solving abilities and a commitment to overcome our native egocentrism and sociocentrism. Every clinician must develop rigorous habits of critical thinking, but they cannot escape completely the situatedness and structures of the clinical traditions and practices in which they must make decisions and act quickly in specific clinical situations. 3

There are three key definitions for nursing, which differ slightly. Bittner and Tobin defined critical thinking as being “influenced by knowledge and experience, using strategies such as reflective thinking as a part of learning to identify the issues and opportunities, and holistically synthesize the information in nursing practice” 4 (p. 268). Scheffer and Rubenfeld 5 expanded on the APA definition for nurses through a consensus process, resulting in the following definition:

Critical thinking in nursing is an essential component of professional accountability and quality nursing care. Critical thinkers in nursing exhibit these habits of the mind: confidence, contextual perspective, creativity, flexibility, inquisitiveness, intellectual integrity, intuition, openmindedness, perseverance, and reflection. Critical thinkers in nursing practice the cognitive skills of analyzing, applying standards, discriminating, information seeking, logical reasoning, predicting, and transforming knowledge 6 (Scheffer & Rubenfeld, p. 357).

The National League for Nursing Accreditation Commission (NLNAC) defined critical thinking as:

the deliberate nonlinear process of collecting, interpreting, analyzing, drawing conclusions about, presenting, and evaluating information that is both factually and belief based. This is demonstrated in nursing by clinical judgment, which includes ethical, diagnostic, and therapeutic dimensions and research 7 (p. 8).

These concepts are furthered by the American Association of Colleges of Nurses’ definition of critical thinking in their Essentials of Baccalaureate Nursing :

Critical thinking underlies independent and interdependent decision making. Critical thinking includes questioning, analysis, synthesis, interpretation, inference, inductive and deductive reasoning, intuition, application, and creativity 8 (p. 9).
Course work or ethical experiences should provide the graduate with the knowledge and skills to:
  • Use nursing and other appropriate theories and models, and an appropriate ethical framework;
  • Apply research-based knowledge from nursing and the sciences as the basis for practice;
  • Use clinical judgment and decision-making skills;
  • Engage in self-reflective and collegial dialogue about professional practice;
  • Evaluate nursing care outcomes through the acquisition of data and the questioning of inconsistencies, allowing for the revision of actions and goals;
  • Engage in creative problem solving 8 (p. 10).

Taken together, these definitions of critical thinking set forth the scope and key elements of thought processes involved in providing clinical care. Exactly how critical thinking is defined will influence how it is taught and to what standard of care nurses will be held accountable.

Professional and regulatory bodies in nursing education have required that critical thinking be central to all nursing curricula, but they have not adequately distinguished critical reflection from ethical, clinical, or even creative thinking for decisionmaking or actions required by the clinician. Other essential modes of thought such as clinical reasoning, evaluation of evidence, creative thinking, or the application of well-established standards of practice—all distinct from critical reflection—have been subsumed under the rubric of critical thinking. In the nursing education literature, clinical reasoning and judgment are often conflated with critical thinking. The accrediting bodies and nursing scholars have included decisionmaking and action-oriented, practical, ethical, and clinical reasoning in the rubric of critical reflection and thinking. One might say that this harmless semantic confusion is corrected by actual practices, except that students need to understand the distinctions between critical reflection and clinical reasoning, and they need to learn to discern when each is better suited, just as students need to also engage in applying standards, evidence-based practices, and creative thinking.

The growing body of research, patient acuity, and complexity of care demand higher-order thinking skills. Critical thinking involves the application of knowledge and experience to identify patient problems and to direct clinical judgments and actions that result in positive patient outcomes. These skills can be cultivated by educators who display the virtues of critical thinking, including independence of thought, intellectual curiosity, courage, humility, empathy, integrity, perseverance, and fair-mindedness. 9

The process of critical thinking is stimulated by integrating the essential knowledge, experiences, and clinical reasoning that support professional practice. The emerging paradigm for clinical thinking and cognition is that it is social and dialogical rather than monological and individual. 10–12 Clinicians pool their wisdom and multiple perspectives, yet some clinical knowledge can be demonstrated only in the situation (e.g., how to suction an extremely fragile patient whose oxygen saturations sink too low). Early warnings of problematic situations are made possible by clinicians comparing their observations to that of other providers. Clinicians form practice communities that create styles of practice, including ways of doing things, communication styles and mechanisms, and shared expectations about performance and expertise of team members.

By holding up critical thinking as a large umbrella for different modes of thinking, students can easily misconstrue the logic and purposes of different modes of thinking. Clinicians and scientists alike need multiple thinking strategies, such as critical thinking, clinical judgment, diagnostic reasoning, deliberative rationality, scientific reasoning, dialogue, argument, creative thinking, and so on. In particular, clinicians need forethought and an ongoing grasp of a patient’s health status and care needs trajectory, which requires an assessment of their own clarity and understanding of the situation at hand, critical reflection, critical reasoning, and clinical judgment.

Critical Reflection, Critical Reasoning, and Judgment

Critical reflection requires that the thinker examine the underlying assumptions and radically question or doubt the validity of arguments, assertions, and even facts of the case. Critical reflective skills are essential for clinicians; however, these skills are not sufficient for the clinician who must decide how to act in particular situations and avoid patient injury. For example, in everyday practice, clinicians cannot afford to critically reflect on the well-established tenets of “normal” or “typical” human circulatory systems when trying to figure out a particular patient’s alterations from that typical, well-grounded understanding that has existed since Harvey’s work in 1628. 13 Yet critical reflection can generate new scientifically based ideas. For example, there is a lack of adequate research on the differences between women’s and men’s circulatory systems and the typical pathophysiology related to heart attacks. Available research is based upon multiple, taken-for-granted starting points about the general nature of the circulatory system. As such, critical reflection may not provide what is needed for a clinician to act in a situation. This idea can be considered reasonable since critical reflective thinking is not sufficient for good clinical reasoning and judgment. The clinician’s development of skillful critical reflection depends upon being taught what to pay attention to, and thus gaining a sense of salience that informs the powers of perceptual grasp. The powers of noticing or perceptual grasp depend upon noticing what is salient and the capacity to respond to the situation.

Critical reflection is a crucial professional skill, but it is not the only reasoning skill or logic clinicians require. The ability to think critically uses reflection, induction, deduction, analysis, challenging assumptions, and evaluation of data and information to guide decisionmaking. 9 , 14 , 15 Critical reasoning is a process whereby knowledge and experience are applied in considering multiple possibilities to achieve the desired goals, 16 while considering the patient’s situation. 14 It is a process where both inductive and deductive cognitive skills are used. 17 Sometimes clinical reasoning is presented as a form of evaluating scientific knowledge, sometimes even as a form of scientific reasoning. Critical thinking is inherent in making sound clinical reasoning. 18

An essential point of tension and confusion exists in practice traditions such as nursing and medicine when clinical reasoning and critical reflection become entangled, because the clinician must have some established bases that are not questioned when engaging in clinical decisions and actions, such as standing orders. The clinician must act in the particular situation and time with the best clinical and scientific knowledge available. The clinician cannot afford to indulge in either ritualistic unexamined knowledge or diagnostic or therapeutic nihilism caused by radical doubt, as in critical reflection, because they must find an intelligent and effective way to think and act in particular clinical situations. Critical reflection skills are essential to assist practitioners to rethink outmoded or even wrong-headed approaches to health care, health promotion, and prevention of illness and complications, especially when new evidence is available. Breakdowns in practice, high failure rates in particular therapies, new diseases, new scientific discoveries, and societal changes call for critical reflection about past assumptions and no-longer-tenable beliefs.

Clinical reasoning stands out as a situated, practice-based form of reasoning that requires a background of scientific and technological research-based knowledge about general cases, more so than any particular instance. It also requires practical ability to discern the relevance of the evidence behind general scientific and technical knowledge and how it applies to a particular patient. In dong so, the clinician considers the patient’s particular clinical trajectory, their concerns and preferences, and their particular vulnerabilities (e.g., having multiple comorbidities) and sensitivities to care interventions (e.g., known drug allergies, other conflicting comorbid conditions, incompatible therapies, and past responses to therapies) when forming clinical decisions or conclusions.

Situated in a practice setting, clinical reasoning occurs within social relationships or situations involving patient, family, community, and a team of health care providers. The expert clinician situates themselves within a nexus of relationships, with concerns that are bounded by the situation. Expert clinical reasoning is socially engaged with the relationships and concerns of those who are affected by the caregiving situation, and when certain circumstances are present, the adverse event. Halpern 19 has called excellent clinical ethical reasoning “emotional reasoning” in that the clinicians have emotional access to the patient/family concerns and their understanding of the particular care needs. Expert clinicians also seek an optimal perceptual grasp, one based on understanding and as undistorted as possible, based on an attuned emotional engagement and expert clinical knowledge. 19 , 20

Clergy educators 21 and nursing and medical educators have begun to recognize the wisdom of broadening their narrow vision of rationality beyond simple rational calculation (exemplified by cost-benefit analysis) to reconsider the need for character development—including emotional engagement, perception, habits of thought, and skill acquisition—as essential to the development of expert clinical reasoning, judgment, and action. 10 , 22–24 Practitioners of engineering, law, medicine, and nursing, like the clergy, have to develop a place to stand in their discipline’s tradition of knowledge and science in order to recognize and evaluate salient evidence in the moment. Diagnostic confusion and disciplinary nihilism are both threats to the clinician’s ability to act in particular situations. However, the practice and practitioners will not be self-improving and vital if they cannot engage in critical reflection on what is not of value, what is outmoded, and what does not work. As evidence evolves and expands, so too must clinical thought.

Clinical judgment requires clinical reasoning across time about the particular, and because of the relevance of this immediate historical unfolding, clinical reasoning can be very different from the scientific reasoning used to formulate, conduct, and assess clinical experiments. While scientific reasoning is also socially embedded in a nexus of social relationships and concerns, the goal of detached, critical objectivity used to conduct scientific experiments minimizes the interactive influence of the research on the experiment once it has begun. Scientific research in the natural and clinical sciences typically uses formal criteria to develop “yes” and “no” judgments at prespecified times. The scientist is always situated in past and immediate scientific history, preferring to evaluate static and predetermined points in time (e.g., snapshot reasoning), in contrast to a clinician who must always reason about transitions over time. 25 , 26

Techne and Phronesis

Distinctions between the mere scientific making of things and practice was first explored by Aristotle as distinctions between techne and phronesis. 27 Learning to be a good practitioner requires developing the requisite moral imagination for good practice. If, for example, patients exercise their rights and refuse treatments, practitioners are required to have the moral imagination to understand the probable basis for the patient’s refusal. For example, was the refusal based upon catastrophic thinking, unrealistic fears, misunderstanding, or even clinical depression?

Techne, as defined by Aristotle, encompasses the notion of formation of character and habitus 28 as embodied beings. In Aristotle’s terms, techne refers to the making of things or producing outcomes. 11 Joseph Dunne defines techne as “the activity of producing outcomes,” and it “is governed by a means-ends rationality where the maker or producer governs the thing or outcomes produced or made through gaining mastery over the means of producing the outcomes, to the point of being able to separate means and ends” 11 (p. 54). While some aspects of medical and nursing practice fall into the category of techne, much of nursing and medical practice falls outside means-ends rationality and must be governed by concern for doing good or what is best for the patient in particular circumstances, where being in a relationship and discerning particular human concerns at stake guide action.

Phronesis, in contrast to techne, includes reasoning about the particular, across time, through changes or transitions in the patient’s and/or the clinician’s understanding. As noted by Dunne, phronesis is “characterized at least as much by a perceptiveness with regard to concrete particulars as by a knowledge of universal principles” 11 (p. 273). This type of practical reasoning often takes the form of puzzle solving or the evaluation of immediate past “hot” history of the patient’s situation. Such a particular clinical situation is necessarily particular, even though many commonalities and similarities with other disease syndromes can be recognized through signs and symptoms and laboratory tests. 11 , 29 , 30 Pointing to knowledge embedded in a practice makes no claim for infallibility or “correctness.” Individual practitioners can be mistaken in their judgments because practices such as medicine and nursing are inherently underdetermined. 31

While phronetic knowledge must remain open to correction and improvement, real events, and consequences, it cannot consistently transcend the institutional setting’s capacities and supports for good practice. Phronesis is also dependent on ongoing experiential learning of the practitioner, where knowledge is refined, corrected, or refuted. The Western tradition, with the notable exception of Aristotle, valued knowledge that could be made universal and devalued practical know-how and experiential learning. Descartes codified this preference for formal logic and rational calculation.

Aristotle recognized that when knowledge is underdetermined, changeable, and particular, it cannot be turned into the universal or standardized. It must be perceived, discerned, and judged, all of which require experiential learning. In nursing and medicine, perceptual acuity in physical assessment and clinical judgment (i.e., reasoning across time about changes in the particular patient or the clinician’s understanding of the patient’s condition) fall into the Greek Aristotelian category of phronesis. Dewey 32 sought to rescue knowledge gained by practical activity in the world. He identified three flaws in the understanding of experience in Greek philosophy: (1) empirical knowing is the opposite of experience with science; (2) practice is reduced to techne or the application of rational thought or technique; and (3) action and skilled know-how are considered temporary and capricious as compared to reason, which the Greeks considered as ultimate reality.

In practice, nursing and medicine require both techne and phronesis. The clinician standardizes and routinizes what can be standardized and routinized, as exemplified by standardized blood pressure measurements, diagnoses, and even charting about the patient’s condition and treatment. 27 Procedural and scientific knowledge can often be formalized and standardized (e.g., practice guidelines), or at least made explicit and certain in practice, except for the necessary timing and adjustments made for particular patients. 11 , 22

Rational calculations available to techne—population trends and statistics, algorithms—are created as decision support structures and can improve accuracy when used as a stance of inquiry in making clinical judgments about particular patients. Aggregated evidence from clinical trials and ongoing working knowledge of pathophysiology, biochemistry, and genomics are essential. In addition, the skills of phronesis (clinical judgment that reasons across time, taking into account the transitions of the particular patient/family/community and transitions in the clinician’s understanding of the clinical situation) will be required for nursing, medicine, or any helping profession.

Thinking Critically

Being able to think critically enables nurses to meet the needs of patients within their context and considering their preferences; meet the needs of patients within the context of uncertainty; consider alternatives, resulting in higher-quality care; 33 and think reflectively, rather than simply accepting statements and performing tasks without significant understanding and evaluation. 34 Skillful practitioners can think critically because they have the following cognitive skills: information seeking, discriminating, analyzing, transforming knowledge, predicating, applying standards, and logical reasoning. 5 One’s ability to think critically can be affected by age, length of education (e.g., an associate vs. a baccalaureate decree in nursing), and completion of philosophy or logic subjects. 35–37 The skillful practitioner can think critically because of having the following characteristics: motivation, perseverance, fair-mindedness, and deliberate and careful attention to thinking. 5 , 9

Thinking critically implies that one has a knowledge base from which to reason and the ability to analyze and evaluate evidence. 38 Knowledge can be manifest by the logic and rational implications of decisionmaking. Clinical decisionmaking is particularly influenced by interpersonal relationships with colleagues, 39 patient conditions, availability of resources, 40 knowledge, and experience. 41 Of these, experience has been shown to enhance nurses’ abilities to make quick decisions 42 and fewer decision errors, 43 support the identification of salient cues, and foster the recognition and action on patterns of information. 44 , 45

Clinicians must develop the character and relational skills that enable them to perceive and understand their patient’s needs and concerns. This requires accurate interpretation of patient data that is relevant to the specific patient and situation. In nursing, this formation of moral agency focuses on learning to be responsible in particular ways demanded by the practice, and to pay attention and intelligently discern changes in patients’ concerns and/or clinical condition that require action on the part of the nurse or other health care workers to avert potential compromises to quality care.

Formation of the clinician’s character, skills, and habits are developed in schools and particular practice communities within a larger practice tradition. As Dunne notes,

A practice is not just a surface on which one can display instant virtuosity. It grounds one in a tradition that has been formed through an elaborate development and that exists at any juncture only in the dispositions (slowly and perhaps painfully acquired) of its recognized practitioners. The question may of course be asked whether there are any such practices in the contemporary world, whether the wholesale encroachment of Technique has not obliterated them—and whether this is not the whole point of MacIntyre’s recipe of withdrawal, as well as of the post-modern story of dispossession 11 (p. 378).

Clearly Dunne is engaging in critical reflection about the conditions for developing character, skills, and habits for skillful and ethical comportment of practitioners, as well as to act as moral agents for patients so that they and their families receive safe, effective, and compassionate care.

Professional socialization or professional values, while necessary, do not adequately address character and skill formation that transform the way the practitioner exists in his or her world, what the practitioner is capable of noticing and responding to, based upon well-established patterns of emotional responses, skills, dispositions to act, and the skills to respond, decide, and act. 46 The need for character and skill formation of the clinician is what makes a practice stand out from a mere technical, repetitious manufacturing process. 11 , 30 , 47

In nursing and medicine, many have questioned whether current health care institutions are designed to promote or hinder enlightened, compassionate practice, or whether they have deteriorated into commercial institutional models that focus primarily on efficiency and profit. MacIntyre points out the links between the ongoing development and improvement of practice traditions and the institutions that house them:

Lack of justice, lack of truthfulness, lack of courage, lack of the relevant intellectual virtues—these corrupt traditions, just as they do those institutions and practices which derive their life from the traditions of which they are the contemporary embodiments. To recognize this is of course also to recognize the existence of an additional virtue, one whose importance is perhaps most obvious when it is least present, the virtue of having an adequate sense of the traditions to which one belongs or which confront one. This virtue is not to be confused with any form of conservative antiquarianism; I am not praising those who choose the conventional conservative role of laudator temporis acti. It is rather the case that an adequate sense of tradition manifests itself in a grasp of those future possibilities which the past has made available to the present. Living traditions, just because they continue a not-yet-completed narrative, confront a future whose determinate and determinable character, so far as it possesses any, derives from the past 30 (p. 207).

It would be impossible to capture all the situated and distributed knowledge outside of actual practice situations and particular patients. Simulations are powerful as teaching tools to enable nurses’ ability to think critically because they give students the opportunity to practice in a simplified environment. However, students can be limited in their inability to convey underdetermined situations where much of the information is based on perceptions of many aspects of the patient and changes that have occurred over time. Simulations cannot have the sub-cultures formed in practice settings that set the social mood of trust, distrust, competency, limited resources, or other forms of situated possibilities.

One of the hallmark studies in nursing providing keen insight into understanding the influence of experience was a qualitative study of adult, pediatric, and neonatal intensive care unit (ICU) nurses, where the nurses were clustered into advanced beginner, intermediate, and expert level of practice categories. The advanced beginner (having up to 6 months of work experience) used procedures and protocols to determine which clinical actions were needed. When confronted with a complex patient situation, the advanced beginner felt their practice was unsafe because of a knowledge deficit or because of a knowledge application confusion. The transition from advanced beginners to competent practitioners began when they first had experience with actual clinical situations and could benefit from the knowledge gained from the mistakes of their colleagues. Competent nurses continuously questioned what they saw and heard, feeling an obligation to know more about clinical situations. In doing do, they moved from only using care plans and following the physicians’ orders to analyzing and interpreting patient situations. Beyond that, the proficient nurse acknowledged the changing relevance of clinical situations requiring action beyond what was planned or anticipated. The proficient nurse learned to acknowledge the changing needs of patient care and situation, and could organize interventions “by the situation as it unfolds rather than by preset goals 48 (p. 24). Both competent and proficient nurses (that is, intermediate level of practice) had at least two years of ICU experience. 48 Finally, the expert nurse had a more fully developed grasp of a clinical situation, a sense of confidence in what is known about the situation, and could differentiate the precise clinical problem in little time. 48

Expertise is acquired through professional experience and is indicative of a nurse who has moved beyond mere proficiency. As Gadamer 29 points out, experience involves a turning around of preconceived notions, preunderstandings, and extends or adds nuances to understanding. Dewey 49 notes that experience requires a prepared “creature” and an enriched environment. The opportunity to reflect and narrate one’s experiential learning can clarify, extend, or even refute experiential learning.

Experiential learning requires time and nurturing, but time alone does not ensure experiential learning. Aristotle linked experiential learning to the development of character and moral sensitivities of a person learning a practice. 50 New nurses/new graduates have limited work experience and must experience continuing learning until they have reached an acceptable level of performance. 51 After that, further improvements are not predictable, and years of experience are an inadequate predictor of expertise. 52

The most effective knower and developer of practical knowledge creates an ongoing dialogue and connection between lessons of the day and experiential learning over time. Gadamer, in a late life interview, highlighted the open-endedness and ongoing nature of experiential learning in the following interview response:

Being experienced does not mean that one now knows something once and for all and becomes rigid in this knowledge; rather, one becomes more open to new experiences. A person who is experienced is undogmatic. Experience has the effect of freeing one to be open to new experience … In our experience we bring nothing to a close; we are constantly learning new things from our experience … this I call the interminability of all experience 32 (p. 403).

Practical endeavor, supported by scientific knowledge, requires experiential learning, the development of skilled know-how, and perceptual acuity in order to make the scientific knowledge relevant to the situation. Clinical perceptual and skilled know-how helps the practitioner discern when particular scientific findings might be relevant. 53

Often experience and knowledge, confirmed by experimentation, are treated as oppositions, an either-or choice. However, in practice it is readily acknowledged that experiential knowledge fuels scientific investigation, and scientific investigation fuels further experiential learning. Experiential learning from particular clinical cases can help the clinician recognize future similar cases and fuel new scientific questions and study. For example, less experienced nurses—and it could be argued experienced as well—can use nursing diagnoses practice guidelines as part of their professional advancement. Guidelines are used to reflect their interpretation of patients’ needs, responses, and situation, 54 a process that requires critical thinking and decisionmaking. 55 , 56 Using guidelines also reflects one’s problem identification and problem-solving abilities. 56 Conversely, the ability to proficiently conduct a series of tasks without nursing diagnoses is the hallmark of expertise. 39 , 57

Experience precedes expertise. As expertise develops from experience and gaining knowledge and transitions to the proficiency stage, the nurses’ thinking moves from steps and procedures (i.e., task-oriented care) toward “chunks” or patterns 39 (i.e., patient-specific care). In doing so, the nurse thinks reflectively, rather than merely accepting statements and performing procedures without significant understanding and evaluation. 34 Expert nurses do not rely on rules and logical thought processes in problem-solving and decisionmaking. 39 Instead, they use abstract principles, can see the situation as a complex whole, perceive situations comprehensively, and can be fully involved in the situation. 48 Expert nurses can perform high-level care without conscious awareness of the knowledge they are using, 39 , 58 and they are able to provide that care with flexibility and speed. Through a combination of knowledge and skills gained from a range of theoretical and experiential sources, expert nurses also provide holistic care. 39 Thus, the best care comes from the combination of theoretical, tacit, and experiential knowledge. 59 , 60

Experts are thought to eventually develop the ability to intuitively know what to do and to quickly recognize critical aspects of the situation. 22 Some have proposed that expert nurses provide high-quality patient care, 61 , 62 but that is not consistently documented—particularly in consideration of patient outcomes—and a full understanding between the differential impact of care rendered by an “expert” nurse is not fully understood. In fact, several studies have found that length of professional experience is often unrelated and even negatively related to performance measures and outcomes. 63 , 64

In a review of the literature on expertise in nursing, Ericsson and colleagues 65 found that focusing on challenging, less-frequent situations would reveal individual performance differences on tasks that require speed and flexibility, such as that experienced during a code or an adverse event. Superior performance was associated with extensive training and immediate feedback about outcomes, which can be obtained through continual training, simulation, and processes such as root-cause analysis following an adverse event. Therefore, efforts to improve performance benefited from continual monitoring, planning, and retrospective evaluation. Even then, the nurse’s ability to perform as an expert is dependent upon their ability to use intuition or insights gained through interactions with patients. 39

Intuition and Perception

Intuition is the instant understanding of knowledge without evidence of sensible thought. 66 According to Young, 67 intuition in clinical practice is a process whereby the nurse recognizes something about a patient that is difficult to verbalize. Intuition is characterized by factual knowledge, “immediate possession of knowledge, and knowledge independent of the linear reasoning process” 68 (p. 23). When intuition is used, one filters information initially triggered by the imagination, leading to the integration of all knowledge and information to problem solve. 69 Clinicians use their interactions with patients and intuition, drawing on tacit or experiential knowledge, 70 , 71 to apply the correct knowledge to make the correct decisions to address patient needs. Yet there is a “conflated belief in the nurses’ ability to know what is best for the patient” 72 (p. 251) because the nurses’ and patients’ identification of the patients’ needs can vary. 73

A review of research and rhetoric involving intuition by King and Appleton 62 found that all nurses, including students, used intuition (i.e., gut feelings). They found evidence, predominately in critical care units, that intuition was triggered in response to knowledge and as a trigger for action and/or reflection with a direct bearing on the analytical process involved in patient care. The challenge for nurses was that rigid adherence to checklists, guidelines, and standardized documentation, 62 ignored the benefits of intuition. This view was furthered by Rew and Barrow 68 , 74 in their reviews of the literature, where they found that intuition was imperative to complex decisionmaking, 68 difficult to measure and assess in a quantitative manner, and was not linked to physiologic measures. 74

Intuition is a way of explaining professional expertise. 75 Expert nurses rely on their intuitive judgment that has been developed over time. 39 , 76 Intuition is an informal, nonanalytically based, unstructured, deliberate calculation that facilitates problem solving, 77 a process of arriving at salient conclusions based on relatively small amounts of knowledge and/or information. 78 Experts can have rapid insight into a situation by using intuition to recognize patterns and similarities, achieve commonsense understanding, and sense the salient information combined with deliberative rationality. 10 Intuitive recognition of similarities and commonalities between patients are often the first diagnostic clue or early warning, which must then be followed up with critical evaluation of evidence among the competing conditions. This situation calls for intuitive judgment that can distinguish “expert human judgment from the decisions” made by a novice 79 (p. 23).

Shaw 80 equates intuition with direct perception. Direct perception is dependent upon being able to detect complex patterns and relationships that one has learned through experience are important. Recognizing these patterns and relationships generally occurs rapidly and is complex, making it difficult to articulate or describe. Perceptual skills, like those of the expert nurse, are essential to recognizing current and changing clinical conditions. Perception requires attentiveness and the development of a sense of what is salient. Often in nursing and medicine, means and ends are fused, as is the case for a “good enough” birth experience and a peaceful death.

  • Applying Practice Evidence

Research continues to find that using evidence-based guidelines in practice, informed through research evidence, improves patients’ outcomes. 81–83 Research-based guidelines are intended to provide guidance for specific areas of health care delivery. 84 The clinician—both the novice and expert—is expected to use the best available evidence for the most efficacious therapies and interventions in particular instances, to ensure the highest-quality care, especially when deviations from the evidence-based norm may heighten risks to patient safety. Otherwise, if nursing and medicine were exact sciences, or consisted only of techne, then a 1:1 relationship could be established between results of aggregated evidence-based research and the best path for all patients.

Evaluating Evidence

Before research should be used in practice, it must be evaluated. There are many complexities and nuances in evaluating the research evidence for clinical practice. Evaluation of research behind evidence-based medicine requires critical thinking and good clinical judgment. Sometimes the research findings are mixed or even conflicting. As such, the validity, reliability, and generalizability of available research are fundamental to evaluating whether evidence can be applied in practice. To do so, clinicians must select the best scientific evidence relevant to particular patients—a complex process that involves intuition to apply the evidence. Critical thinking is required for evaluating the best available scientific evidence for the treatment and care of a particular patient.

Good clinical judgment is required to select the most relevant research evidence. The best clinical judgment, that is, reasoning across time about the particular patient through changes in the patient’s concerns and condition and/or the clinician’s understanding, are also required. This type of judgment requires clinicians to make careful observations and evaluations of the patient over time, as well as know the patient’s concerns and social circumstances. To evolve to this level of judgment, additional education beyond clinical preparation if often required.

Sources of Evidence

Evidence that can be used in clinical practice has different sources and can be derived from research, patient’s preferences, and work-related experience. 85 , 86 Nurses have been found to obtain evidence from experienced colleagues believed to have clinical expertise and research-based knowledge 87 as well as other sources.

For many years now, randomized controlled trials (RCTs) have often been considered the best standard for evaluating clinical practice. Yet, unless the common threats to the validity (e.g., representativeness of the study population) and reliability (e.g., consistency in interventions and responses of study participants) of RCTs are addressed, the meaningfulness and generalizability of the study outcomes are very limited. Relevant patient populations may be excluded, such as women, children, minorities, the elderly, and patients with multiple chronic illnesses. The dropout rate of the trial may confound the results. And it is easier to get positive results published than it is to get negative results published. Thus, RCTs are generalizable (i.e., applicable) only to the population studied—which may not reflect the needs of the patient under the clinicians care. In instances such as these, clinicians need to also consider applied research using prospective or retrospective populations with case control to guide decisionmaking, yet this too requires critical thinking and good clinical judgment.

Another source of available evidence may come from the gold standard of aggregated systematic evaluation of clinical trial outcomes for the therapy and clinical condition in question, be generated by basic and clinical science relevant to the patient’s particular pathophysiology or care need situation, or stem from personal clinical experience. The clinician then takes all of the available evidence and considers the particular patient’s known clinical responses to past therapies, their clinical condition and history, the progression or stages of the patient’s illness and recovery, and available resources.

In clinical practice, the particular is examined in relation to the established generalizations of science. With readily available summaries of scientific evidence (e.g., systematic reviews and practice guidelines) available to nurses and physicians, one might wonder whether deep background understanding is still advantageous. Might it not be expendable, since it is likely to be out of date given the current scientific evidence? But this assumption is a false opposition and false choice because without a deep background understanding, the clinician does not know how to best find and evaluate scientific evidence for the particular case in hand. The clinician’s sense of salience in any given situation depends on past clinical experience and current scientific evidence.

Evidence-Based Practice

The concept of evidence-based practice is dependent upon synthesizing evidence from the variety of sources and applying it appropriately to the care needs of populations and individuals. This implies that evidence-based practice, indicative of expertise in practice, appropriately applies evidence to the specific situations and unique needs of patients. 88 , 89 Unfortunately, even though providing evidence-based care is an essential component of health care quality, it is well known that evidence-based practices are not used consistently.

Conceptually, evidence used in practice advances clinical knowledge, and that knowledge supports independent clinical decisions in the best interest of the patient. 90 , 91 Decisions must prudently consider the factors not necessarily addressed in the guideline, such as the patient’s lifestyle, drug sensitivities and allergies, and comorbidities. Nurses who want to improve the quality and safety of care can do so though improving the consistency of data and information interpretation inherent in evidence-based practice.

Initially, before evidence-based practice can begin, there needs to be an accurate clinical judgment of patient responses and needs. In the course of providing care, with careful consideration of patient safety and quality care, clinicians must give attention to the patient’s condition, their responses to health care interventions, and potential adverse reactions or events that could harm the patient. Nonetheless, there is wide variation in the ability of nurses to accurately interpret patient responses 92 and their risks. 93 Even though variance in interpretation is expected, nurses are obligated to continually improve their skills to ensure that patients receive quality care safely. 94 Patients are vulnerable to the actions and experience of their clinicians, which are inextricably linked to the quality of care patients have access to and subsequently receive.

The judgment of the patient’s condition determines subsequent interventions and patient outcomes. Attaining accurate and consistent interpretations of patient data and information is difficult because each piece can have different meanings, and interpretations are influenced by previous experiences. 95 Nurses use knowledge from clinical experience 96 , 97 and—although infrequently—research. 98–100

Once a problem has been identified, using a process that utilizes critical thinking to recognize the problem, the clinician then searches for and evaluates the research evidence 101 and evaluates potential discrepancies. The process of using evidence in practice involves “a problem-solving approach that incorporates the best available scientific evidence, clinicians’ expertise, and patient’s preferences and values” 102 (p. 28). Yet many nurses do not perceive that they have the education, tools, or resources to use evidence appropriately in practice. 103

Reported barriers to using research in practice have included difficulty in understanding the applicability and the complexity of research findings, failure of researchers to put findings into the clinical context, lack of skills in how to use research in practice, 104 , 105 amount of time required to access information and determine practice implications, 105–107 lack of organizational support to make changes and/or use in practice, 104 , 97 , 105 , 107 and lack of confidence in one’s ability to critically evaluate clinical evidence. 108

When Evidence Is Missing

In many clinical situations, there may be no clear guidelines and few or even no relevant clinical trials to guide decisionmaking. In these cases, the latest basic science about cellular and genomic functioning may be the most relevant science, or by default, guestimation. Consequently, good patient care requires more than a straightforward, unequivocal application of scientific evidence. The clinician must be able to draw on a good understanding of basic sciences, as well as guidelines derived from aggregated data and information from research investigations.

Practical knowledge is shaped by one’s practice discipline and the science and technology relevant to the situation at hand. But scientific, formal, discipline-specific knowledge are not sufficient for good clinical practice, whether the discipline be law, medicine, nursing, teaching, or social work. Practitioners still have to learn how to discern generalizable scientific knowledge, know how to use scientific knowledge in practical situations, discern what scientific evidence/knowledge is relevant, assess how the particular patient’s situation differs from the general scientific understanding, and recognize the complexity of care delivery—a process that is complex, ongoing, and changing, as new evidence can overturn old.

Practice communities like individual practitioners may also be mistaken, as is illustrated by variability in practice styles and practice outcomes across hospitals and regions in the United States. This variability in practice is why practitioners must learn to critically evaluate their practice and continually improve their practice over time. The goal is to create a living self-improving tradition.

Within health care, students, scientists, and practitioners are challenged to learn and use different modes of thinking when they are conflated under one term or rubric, using the best-suited thinking strategies for taking into consideration the purposes and the ends of the reasoning. Learning to be an effective, safe nurse or physician requires not only technical expertise, but also the ability to form helping relationships and engage in practical ethical and clinical reasoning. 50 Good ethical comportment requires that both the clinician and the scientist take into account the notions of good inherent in clinical and scientific practices. The notions of good clinical practice must include the relevant significance and the human concerns involved in decisionmaking in particular situations, centered on clinical grasp and clinical forethought.

The Three Apprenticeships of Professional Education

We have much to learn in comparing the pedagogies of formation across the professions, such as is being done currently by the Carnegie Foundation for the Advancement of Teaching. The Carnegie Foundation’s broad research program on the educational preparation of the profession focuses on three essential apprenticeships:

To capture the full range of crucial dimensions in professional education, we developed the idea of a three-fold apprenticeship: (1) intellectual training to learn the academic knowledge base and the capacity to think in ways important to the profession; (2) a skill-based apprenticeship of practice; and (3) an apprenticeship to the ethical standards, social roles, and responsibilities of the profession, through which the novice is introduced to the meaning of an integrated practice of all dimensions of the profession, grounded in the profession’s fundamental purposes. 109

This framework has allowed the investigators to describe tensions and shortfalls as well as strengths of widespread teaching practices, especially at articulation points among these dimensions of professional training.

Research has demonstrated that these three apprenticeships are taught best when they are integrated so that the intellectual training includes skilled know-how, clinical judgment, and ethical comportment. In the study of nursing, exemplary classroom and clinical teachers were found who do integrate the three apprenticeships in all of their teaching, as exemplified by the following anonymous student’s comments:

With that as well, I enjoyed the class just because I do have clinical experience in my background and I enjoyed it because it took those practical applications and the knowledge from pathophysiology and pharmacology, and all the other classes, and it tied it into the actual aspects of like what is going to happen at work. For example, I work in the emergency room and question: Why am I doing this procedure for this particular patient? Beforehand, when I was just a tech and I wasn’t going to school, I’d be doing it because I was told to be doing it—or I’d be doing CPR because, you know, the doc said, start CPR. I really enjoy the Care and Illness because now I know the process, the pathophysiological process of why I’m doing it and the clinical reasons of why they’re making the decisions, and the prioritization that goes on behind it. I think that’s the biggest point. Clinical experience is good, but not everybody has it. Yet when these students transition from school and clinicals to their job as a nurse, they will understand what’s going on and why.

The three apprenticeships are equally relevant and intertwined. In the Carnegie National Study of Nursing Education and the companion study on medical education as well as in cross-professional comparisons, teaching that gives an integrated access to professional practice is being examined. Once the three apprenticeships are separated, it is difficult to reintegrate them. The investigators are encouraged by teaching strategies that integrate the latest scientific knowledge and relevant clinical evidence with clinical reasoning about particular patients in unfolding rather than static cases, while keeping the patient and family experience and concerns relevant to clinical concerns and reasoning.

Clinical judgment or phronesis is required to evaluate and integrate techne and scientific evidence.

Within nursing, professional practice is wise and effective usually to the extent that the professional creates relational and communication contexts where clients/patients can be open and trusting. Effectiveness depends upon mutual influence between patient and practitioner, student and learner. This is another way in which clinical knowledge is dialogical and socially distributed. The following articulation of practical reasoning in nursing illustrates the social, dialogical nature of clinical reasoning and addresses the centrality of perception and understanding to good clinical reasoning, judgment and intervention.

Clinical Grasp *

Clinical grasp describes clinical inquiry in action. Clinical grasp begins with perception and includes problem identification and clinical judgment across time about the particular transitions of particular patients. Garrett Chan 20 described the clinician’s attempt at finding an “optimal grasp” or vantage point of understanding. Four aspects of clinical grasp, which are described in the following paragraphs, include (1) making qualitative distinctions, (2) engaging in detective work, (3) recognizing changing relevance, and (4) developing clinical knowledge in specific patient populations.

Making Qualitative Distinctions

Qualitative distinctions refer to those distinctions that can be made only in a particular contextual or historical situation. The context and sequence of events are essential for making qualitative distinctions; therefore, the clinician must pay attention to transitions in the situation and judgment. Many qualitative distinctions can be made only by observing differences through touch, sound, or sight, such as the qualities of a wound, skin turgor, color, capillary refill, or the engagement and energy level of the patient. Another example is assessing whether the patient was more fatigued after ambulating to the bathroom or from lack of sleep. Likewise the quality of the clinician’s touch is distinct as in offering reassurance, putting pressure on a bleeding wound, and so on. 110

Engaging in Detective Work, Modus Operandi Thinking, and Clinical Puzzle Solving

Clinical situations are open ended and underdetermined. Modus operandi thinking keeps track of the particular patient, the way the illness unfolds, the meanings of the patient’s responses as they have occurred in the particular time sequence. Modus operandi thinking requires keeping track of what has been tried and what has or has not worked with the patient. In this kind of reasoning-in-transition, gains and losses of understanding are noticed and adjustments in the problem approach are made.

We found that teachers in a medical surgical unit at the University of Washington deliberately teach their students to engage in “detective work.” Students are given the daily clinical assignment of “sleuthing” for undetected drug incompatibilities, questionable drug dosages, and unnoticed signs and symptoms. For example, one student noted that an unusual dosage of a heart medication was being given to a patient who did not have heart disease. The student first asked her teacher about the unusually high dosage. The teacher, in turn, asked the student whether she had asked the nurse or the patient about the dosage. Upon the student’s questioning, the nurse did not know why the patient was receiving the high dosage and assumed the drug was for heart disease. The patient’s staff nurse had not questioned the order. When the student asked the patient, the student found that the medication was being given for tremors and that the patient and the doctor had titrated the dosage for control of the tremors. This deliberate approach to teaching detective work, or modus operandi thinking, has characteristics of “critical reflection,” but stays situated and engaged, ferreting out the immediate history and unfolding of events.

Recognizing Changing Clinical Relevance

The meanings of signs and symptoms are changed by sequencing and history. The patient’s mental status, color, or pain level may continue to deteriorate or get better. The direction, implication, and consequences for the changes alter the relevance of the particular facts in the situation. The changing relevance entailed in a patient transitioning from primarily curative care to primarily palliative care is a dramatic example, where symptoms literally take on new meanings and require new treatments.

Developing Clinical Knowledge in Specific Patient Populations

Extensive experience with a specific patient population or patients with particular injuries or diseases allows the clinician to develop comparisons, distinctions, and nuanced differences within the population. The comparisons between many specific patients create a matrix of comparisons for clinicians, as well as a tacit, background set of expectations that create population- and patient-specific detective work if a patient does not meet the usual, predictable transitions in recovery. What is in the background and foreground of the clinician’s attention shifts as predictable changes in the patient’s condition occurs, such as is seen in recovering from heart surgery or progressing through the predictable stages of labor and delivery. Over time, the clinician develops a deep background understanding that allows for expert diagnostic and interventions skills.

Clinical Forethought

Clinical forethought is intertwined with clinical grasp, but it is much more deliberate and even routinized than clinical grasp. Clinical forethought is a pervasive habit of thought and action in nursing practice, and also in medicine, as clinicians think about disease and recovery trajectories and the implications of these changes for treatment. Clinical forethought plays a role in clinical grasp because it structures the practical logic of clinicians. At least four habits of thought and action are evident in what we are calling clinical forethought: (1) future think, (2) clinical forethought about specific patient populations, (3) anticipation of risks for particular patients, and (4) seeing the unexpected.

Future think

Future think is the broadest category of this logic of practice. Anticipating likely immediate futures helps the clinician make good plans and decisions about preparing the environment so that responding rapidly to changes in the patient is possible. Without a sense of salience about anticipated signs and symptoms and preparing the environment, essential clinical judgments and timely interventions would be impossible in the typically fast pace of acute and intensive patient care. Future think governs the style and content of the nurse’s attentiveness to the patient. Whether in a fast-paced care environment or a slower-paced rehabilitation setting, thinking and acting with anticipated futures guide clinical thinking and judgment. Future think captures the way judgment is suspended in a predictive net of anticipation and preparing oneself and the environment for a range of potential events.

Clinical forethought about specific diagnoses and injuries

This habit of thought and action is so second nature to the experienced nurse that the new or inexperienced nurse may have difficulty finding out about what seems to other colleagues as “obvious” preparation for particular patients and situations. Clinical forethought involves much local specific knowledge about who is a good resource and how to marshal support services and equipment for particular patients.

Examples of preparing for specific patient populations are pervasive, such as anticipating the need for a pacemaker during surgery and having the equipment assembled ready for use to save essential time. Another example includes forecasting an accident victim’s potential injuries, and recognizing that intubation might be needed.

Anticipation of crises, risks, and vulnerabilities for particular patients

This aspect of clinical forethought is central to knowing the particular patient, family, or community. Nurses situate the patient’s problems almost like a topography of possibilities. This vital clinical knowledge needs to be communicated to other caregivers and across care borders. Clinical teaching could be improved by enriching curricula with narrative examples from actual practice, and by helping students recognize commonly occurring clinical situations in the simulation and clinical setting. For example, if a patient is hemodynamically unstable, then managing life-sustaining physiologic functions will be a main orienting goal. If the patient is agitated and uncomfortable, then attending to comfort needs in relation to hemodynamics will be a priority. Providing comfort measures turns out to be a central background practice for making clinical judgments and contains within it much judgment and experiential learning.

When clinical teaching is too removed from typical contingencies and strong clinical situations in practice, students will lack practice in active thinking-in-action in ambiguous clinical situations. In the following example, an anonymous student recounted her experiences of meeting a patient:

I was used to different equipment and didn’t know how things went, didn’t know their routine, really. You can explain all you want in class, this is how it’s going to be, but when you get there … . Kim was my first instructor and my patient that she assigned me to—I walked into the room and he had every tube imaginable. And so I was a little overwhelmed. It’s not necessarily even that he was that critical … . She asked what tubes here have you seen? Well, I know peripheral lines. You taught me PICC [peripherally inserted central catheter] lines, and we just had that, but I don’t really feel comfortable doing it by myself, without you watching to make sure that I’m flushing it right and how to assess it. He had a chest tube and I had seen chest tubes, but never really knew the depth of what you had to assess and how you make sure that it’s all kosher and whatever. So she went through the chest tube and explained, it’s just bubbling a little bit and that’s okay. The site, check the site. The site looked okay and that she’d say if it wasn’t okay, this is what it might look like … . He had a feeding tube. I had done feeding tubes but that was like a long time ago in my LPN experiences schooling. So I hadn’t really done too much with the feeding stuff either … . He had a [nasogastric] tube, and knew pretty much about that and I think at the time it was clamped. So there were no issues with the suction or whatever. He had a Foley catheter. He had a feeding tube, a chest tube. I can’t even remember but there were a lot.

As noted earlier, a central characteristic of a practice discipline is that a self-improving practice requires ongoing experiential learning. One way nurse educators can enhance clinical inquiry is by increasing pedagogies of experiential learning. Current pedagogies for experiential learning in nursing include extensive preclinical study, care planning, and shared postclinical debriefings where students share their experiential learning with their classmates. Experiential learning requires open learning climates where students can discuss and examine transitions in understanding, including their false starts, or their misconceptions in actual clinical situations. Nursing educators typically develop open and interactive clinical learning communities, so that students seem committed to helping their classmates learn from their experiences that may have been difficult or even unsafe. One anonymous nurse educator described how students extend their experiential learning to their classmates during a postclinical conference:

So for example, the patient had difficulty breathing and the student wanted to give the meds instead of addressing the difficulty of breathing. Well, while we were sharing information about their patients, what they did that day, I didn’t tell the student to say this, but she said, ‘I just want to tell you what I did today in clinical so you don’t do the same thing, and here’s what happened.’ Everybody’s listening very attentively and they were asking her some questions. But she shared that. She didn’t have to. I didn’t tell her, you must share that in postconference or anything like that, but she just went ahead and shared that, I guess, to reinforce what she had learned that day but also to benefit her fellow students in case that thing comes up with them.

The teacher’s response to this student’s honesty and generosity exemplifies her own approach to developing an open community of learning. Focusing only on performance and on “being correct” prevents learning from breakdown or error and can dampen students’ curiosity and courage to learn experientially.

Seeing the unexpected

One of the keys to becoming an expert practitioner lies in how the person holds past experiential learning and background habitual skills and practices. This is a skill of foregrounding attention accurately and effectively in response to the nature of situational demands. Bourdieu 29 calls the recognition of the situation central to practical reasoning. If nothing is routinized as a habitual response pattern, then practitioners will not function effectively in emergencies. Unexpected occurrences may be overlooked. However, if expectations are held rigidly, then subtle changes from the usual will be missed, and habitual, rote responses will inappropriately rule. The clinician must be flexible in shifting between what is in background and foreground. This is accomplished by staying curious and open. The clinical “certainty” associated with perceptual grasp is distinct from the kind of “certainty” achievable in scientific experiments and through measurements. Recognition of similar or paradigmatic clinical situations is similar to “face recognition” or recognition of “family resemblances.” This concept is subject to faulty memory, false associative memories, and mistaken identities; therefore, such perceptual grasp is the beginning of curiosity and inquiry and not the end. Assessment and validation are required. In rapidly moving clinical situations, perceptual grasp is the starting point for clarification, confirmation, and action. Having the clinician say out loud how he or she is understanding the situation gives an opportunity for confirmation and disconfirmation from other clinicians present. 111 The relationship between foreground and background of attention needs to be fluid, so that missed expectations allow the nurse to see the unexpected. For example, when the background rhythm of a cardiac monitor changes, the nurse notices, and what had been background tacit awareness becomes the foreground of attention. A hallmark of expertise is the ability to notice the unexpected. 20 Background expectations of usual patient trajectories form with experience. Tacit expectations for patient trajectories form that enable the nurse to notice subtle failed expectations and pay attention to early signs of unexpected changes in the patient's condition. Clinical expectations gained from caring for similar patient populations form a tacit clinical forethought that enable the experienced clinician to notice missed expectations. Alterations from implicit or explicit expectations set the stage for experiential learning, depending on the openness of the learner.

Learning to provide safe and quality health care requires technical expertise, the ability to think critically, experience, and clinical judgment. The high-performance expectation of nurses is dependent upon the nurses’ continual learning, professional accountability, independent and interdependent decisionmaking, and creative problem-solving abilities.

This section of the paper was condensed and paraphrased from Benner, Hooper-Kyriakidis, and Stannard. 23 Patricia Hooper-Kyriakidis wrote the section on clinical grasp, and Patricia Benner wrote the section on clinical forethought.

  • Cite this Page Benner P, Hughes RG, Sutphen M. Clinical Reasoning, Decisionmaking, and Action: Thinking Critically and Clinically. In: Hughes RG, editor. Patient Safety and Quality: An Evidence-Based Handbook for Nurses. Rockville (MD): Agency for Healthcare Research and Quality (US); 2008 Apr. Chapter 6.
  • PDF version of this page (147K)

In this Page

  • Clinical Grasp

Other titles in this collection

  • Advances in Patient Safety

Related information

  • PMC PubMed Central citations
  • PubMed Links to PubMed

Similar articles in PubMed

  • Nurses' reasoning process during care planning taking pressure ulcer prevention as an example. A think-aloud study. [Int J Nurs Stud. 2007] Nurses' reasoning process during care planning taking pressure ulcer prevention as an example. A think-aloud study. Funkesson KH, Anbäcken EM, Ek AC. Int J Nurs Stud. 2007 Sep; 44(7):1109-19. Epub 2006 Jun 27.
  • Registered nurses' clinical reasoning skills and reasoning process: A think-aloud study. [Nurse Educ Today. 2016] Registered nurses' clinical reasoning skills and reasoning process: A think-aloud study. Lee J, Lee YJ, Bae J, Seo M. Nurse Educ Today. 2016 Nov; 46:75-80. Epub 2016 Aug 15.
  • Combining the arts: an applied critical thinking approach in the skills laboratory. [Nursingconnections. 2000] Combining the arts: an applied critical thinking approach in the skills laboratory. Peterson MJ, Bechtel GA. Nursingconnections. 2000 Summer; 13(2):43-9.
  • Review About critical thinking. [Dynamics. 2004] Review About critical thinking. Hynes P, Bennett J. Dynamics. 2004 Fall; 15(3):26-9.
  • Review The 'five rights' of clinical reasoning: an educational model to enhance nursing students' ability to identify and manage clinically 'at risk' patients. [Nurse Educ Today. 2010] Review The 'five rights' of clinical reasoning: an educational model to enhance nursing students' ability to identify and manage clinically 'at risk' patients. Levett-Jones T, Hoffman K, Dempsey J, Jeong SY, Noble D, Norton CA, Roche J, Hickey N. Nurse Educ Today. 2010 Aug; 30(6):515-20. Epub 2009 Nov 30.

Recent Activity

  • Clinical Reasoning, Decisionmaking, and Action: Thinking Critically and Clinical... Clinical Reasoning, Decisionmaking, and Action: Thinking Critically and Clinically - Patient Safety and Quality

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

Connect with NLM

National Library of Medicine 8600 Rockville Pike Bethesda, MD 20894

Web Policies FOIA HHS Vulnerability Disclosure

Help Accessibility Careers

statistics

rational thinking when problem solving is defined as the ability to

Explained: Importance of critical thinking, problem-solving skills in curriculum

F uture careers are no longer about domain expertise or technical skills. Rather, critical thinking and problem-solving skills in employees are on the wish list of every big organization today. Even curriculums and pedagogies across the globe and within India are now requiring skilled workers who are able to think critically and are analytical.

The reason for this shift in perspective is very simple.

These skills provide a staunch foundation for comprehensive learning that extends beyond books or the four walls of the classroom. In a nutshell, critical thinking and problem-solving skills are a part of '21st Century Skills' that can help unlock valuable learning for life.

Over the years, the education system has been moving away from the system of rote and other conventional teaching and learning parameters.

They are aligning their curriculums to the changing scenario which is becoming more tech-driven and demands a fusion of critical skills, life skills, values, and domain expertise. There's no set formula for success.

Rather, there's a defined need for humans to be more creative, innovative, adaptive, agile, risk-taking, and have a problem-solving mindset.

In today's scenario, critical thinking and problem-solving skills have become more important because they open the human mind to multiple possibilities, solutions, and a mindset that is interdisciplinary in nature.

Therefore, many schools and educational institutions are deploying AI and immersive learning experiences via gaming, and AR-VR technologies to give a more realistic and hands-on learning experience to their students that hone these abilities and help them overcome any doubt or fear.

ADVANTAGES OF CRITICAL THINKING AND PROBLEM-SOLVING IN CURRICULUM

Ability to relate to the real world:  Instead of theoretical knowledge, critical thinking, and problem-solving skills encourage students to look at their immediate and extended environment through a spirit of questioning, curiosity, and learning. When the curriculum presents students with real-world problems, the learning is immense.

Confidence, agility & collaboration : Critical thinking and problem-solving skills boost self-belief and confidence as students examine, re-examine, and sometimes fail or succeed while attempting to do something.

They are able to understand where they may have gone wrong, attempt new approaches, ask their peers for feedback and even seek their opinion, work together as a team, and learn to face any challenge by responding to it.

Willingness to try new things: When problem-solving skills and critical thinking are encouraged by teachers, they set a robust foundation for young learners to experiment, think out of the box, and be more innovative and creative besides looking for new ways to upskill.

It's important to understand that merely introducing these skills into the curriculum is not enough. Schools and educational institutions must have upskilling workshops and conduct special training for teachers so as to ensure that they are skilled and familiarized with new teaching and learning techniques and new-age concepts that can be used in the classrooms via assignments and projects.

Critical thinking and problem-solving skills are two of the most sought-after skills. Hence, schools should emphasise the upskilling of students as a part of the academic curriculum.

The article is authored by Dr Tassos Anastasiades, Principal- IB, Genesis Global School, Noida. 

Watch Live TV in English

Watch Live TV in Hindi

Explained: Importance of critical thinking, problem-solving skills in curriculum

IMAGES

  1. PPT

    rational thinking when problem solving is defined as the ability to

  2. Albert Einstein Quote: “A problem defined, is a problem half solved.”

    rational thinking when problem solving is defined as the ability to

  3. Introduction to Problem Solving Skills

    rational thinking when problem solving is defined as the ability to

  4. "Well Defined" Problem Solving Made Easy!

    rational thinking when problem solving is defined as the ability to

  5. What is Rational Thinking

    rational thinking when problem solving is defined as the ability to

  6. Albert Einstein Quote: “A problem defined, is a problem half solved.”

    rational thinking when problem solving is defined as the ability to

VIDEO

  1. Logical Reasoning Questions

  2. The Power of Reason: Equipping Yourself for Today and Tomorrow's Challenges 🌟

  3. How To Solve Rational Equations

  4. Solving Rational Equations

  5. The rational function f is defined by an equation in the form f(x) = a/x+b, where a and b are

  6. The rational function f is defined by an equation in the form f(x) = a/x+b, where a and b are

COMMENTS

  1. What Are Critical Thinking Skills and Why Are They Important?

    Problem-solving: Problem-solving is perhaps the most important skill that critical thinkers can possess. The ability to solve issues and bounce back from conflict is what helps you succeed, be a leader, and effect change. One way to properly solve problems is to first recognize there's a problem that needs solving.

  2. Critical Thinking and Decision-Making: What is Critical Thinking?

    Definition. Simply put, critical thinking is the act of deliberately analyzing information so that you can make better judgements and decisions. It involves using things like logic, reasoning, and creativity, to draw conclusions and generally understand things better. This may sound like a pretty broad definition, and that's because critical ...

  3. Critical Thinking

    Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking ...

  4. Critical thinking

    According to a definition analysis by Kompf & Bond (2001), critical thinking involves problem-solving, decision making, metacognition, rationality, rational thinking, reasoning, knowledge, intelligence and also a moral component such as reflective thinking. Critical thinkers therefore need to have reached a level of maturity in their ...

  5. Critical Thinking

    People who score highly in critical thinking assessments are also rated by their managers as having good problem-solving skills, creativity, strong decision-making skills, and good overall performance. [1] ... Rational Thinking, for more information about how to do this. Once you have considered all of the arguments and options rationally, you ...

  6. Critical Thinking and Problem-Solving

    "Most formal definitions characterize critical thinking as the intentional application of rational, higher order thinking skills, such as analysis, synthesis, problem recognition and problem solving, inference, and evaluation" (Angelo, 1995, p. 6). "Critical thinking is thinking that assesses itself" (Center for Critical Thinking, 1996b).

  7. Critical Thinking Definition, Skills, and Examples

    Critical thinking refers to the ability to analyze information objectively and make a reasoned judgment. It involves the evaluation of sources, such as data, facts, observable phenomena, and research findings. Good critical thinkers can draw reasonable conclusions from a set of information, and discriminate between useful and less useful ...

  8. Critical Thinking: A Model of Intelligence for Solving Real-World

    4. Critical Thinking as an Applied Model for Intelligence. One definition of intelligence that directly addresses the question about intelligence and real-world problem solving comes from Nickerson (2020, p. 205): "the ability to learn, to reason well, to solve novel problems, and to deal effectively with novel problems—often unpredictable—that confront one in daily life."

  9. Defining Critical Thinking

    Critical thinking is, in short, self-directed, self-disciplined, self-monitored, and self-corrective thinking. It presupposes assent to rigorous standards of excellence and mindful command of their use. It entails effective communication and problem solving abilities and a commitment to overcome our native egocentrism and sociocentrism.

  10. Rational Thinking

    Cognitive ability (a component of intelligence) refers to the capacity to process and reason with information that manifests in one's ability to problem-solve and make decisions (Reeve and Bonaccio 2011). To put it simply, cognitive abilities refer to the "can do" aspect of thinking, while rational thinking refers to the "will do" aspect.

  11. How to Apply Rational Thinking in Decision Making

    A. Detailed Definition of Rational Thinking Rational thinking, in the broadest sense, is the cognitive process wherein the identification and evaluation of evidence guide an action or belief. Its synonyms include critical thinking, logical reasoning, or analytical thinking, and it is the cornerstone of problem-solving, innovation, and decision ...

  12. Critical Thinking

    The Skills We Need for Critical Thinking. The skills that we need in order to be able to think critically are varied and include observation, analysis, interpretation, reflection, evaluation, inference, explanation, problem solving, and decision making. Specifically we need to be able to: Think about a topic or issue in an objective and ...

  13. RATIONAL THINKING Definition in Psychology

    Rational thinking is a cognitive process that involves using facts, evidence, and logical reasoning to make decisions. It can have numerous benefits, such as improving problem-solving skills, developing critical-thinking skills, and avoiding irrational decisions. There are several strategies for applying rational thinking, including gathering ...

  14. What Is Critical Thinking?

    Critical thinking is the ability to effectively analyze information and form a judgment. To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources. Critical thinking skills help you to: Identify credible sources. Evaluate and respond to arguments.

  15. Rational thinking as a general cognitive ability ...

    In the Tripartite Model of Mind by Stanovich (2009), rational thinking is defined as a cognitive ability that differs from those captured by classical intelligence tests. Intelligence tests primarily map the efficiency of information processing, whereas rational thinking is understood as the individual disposition and ability to make reasonable ...

  16. Measuring Rational Thinking in Adolescents: The Assessment of Rational

    The five rational thinking subtests displayed intercorrelations largely consistent with those obtained in the adult literature. Age, cognitive ability, problem solving, probabilistic numeracy, and thinking dispositions predicted variance differently across the five subtests of the ART-Y, but again largely consistent with the adult literature.

  17. 7 Module 7: Thinking, Reasoning, and Problem-Solving

    Module 7: Thinking, Reasoning, and Problem-Solving. This module is about how a solid working knowledge of psychological principles can help you to think more effectively, so you can succeed in school and life. You might be inclined to believe that—because you have been thinking for as long as you can remember, because you are able to figure ...

  18. Intuition versus Rational Thinking: Psychological Challenges in

    These questions, and others, are important in occupations dependent on complex problem solving. Intuition is defined as the ability to acquire knowledge without the use of reason [1]. ... or to unconscious thinking. Rational thinking is defined as the use of reason, the capacity to make sense of things, and the use of logic to establish and ...

  19. Cognition and Instruction/Problem Solving, Critical Thinking and

    Table 1. Summarizes the difference between well-defined and ill-defined problems. Differences in Solving Ill-defined and Well-defined Problems [edit | edit source]. In earlier times, researchers assumed both types of problems were solved in similar ways , more contemporary research highlights some distinct differences between processes behind finding a solution.

  20. How to encourage and train rational thinking in students

    Promoting rational thinking can improve students' problem-solving skills, making them more capable learners across subject areas. Competent rational thinkers have extra tools to help them focus and manage their emotions, benefits that extend well beyond the classroom. While there's no one-quick-fix for developing skilled rational thinkers ...

  21. What Is Creative Problem-Solving & Why Is It Important?

    Creative problem-solving primarily operates in the ideate phase of design thinking but can be applied to others. This is because design thinking is an iterative process that moves between the stages as ideas are generated and pursued. This is normal and encouraged, as innovation requires exploring multiple ideas.

  22. Rational Intelligence: The Art of Logical Thinking in Management

    Rational Intelligence (RQ) is an individual's ability to use logical reasoning, critical thinking, decision-making, and problem-solving skills effectively. It's a fundamental aspect of ...

  23. Clinical Reasoning, Decisionmaking, and Action: Thinking Critically and

    Guidelines are used to reflect their interpretation of patients' needs, responses, and situation, 54 a process that requires critical thinking and decisionmaking. 55, 56 Using guidelines also reflects one's problem identification and problem-solving abilities. 56 Conversely, the ability to proficiently conduct a series of tasks without ...

  24. Full article: Creative thinking and insight problem-solving in Keats

    PUBLIC INTEREST STATEMENT. Cognitive psychologists consider creativity a special kind of problem-solving experience. This experience often involves the rational and conscious convergent thinking, the irrational and unconscious divergent thinking, and the insight, that is, a sudden, visionary moment of realisation, in which the solver envisages the solution, often surprisingly and unexpectedly ...

  25. Explained: Importance of critical thinking, problem-solving skills in

    When the curriculum presents students with real-world problems, the learning is immense. : Critical thinking and problem-solving skills boost self-belief and confidence as students examine, re ...