U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Korean Med Sci
  • v.37(16); 2022 Apr 25

Logo of jkms

A Practical Guide to Writing Quantitative and Qualitative Research Questions and Hypotheses in Scholarly Articles

Edward barroga.

1 Department of General Education, Graduate School of Nursing Science, St. Luke’s International University, Tokyo, Japan.

Glafera Janet Matanguihan

2 Department of Biological Sciences, Messiah University, Mechanicsburg, PA, USA.

The development of research questions and the subsequent hypotheses are prerequisites to defining the main research purpose and specific objectives of a study. Consequently, these objectives determine the study design and research outcome. The development of research questions is a process based on knowledge of current trends, cutting-edge studies, and technological advances in the research field. Excellent research questions are focused and require a comprehensive literature search and in-depth understanding of the problem being investigated. Initially, research questions may be written as descriptive questions which could be developed into inferential questions. These questions must be specific and concise to provide a clear foundation for developing hypotheses. Hypotheses are more formal predictions about the research outcomes. These specify the possible results that may or may not be expected regarding the relationship between groups. Thus, research questions and hypotheses clarify the main purpose and specific objectives of the study, which in turn dictate the design of the study, its direction, and outcome. Studies developed from good research questions and hypotheses will have trustworthy outcomes with wide-ranging social and health implications.

INTRODUCTION

Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses. 1 , 2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results. 3 , 4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the inception of novel studies and the ethical testing of ideas. 5 , 6

It is crucial to have knowledge of both quantitative and qualitative research 2 as both types of research involve writing research questions and hypotheses. 7 However, these crucial elements of research are sometimes overlooked; if not overlooked, then framed without the forethought and meticulous attention it needs. Planning and careful consideration are needed when developing quantitative or qualitative research, particularly when conceptualizing research questions and hypotheses. 4

There is a continuing need to support researchers in the creation of innovative research questions and hypotheses, as well as for journal articles that carefully review these elements. 1 When research questions and hypotheses are not carefully thought of, unethical studies and poor outcomes usually ensue. Carefully formulated research questions and hypotheses define well-founded objectives, which in turn determine the appropriate design, course, and outcome of the study. This article then aims to discuss in detail the various aspects of crafting research questions and hypotheses, with the goal of guiding researchers as they develop their own. Examples from the authors and peer-reviewed scientific articles in the healthcare field are provided to illustrate key points.

DEFINITIONS AND RELATIONSHIP OF RESEARCH QUESTIONS AND HYPOTHESES

A research question is what a study aims to answer after data analysis and interpretation. The answer is written in length in the discussion section of the paper. Thus, the research question gives a preview of the different parts and variables of the study meant to address the problem posed in the research question. 1 An excellent research question clarifies the research writing while facilitating understanding of the research topic, objective, scope, and limitations of the study. 5

On the other hand, a research hypothesis is an educated statement of an expected outcome. This statement is based on background research and current knowledge. 8 , 9 The research hypothesis makes a specific prediction about a new phenomenon 10 or a formal statement on the expected relationship between an independent variable and a dependent variable. 3 , 11 It provides a tentative answer to the research question to be tested or explored. 4

Hypotheses employ reasoning to predict a theory-based outcome. 10 These can also be developed from theories by focusing on components of theories that have not yet been observed. 10 The validity of hypotheses is often based on the testability of the prediction made in a reproducible experiment. 8

Conversely, hypotheses can also be rephrased as research questions. Several hypotheses based on existing theories and knowledge may be needed to answer a research question. Developing ethical research questions and hypotheses creates a research design that has logical relationships among variables. These relationships serve as a solid foundation for the conduct of the study. 4 , 11 Haphazardly constructed research questions can result in poorly formulated hypotheses and improper study designs, leading to unreliable results. Thus, the formulations of relevant research questions and verifiable hypotheses are crucial when beginning research. 12

CHARACTERISTICS OF GOOD RESEARCH QUESTIONS AND HYPOTHESES

Excellent research questions are specific and focused. These integrate collective data and observations to confirm or refute the subsequent hypotheses. Well-constructed hypotheses are based on previous reports and verify the research context. These are realistic, in-depth, sufficiently complex, and reproducible. More importantly, these hypotheses can be addressed and tested. 13

There are several characteristics of well-developed hypotheses. Good hypotheses are 1) empirically testable 7 , 10 , 11 , 13 ; 2) backed by preliminary evidence 9 ; 3) testable by ethical research 7 , 9 ; 4) based on original ideas 9 ; 5) have evidenced-based logical reasoning 10 ; and 6) can be predicted. 11 Good hypotheses can infer ethical and positive implications, indicating the presence of a relationship or effect relevant to the research theme. 7 , 11 These are initially developed from a general theory and branch into specific hypotheses by deductive reasoning. In the absence of a theory to base the hypotheses, inductive reasoning based on specific observations or findings form more general hypotheses. 10

TYPES OF RESEARCH QUESTIONS AND HYPOTHESES

Research questions and hypotheses are developed according to the type of research, which can be broadly classified into quantitative and qualitative research. We provide a summary of the types of research questions and hypotheses under quantitative and qualitative research categories in Table 1 .

Research questions in quantitative research

In quantitative research, research questions inquire about the relationships among variables being investigated and are usually framed at the start of the study. These are precise and typically linked to the subject population, dependent and independent variables, and research design. 1 Research questions may also attempt to describe the behavior of a population in relation to one or more variables, or describe the characteristics of variables to be measured ( descriptive research questions ). 1 , 5 , 14 These questions may also aim to discover differences between groups within the context of an outcome variable ( comparative research questions ), 1 , 5 , 14 or elucidate trends and interactions among variables ( relationship research questions ). 1 , 5 We provide examples of descriptive, comparative, and relationship research questions in quantitative research in Table 2 .

Hypotheses in quantitative research

In quantitative research, hypotheses predict the expected relationships among variables. 15 Relationships among variables that can be predicted include 1) between a single dependent variable and a single independent variable ( simple hypothesis ) or 2) between two or more independent and dependent variables ( complex hypothesis ). 4 , 11 Hypotheses may also specify the expected direction to be followed and imply an intellectual commitment to a particular outcome ( directional hypothesis ) 4 . On the other hand, hypotheses may not predict the exact direction and are used in the absence of a theory, or when findings contradict previous studies ( non-directional hypothesis ). 4 In addition, hypotheses can 1) define interdependency between variables ( associative hypothesis ), 4 2) propose an effect on the dependent variable from manipulation of the independent variable ( causal hypothesis ), 4 3) state a negative relationship between two variables ( null hypothesis ), 4 , 11 , 15 4) replace the working hypothesis if rejected ( alternative hypothesis ), 15 explain the relationship of phenomena to possibly generate a theory ( working hypothesis ), 11 5) involve quantifiable variables that can be tested statistically ( statistical hypothesis ), 11 6) or express a relationship whose interlinks can be verified logically ( logical hypothesis ). 11 We provide examples of simple, complex, directional, non-directional, associative, causal, null, alternative, working, statistical, and logical hypotheses in quantitative research, as well as the definition of quantitative hypothesis-testing research in Table 3 .

Research questions in qualitative research

Unlike research questions in quantitative research, research questions in qualitative research are usually continuously reviewed and reformulated. The central question and associated subquestions are stated more than the hypotheses. 15 The central question broadly explores a complex set of factors surrounding the central phenomenon, aiming to present the varied perspectives of participants. 15

There are varied goals for which qualitative research questions are developed. These questions can function in several ways, such as to 1) identify and describe existing conditions ( contextual research question s); 2) describe a phenomenon ( descriptive research questions ); 3) assess the effectiveness of existing methods, protocols, theories, or procedures ( evaluation research questions ); 4) examine a phenomenon or analyze the reasons or relationships between subjects or phenomena ( explanatory research questions ); or 5) focus on unknown aspects of a particular topic ( exploratory research questions ). 5 In addition, some qualitative research questions provide new ideas for the development of theories and actions ( generative research questions ) or advance specific ideologies of a position ( ideological research questions ). 1 Other qualitative research questions may build on a body of existing literature and become working guidelines ( ethnographic research questions ). Research questions may also be broadly stated without specific reference to the existing literature or a typology of questions ( phenomenological research questions ), may be directed towards generating a theory of some process ( grounded theory questions ), or may address a description of the case and the emerging themes ( qualitative case study questions ). 15 We provide examples of contextual, descriptive, evaluation, explanatory, exploratory, generative, ideological, ethnographic, phenomenological, grounded theory, and qualitative case study research questions in qualitative research in Table 4 , and the definition of qualitative hypothesis-generating research in Table 5 .

Qualitative studies usually pose at least one central research question and several subquestions starting with How or What . These research questions use exploratory verbs such as explore or describe . These also focus on one central phenomenon of interest, and may mention the participants and research site. 15

Hypotheses in qualitative research

Hypotheses in qualitative research are stated in the form of a clear statement concerning the problem to be investigated. Unlike in quantitative research where hypotheses are usually developed to be tested, qualitative research can lead to both hypothesis-testing and hypothesis-generating outcomes. 2 When studies require both quantitative and qualitative research questions, this suggests an integrative process between both research methods wherein a single mixed-methods research question can be developed. 1

FRAMEWORKS FOR DEVELOPING RESEARCH QUESTIONS AND HYPOTHESES

Research questions followed by hypotheses should be developed before the start of the study. 1 , 12 , 14 It is crucial to develop feasible research questions on a topic that is interesting to both the researcher and the scientific community. This can be achieved by a meticulous review of previous and current studies to establish a novel topic. Specific areas are subsequently focused on to generate ethical research questions. The relevance of the research questions is evaluated in terms of clarity of the resulting data, specificity of the methodology, objectivity of the outcome, depth of the research, and impact of the study. 1 , 5 These aspects constitute the FINER criteria (i.e., Feasible, Interesting, Novel, Ethical, and Relevant). 1 Clarity and effectiveness are achieved if research questions meet the FINER criteria. In addition to the FINER criteria, Ratan et al. described focus, complexity, novelty, feasibility, and measurability for evaluating the effectiveness of research questions. 14

The PICOT and PEO frameworks are also used when developing research questions. 1 The following elements are addressed in these frameworks, PICOT: P-population/patients/problem, I-intervention or indicator being studied, C-comparison group, O-outcome of interest, and T-timeframe of the study; PEO: P-population being studied, E-exposure to preexisting conditions, and O-outcome of interest. 1 Research questions are also considered good if these meet the “FINERMAPS” framework: Feasible, Interesting, Novel, Ethical, Relevant, Manageable, Appropriate, Potential value/publishable, and Systematic. 14

As we indicated earlier, research questions and hypotheses that are not carefully formulated result in unethical studies or poor outcomes. To illustrate this, we provide some examples of ambiguous research question and hypotheses that result in unclear and weak research objectives in quantitative research ( Table 6 ) 16 and qualitative research ( Table 7 ) 17 , and how to transform these ambiguous research question(s) and hypothesis(es) into clear and good statements.

a These statements were composed for comparison and illustrative purposes only.

b These statements are direct quotes from Higashihara and Horiuchi. 16

a This statement is a direct quote from Shimoda et al. 17

The other statements were composed for comparison and illustrative purposes only.

CONSTRUCTING RESEARCH QUESTIONS AND HYPOTHESES

To construct effective research questions and hypotheses, it is very important to 1) clarify the background and 2) identify the research problem at the outset of the research, within a specific timeframe. 9 Then, 3) review or conduct preliminary research to collect all available knowledge about the possible research questions by studying theories and previous studies. 18 Afterwards, 4) construct research questions to investigate the research problem. Identify variables to be accessed from the research questions 4 and make operational definitions of constructs from the research problem and questions. Thereafter, 5) construct specific deductive or inductive predictions in the form of hypotheses. 4 Finally, 6) state the study aims . This general flow for constructing effective research questions and hypotheses prior to conducting research is shown in Fig. 1 .

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g001.jpg

Research questions are used more frequently in qualitative research than objectives or hypotheses. 3 These questions seek to discover, understand, explore or describe experiences by asking “What” or “How.” The questions are open-ended to elicit a description rather than to relate variables or compare groups. The questions are continually reviewed, reformulated, and changed during the qualitative study. 3 Research questions are also used more frequently in survey projects than hypotheses in experiments in quantitative research to compare variables and their relationships.

Hypotheses are constructed based on the variables identified and as an if-then statement, following the template, ‘If a specific action is taken, then a certain outcome is expected.’ At this stage, some ideas regarding expectations from the research to be conducted must be drawn. 18 Then, the variables to be manipulated (independent) and influenced (dependent) are defined. 4 Thereafter, the hypothesis is stated and refined, and reproducible data tailored to the hypothesis are identified, collected, and analyzed. 4 The hypotheses must be testable and specific, 18 and should describe the variables and their relationships, the specific group being studied, and the predicted research outcome. 18 Hypotheses construction involves a testable proposition to be deduced from theory, and independent and dependent variables to be separated and measured separately. 3 Therefore, good hypotheses must be based on good research questions constructed at the start of a study or trial. 12

In summary, research questions are constructed after establishing the background of the study. Hypotheses are then developed based on the research questions. Thus, it is crucial to have excellent research questions to generate superior hypotheses. In turn, these would determine the research objectives and the design of the study, and ultimately, the outcome of the research. 12 Algorithms for building research questions and hypotheses are shown in Fig. 2 for quantitative research and in Fig. 3 for qualitative research.

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g002.jpg

EXAMPLES OF RESEARCH QUESTIONS FROM PUBLISHED ARTICLES

  • EXAMPLE 1. Descriptive research question (quantitative research)
  • - Presents research variables to be assessed (distinct phenotypes and subphenotypes)
  • “BACKGROUND: Since COVID-19 was identified, its clinical and biological heterogeneity has been recognized. Identifying COVID-19 phenotypes might help guide basic, clinical, and translational research efforts.
  • RESEARCH QUESTION: Does the clinical spectrum of patients with COVID-19 contain distinct phenotypes and subphenotypes? ” 19
  • EXAMPLE 2. Relationship research question (quantitative research)
  • - Shows interactions between dependent variable (static postural control) and independent variable (peripheral visual field loss)
  • “Background: Integration of visual, vestibular, and proprioceptive sensations contributes to postural control. People with peripheral visual field loss have serious postural instability. However, the directional specificity of postural stability and sensory reweighting caused by gradual peripheral visual field loss remain unclear.
  • Research question: What are the effects of peripheral visual field loss on static postural control ?” 20
  • EXAMPLE 3. Comparative research question (quantitative research)
  • - Clarifies the difference among groups with an outcome variable (patients enrolled in COMPERA with moderate PH or severe PH in COPD) and another group without the outcome variable (patients with idiopathic pulmonary arterial hypertension (IPAH))
  • “BACKGROUND: Pulmonary hypertension (PH) in COPD is a poorly investigated clinical condition.
  • RESEARCH QUESTION: Which factors determine the outcome of PH in COPD?
  • STUDY DESIGN AND METHODS: We analyzed the characteristics and outcome of patients enrolled in the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA) with moderate or severe PH in COPD as defined during the 6th PH World Symposium who received medical therapy for PH and compared them with patients with idiopathic pulmonary arterial hypertension (IPAH) .” 21
  • EXAMPLE 4. Exploratory research question (qualitative research)
  • - Explores areas that have not been fully investigated (perspectives of families and children who receive care in clinic-based child obesity treatment) to have a deeper understanding of the research problem
  • “Problem: Interventions for children with obesity lead to only modest improvements in BMI and long-term outcomes, and data are limited on the perspectives of families of children with obesity in clinic-based treatment. This scoping review seeks to answer the question: What is known about the perspectives of families and children who receive care in clinic-based child obesity treatment? This review aims to explore the scope of perspectives reported by families of children with obesity who have received individualized outpatient clinic-based obesity treatment.” 22
  • EXAMPLE 5. Relationship research question (quantitative research)
  • - Defines interactions between dependent variable (use of ankle strategies) and independent variable (changes in muscle tone)
  • “Background: To maintain an upright standing posture against external disturbances, the human body mainly employs two types of postural control strategies: “ankle strategy” and “hip strategy.” While it has been reported that the magnitude of the disturbance alters the use of postural control strategies, it has not been elucidated how the level of muscle tone, one of the crucial parameters of bodily function, determines the use of each strategy. We have previously confirmed using forward dynamics simulations of human musculoskeletal models that an increased muscle tone promotes the use of ankle strategies. The objective of the present study was to experimentally evaluate a hypothesis: an increased muscle tone promotes the use of ankle strategies. Research question: Do changes in the muscle tone affect the use of ankle strategies ?” 23

EXAMPLES OF HYPOTHESES IN PUBLISHED ARTICLES

  • EXAMPLE 1. Working hypothesis (quantitative research)
  • - A hypothesis that is initially accepted for further research to produce a feasible theory
  • “As fever may have benefit in shortening the duration of viral illness, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response when taken during the early stages of COVID-19 illness .” 24
  • “In conclusion, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response . The difference in perceived safety of these agents in COVID-19 illness could be related to the more potent efficacy to reduce fever with ibuprofen compared to acetaminophen. Compelling data on the benefit of fever warrant further research and review to determine when to treat or withhold ibuprofen for early stage fever for COVID-19 and other related viral illnesses .” 24
  • EXAMPLE 2. Exploratory hypothesis (qualitative research)
  • - Explores particular areas deeper to clarify subjective experience and develop a formal hypothesis potentially testable in a future quantitative approach
  • “We hypothesized that when thinking about a past experience of help-seeking, a self distancing prompt would cause increased help-seeking intentions and more favorable help-seeking outcome expectations .” 25
  • “Conclusion
  • Although a priori hypotheses were not supported, further research is warranted as results indicate the potential for using self-distancing approaches to increasing help-seeking among some people with depressive symptomatology.” 25
  • EXAMPLE 3. Hypothesis-generating research to establish a framework for hypothesis testing (qualitative research)
  • “We hypothesize that compassionate care is beneficial for patients (better outcomes), healthcare systems and payers (lower costs), and healthcare providers (lower burnout). ” 26
  • Compassionomics is the branch of knowledge and scientific study of the effects of compassionate healthcare. Our main hypotheses are that compassionate healthcare is beneficial for (1) patients, by improving clinical outcomes, (2) healthcare systems and payers, by supporting financial sustainability, and (3) HCPs, by lowering burnout and promoting resilience and well-being. The purpose of this paper is to establish a scientific framework for testing the hypotheses above . If these hypotheses are confirmed through rigorous research, compassionomics will belong in the science of evidence-based medicine, with major implications for all healthcare domains.” 26
  • EXAMPLE 4. Statistical hypothesis (quantitative research)
  • - An assumption is made about the relationship among several population characteristics ( gender differences in sociodemographic and clinical characteristics of adults with ADHD ). Validity is tested by statistical experiment or analysis ( chi-square test, Students t-test, and logistic regression analysis)
  • “Our research investigated gender differences in sociodemographic and clinical characteristics of adults with ADHD in a Japanese clinical sample. Due to unique Japanese cultural ideals and expectations of women's behavior that are in opposition to ADHD symptoms, we hypothesized that women with ADHD experience more difficulties and present more dysfunctions than men . We tested the following hypotheses: first, women with ADHD have more comorbidities than men with ADHD; second, women with ADHD experience more social hardships than men, such as having less full-time employment and being more likely to be divorced.” 27
  • “Statistical Analysis
  • ( text omitted ) Between-gender comparisons were made using the chi-squared test for categorical variables and Students t-test for continuous variables…( text omitted ). A logistic regression analysis was performed for employment status, marital status, and comorbidity to evaluate the independent effects of gender on these dependent variables.” 27

EXAMPLES OF HYPOTHESIS AS WRITTEN IN PUBLISHED ARTICLES IN RELATION TO OTHER PARTS

  • EXAMPLE 1. Background, hypotheses, and aims are provided
  • “Pregnant women need skilled care during pregnancy and childbirth, but that skilled care is often delayed in some countries …( text omitted ). The focused antenatal care (FANC) model of WHO recommends that nurses provide information or counseling to all pregnant women …( text omitted ). Job aids are visual support materials that provide the right kind of information using graphics and words in a simple and yet effective manner. When nurses are not highly trained or have many work details to attend to, these job aids can serve as a content reminder for the nurses and can be used for educating their patients (Jennings, Yebadokpo, Affo, & Agbogbe, 2010) ( text omitted ). Importantly, additional evidence is needed to confirm how job aids can further improve the quality of ANC counseling by health workers in maternal care …( text omitted )” 28
  • “ This has led us to hypothesize that the quality of ANC counseling would be better if supported by job aids. Consequently, a better quality of ANC counseling is expected to produce higher levels of awareness concerning the danger signs of pregnancy and a more favorable impression of the caring behavior of nurses .” 28
  • “This study aimed to examine the differences in the responses of pregnant women to a job aid-supported intervention during ANC visit in terms of 1) their understanding of the danger signs of pregnancy and 2) their impression of the caring behaviors of nurses to pregnant women in rural Tanzania.” 28
  • EXAMPLE 2. Background, hypotheses, and aims are provided
  • “We conducted a two-arm randomized controlled trial (RCT) to evaluate and compare changes in salivary cortisol and oxytocin levels of first-time pregnant women between experimental and control groups. The women in the experimental group touched and held an infant for 30 min (experimental intervention protocol), whereas those in the control group watched a DVD movie of an infant (control intervention protocol). The primary outcome was salivary cortisol level and the secondary outcome was salivary oxytocin level.” 29
  • “ We hypothesize that at 30 min after touching and holding an infant, the salivary cortisol level will significantly decrease and the salivary oxytocin level will increase in the experimental group compared with the control group .” 29
  • EXAMPLE 3. Background, aim, and hypothesis are provided
  • “In countries where the maternal mortality ratio remains high, antenatal education to increase Birth Preparedness and Complication Readiness (BPCR) is considered one of the top priorities [1]. BPCR includes birth plans during the antenatal period, such as the birthplace, birth attendant, transportation, health facility for complications, expenses, and birth materials, as well as family coordination to achieve such birth plans. In Tanzania, although increasing, only about half of all pregnant women attend an antenatal clinic more than four times [4]. Moreover, the information provided during antenatal care (ANC) is insufficient. In the resource-poor settings, antenatal group education is a potential approach because of the limited time for individual counseling at antenatal clinics.” 30
  • “This study aimed to evaluate an antenatal group education program among pregnant women and their families with respect to birth-preparedness and maternal and infant outcomes in rural villages of Tanzania.” 30
  • “ The study hypothesis was if Tanzanian pregnant women and their families received a family-oriented antenatal group education, they would (1) have a higher level of BPCR, (2) attend antenatal clinic four or more times, (3) give birth in a health facility, (4) have less complications of women at birth, and (5) have less complications and deaths of infants than those who did not receive the education .” 30

Research questions and hypotheses are crucial components to any type of research, whether quantitative or qualitative. These questions should be developed at the very beginning of the study. Excellent research questions lead to superior hypotheses, which, like a compass, set the direction of research, and can often determine the successful conduct of the study. Many research studies have floundered because the development of research questions and subsequent hypotheses was not given the thought and meticulous attention needed. The development of research questions and hypotheses is an iterative process based on extensive knowledge of the literature and insightful grasp of the knowledge gap. Focused, concise, and specific research questions provide a strong foundation for constructing hypotheses which serve as formal predictions about the research outcomes. Research questions and hypotheses are crucial elements of research that should not be overlooked. They should be carefully thought of and constructed when planning research. This avoids unethical studies and poor outcomes by defining well-founded objectives that determine the design, course, and outcome of the study.

Disclosure: The authors have no potential conflicts of interest to disclose.

Author Contributions:

  • Conceptualization: Barroga E, Matanguihan GJ.
  • Methodology: Barroga E, Matanguihan GJ.
  • Writing - original draft: Barroga E, Matanguihan GJ.
  • Writing - review & editing: Barroga E, Matanguihan GJ.

how to present quantitative data in a dissertation

Writing the Dissertation - Guides for Success: The Results and Discussion

  • Writing the Dissertation Homepage
  • Overview and Planning
  • The Literature Review
  • The Methodology
  • The Results and Discussion
  • The Conclusion
  • The Abstract
  • The Difference
  • What to Avoid

Overview of writing the results and discussion

The results and discussion follow on from the methods or methodology chapter of the dissertation. This creates a natural transition from how you designed your study, to what your study reveals, highlighting your own contribution to the research area.

Disciplinary differences

Please note: this guide is not specific to any one discipline. The results and discussion can vary depending on the nature of the research and the expectations of the school or department, so please adapt the following advice to meet the demands of your project and department. Consult your supervisor for further guidance; you can also peruse our  Writing Across Subjects guide .

Guide contents

As part of the Writing the Dissertation series, this guide covers the most common conventions of the results and discussion chapters, giving you the necessary knowledge, tips and guidance needed to impress your markers! The sections are organised as follows:

  • The Difference  - Breaks down the distinctions between the results and discussion chapters.
  • Results  - Provides a walk-through of common characteristics of the results chapter.
  • Discussion - Provides a walk-through of how to approach writing your discussion chapter, including structure.
  • What to Avoid  - Covers a few frequent mistakes you'll want to...avoid!
  • FAQs  - Guidance on first- vs. third-person, limitations and more.
  • Checklist  - Includes a summary of key points and a self-evaluation checklist.

Training and tools

  • The Academic Skills team has recorded a Writing the Dissertation workshop series to help you with each section of a standard dissertation, including a video on writing the results and discussion   (embedded below).
  • The dissertation planner tool can help you think through the timeline for planning, research, drafting and editing.
  • iSolutions offers training and a Word template to help you digitally format and structure your dissertation.

Introduction

The results of your study are often followed by a separate chapter of discussion. This is certainly the case with scientific writing. Some dissertations, however, might incorporate both the results and discussion in one chapter. This depends on the nature of your dissertation and the conventions within your school or department. Always follow the guidelines given to you and ask your supervisor for further guidance.

As part of the Writing the Dissertation series, this guide covers the essentials of writing your results and discussion, giving you the necesary knowledge, tips and guidance needed to leave a positive impression on your markers! This guide covers the results and discussion as separate – although interrelated – chapters, as you'll see in the next two tabs. However, you can easily adapt the guidance to suit one single chapter – keep an eye out for some hints on how to do this throughout the guide.

Results or discussion - what's the difference?

To understand what the results and discussion sections are about, we need to clearly define the difference between the two.

The results should provide a clear account of the findings . This is written in a dry and direct manner, simply highlighting the findings as they appear once processed. It’s expected to have tables and graphics, where relevant, to contextualise and illustrate the data.

Rather than simply stating the findings of the study, the discussion interprets the findings  to offer a more nuanced understanding of the research. The discussion is similar to the second half of the conclusion because it’s where you consider and formulate a response to the question, ‘what do we now know that we didn’t before?’ (see our Writing the Conclusion   guide for more). The discussion achieves this by answering the research questions and responding to any hypotheses proposed. With this in mind, the discussion should be the most insightful chapter or section of your dissertation because it provides the most original insight.

Across the next two tabs of this guide, we will look at the results and discussion chapters separately in more detail.

Writing the results

The results chapter should provide a direct and factual account of the data collected without any interpretation or interrogation of the findings. As this might suggest, the results chapter can be slightly monotonous, particularly for quantitative data. Nevertheless, it’s crucial that you present your results in a clear and direct manner as it provides the necessary detail for your subsequent discussion.

Note: If you’re writing your results and discussion as one chapter, then you can either:

1) write them as distinctly separate sections in the same chapter, with the discussion following on from the results, or...

2) integrate the two throughout by presenting a subset of the results and then discussing that subset in further detail.

Next, we'll explore some of the most important factors to consider when writing your results chapter.

How you structure your results chapter depends on the design and purpose of your study. Here are some possible options for structuring your results chapter (adapted from Glatthorn and Joyner, 2005):

  • Chronological – depending on the nature of the study, it might be important to present your results in order of how you collected the data, such as a pretest-posttest design.
  • Research method – if you’ve used a mixed-methods approach, you could isolate each research method and instrument employed in the study.
  • Research question and/or hypotheses – you could structure your results around your research questions and/or hypotheses, providing you have more than one. However, keep in mind that the results on their own don’t necessarily answer the questions or respond to the hypotheses in a definitive manner. You need to interpret the findings in the discussion chapter to gain a more rounded understanding.
  • Variable – you could isolate each variable in your study (where relevant) and specify how and whether the results changed.

Tables and figures

For your results, you are expected to convert your data into tables and figures, particularly when dealing with quantitative data. Making use of tables and figures is a way of contextualising your results within the study. It also helps to visually reinforce your written account of the data. However, make sure you’re only using tables and figures to supplement , rather than replace, your written account of the results (see the 'What to avoid' tab for more on this).

Figures and tables need to be numbered in order of when they appear in the dissertation, and they should be capitalised. You also need to make direct reference to them in the text, which you can do (with some variation) in one of the following ways:

Figure 1 shows…

The results of the test (see Figure 1) demonstrate…

The actual figures and tables themselves also need to be accompanied by a caption that briefly outlines what is displayed. For example:

Table 1. Variables of the regression model

Table captions normally appear above the table, whilst figures or other such graphical forms appear below, although it’s worth confirming this with your supervisor as the formatting can change depending on the school or discipline. The style guide used for writing in your subject area (e.g., Harvard, MLA, APA, OSCOLA) often dictates correct formatting of tables, graphs and figures, so have a look at your style guide for additional support.

Using quotations

If your qualitative data comes from interviews and focus groups, your data will largely consist of quotations from participants. When presenting this data, you should identify and group the most common and interesting responses and then quote two or three relevant examples to illustrate this point. Here’s a brief example from a qualitative study on the habits of online food shoppers:

Regardless of whether or not participants regularly engage in online food shopping, all but two respondents commented, in some form, on the convenience of online food shopping:

"It’s about convenience for me. I’m at work all week and the weekend doesn’t allow much time for food shopping, so knowing it can be ordered and then delivered in 24 hours is great for me” (Participant A).

"It fits around my schedule, which is important for me and my family” (Participant D).

"In the past, I’ve always gone food shopping after work, which has always been a hassle. Online food shopping, however, frees up some of my time” (Participant E).

As shown in this example, each quotation is attributed to a particular participant, although their anonymity is protected. The details used to identify participants can depend on the relevance of certain factors to the research. For instance, age or gender could be included.

Writing the discussion

The discussion chapter is where “you critically examine your own results in the light of the previous state of the subject as outlined in the background, and make judgments as to what has been learnt in your work” (Evans et al., 2014: 12). Whilst the results chapter is strictly factual, reporting on the data on a surface level, the discussion is rooted in analysis and interpretation , allowing you and your reader to delve beneath the surface.

Next, we will review some of the most important factors to consider when writing your discussion chapter.

Like the results, there is no single way to structure your discussion chapter. As always, it depends on the nature of your dissertation and whether you’re dealing with qualitative, quantitative or mixed-methods research. It’s good to be consistent with the results chapter, so you could structure your discussion chapter, where possible, in the same way as your results.

When it comes to structure, it’s particularly important that you guide your reader through the various points, subtopics or themes of your discussion. You should do this by structuring sections of your discussion, which might incorporate three or four paragraphs around the same theme or issue, in a three-part way that mirrors the typical three-part essay structure of introduction, main body and conclusion.

Cycle of introduction (topic sentence), to main body (analysis), to conclusion (takeaways). Graphic at right shows cycle repeating 3, 5, and 4 times for subtopics A, B, and C.

Figure 1: The three-part cycle that embodies a typical essay structure and reflects how you structure themes or subtopics in your discussion.

This is your topic sentence where you clearly state the focus of this paragraph/section. It’s often a fairly short, declarative statement in order to grab the reader’s attention, and it should be clearly related to your research purpose, such as responding to a research question.

This constitutes your analysis where you explore the theme or focus, outlined in the topic sentence, in further detail by interrogating why this particular theme or finding emerged and the significance of this data. This is also where you bring in the relevant secondary literature.

This is the evaluative stage of the cycle where you explicitly return back to the topic sentence and tell the reader what this means in terms of answering the relevant research question and establishing new knowledge. It could be a single sentence, or a short paragraph, and it doesn’t strictly need to appear at the end of every section or theme. Instead, some prefer to bring the main themes together towards the end of the discussion in a single paragraph or two. Either way, it’s imperative that you evaluate the significance of your discussion and tell the reader what this means.

A note on the three-part structure

This is often how you’re taught to construct a paragraph, but the themes and ideas you engage with at dissertation level are going to extend beyond the confines of a short paragraph. Therefore, this is a structure to guide how you write about particular themes or patterns in your discussion. Think of this structure like a cycle that you can engage in its smallest form to shape a paragraph; in a slightly larger form to shape a subsection of a chapter; and in its largest form to shape the entire chapter. You can 'level up' the same basic structure to accommodate a deeper breadth of thinking and critical engagement.

Using secondary literature

Your discussion chapter should return to the relevant literature (previously identified in your literature review ) in order to contextualise and deepen your reader’s understanding of the findings. This might help to strengthen your findings, or you might find contradictory evidence that serves to counter your results. In the case of the latter, it’s important that you consider why this might be and the implications for this. It’s through your incorporation of secondary literature that you can consider the question, ‘What do we now know that we didn’t before?’

Limitations

You may have included a limitations section in your methodology chapter (see our Writing the Methodology guide ), but it’s also common to have one in your discussion chapter. The difference here is that your limitations are directly associated with your results and the capacity to interpret and analyse those results.

Think of it this way: the limitations in your methodology refer to the issues identified before conducting the research, whilst the limitations in your discussion refer to the issues that emerged after conducting the research. For example, you might only be able to identify a limitation about the external validity or generalisability of your research once you have processed and analysed the data. Try not to overstress the limitations of your work – doing so can undermine the work you’ve done – and try to contextualise them, perhaps by relating them to certain limitations of other studies.

Recommendations

It’s often good to follow your limitations with some recommendations for future research. This creates a neat linearity from what didn’t work, or what could be improved, to how other researchers could address these issues in the future. This helps to reposition your limitations in a positive way by offering an action-oriented response. Try to limit the amount of recommendations you discuss – too many can bring the end of your discussion to a rather negative end as you’re ultimately focusing on what should be done, rather than what you have done. You also don’t need to repeat the recommendations in your conclusion if you’ve included them here.

What to avoid

This portion of the guide will cover some common missteps you should try to avoid in writing your results and discussion.

Over-reliance on tables and figures

It’s very common to produce visual representations of data, such as graphs and tables, and to use these representations in your results chapter. However, the use of these figures should not entirely replace your written account of the data. You don’t need to specify every detail in the data set, but you should provide some written account of what the data shows, drawing your reader’s attention to the most important elements of the data. The figures should support your account and help to contextualise your results. Simply stating, ‘look at Table 1’, without any further detail is not sufficient. Writers often try to do this as a way of saving words, but your markers will know!

Ignoring unexpected or contradictory data

Research can be a complex process with ups and downs, surprises and anomalies. Don’t be tempted to ignore any data that doesn’t meet your expectations, or that perhaps you’re struggling to explain. Failing to report on data for these, and other such reasons, is a problem because it undermines your credibility as a researcher, which inevitably undermines your research in the process. You have to do your best to provide some reason to such data. For instance, there might be some methodological reason behind a particular trend in the data.

Including raw data

You don’t need to include any raw data in your results chapter – raw data meaning unprocessed data that hasn’t undergone any calculations or other such refinement. This can overwhelm your reader and obscure the clarity of the research. You can include raw data in an appendix, providing you feel it’s necessary.

Presenting new results in the discussion

You shouldn’t be stating original findings for the first time in the discussion chapter. The findings of your study should first appear in your results before elaborating on them in the discussion.

Overstressing the significance of your research

It’s important that you clarify what your research demonstrates so you can highlight your own contribution to the research field. However, don’t overstress or inflate the significance of your results. It’s always difficult to provide definitive answers in academic research, especially with qualitative data. You should be confident and authoritative where possible, but don’t claim to reach the absolute truth when perhaps other conclusions could be reached. Where necessary, you should use hedging (see definition) to slightly soften the tone and register of your language.

Definition: Hedging refers to 'the act of expressing your attitude or ideas in tentative or cautious ways' (Singh and Lukkarila, 2017: 101). It’s mostly achieved through a number of verbs or adverbs, such as ‘suggest’ or ‘seemingly.’

Q: What’s the difference between the results and discussion?

A: The results chapter is a factual account of the data collected, whilst the discussion considers the implications of these findings by relating them to relevant literature and answering your research question(s). See the tab 'The Differences' in this guide for more detail.

Q: Should the discussion include recommendations for future research?

A: Your dissertation should include some recommendations for future research, but it can vary where it appears. Recommendations are often featured towards the end of the discussion chapter, but they also regularly appear in the conclusion chapter (see our Writing the Conclusion guide   for more). It simply depends on your dissertation and the conventions of your school or department. It’s worth consulting any specific guidance that you’ve been given, or asking your supervisor directly.

Q: Should the discussion include the limitations of the study?

A: Like the answer above, you should engage with the limitations of your study, but it might appear in the discussion of some dissertations, or the conclusion of others. Consider the narrative flow and whether it makes sense to include the limitations in your discussion chapter, or your conclusion. You should also consult any discipline-specific guidance you’ve been given, or ask your supervisor for more. Be mindful that this is slightly different to the limitations outlined in the methodology or methods chapter (see our Writing the Methodology guide vs. the 'Discussion' tab of this guide).

Q: Should the results and discussion be in the first-person or third?

A: It’s important to be consistent , so you should use whatever you’ve been using throughout your dissertation. Third-person is more commonly accepted, but certain disciplines are happy with the use of first-person. Just remember that the first-person pronoun can be a distracting, but powerful device, so use it sparingly. Consult your lecturer for discipline-specific guidance.

Q: Is there a difference between the discussion and the conclusion of a dissertation?

A: Yes, there is a difference. The discussion chapter is a detailed consideration of how your findings answer your research questions. This includes the use of secondary literature to help contextualise your discussion. Rather than considering the findings in detail, the conclusion briefly summarises and synthesises the main findings of your study before bringing the dissertation to a close. Both are similar, particularly in the way they ‘broaden out’ to consider the wider implications of the research. They are, however, their own distinct chapters, unless otherwise stated by your supervisor.

The results and discussion chapters (or chapter) constitute a large part of your dissertation as it’s here where your original contribution is foregrounded and discussed in detail. Remember, the results chapter simply reports on the data collected, whilst the discussion is where you consider your research questions and/or hypothesis in more detail by interpreting and interrogating the data. You can integrate both into a single chapter and weave the interpretation of your findings throughout the chapter, although it’s common for both the results and discussion to appear as separate chapters. Consult your supervisor for further guidance.

Here’s a final checklist for writing your results and discussion. Remember that not all of these points will be relevant for you, so make sure you cover whatever’s appropriate for your dissertation. The asterisk (*) indicates any content that might not be relevant for your dissertation. To download a copy of the checklist to save and edit, please use the Word document, below.

  • Results and discussion self-evaluation checklist

Decorative

  • << Previous: The Methodology
  • Next: The Conclusion >>
  • Last Updated: Apr 19, 2024 12:38 PM
  • URL: https://library.soton.ac.uk/writing_the_dissertation

LOGO ANALYTICS FOR DECISIONS

11 Tips For Writing a Dissertation Data Analysis

Since the evolution of the fourth industrial revolution – the Digital World; lots of data have surrounded us. There are terabytes of data around us or in data centers that need to be processed and used. The data needs to be appropriately analyzed to process it, and Dissertation data analysis forms its basis. If data analysis is valid and free from errors, the research outcomes will be reliable and lead to a successful dissertation. 

Considering the complexity of many data analysis projects, it becomes challenging to get precise results if analysts are not familiar with data analysis tools and tests properly. The analysis is a time-taking process that starts with collecting valid and relevant data and ends with the demonstration of error-free results.

So, in today’s topic, we will cover the need to analyze data, dissertation data analysis, and mainly the tips for writing an outstanding data analysis dissertation. If you are a doctoral student and plan to perform dissertation data analysis on your data, make sure that you give this article a thorough read for the best tips!

What is Data Analysis in Dissertation?

Dissertation Data Analysis  is the process of understanding, gathering, compiling, and processing a large amount of data. Then identifying common patterns in responses and critically examining facts and figures to find the rationale behind those outcomes.

Even f you have the data collected and compiled in the form of facts and figures, it is not enough for proving your research outcomes. There is still a need to apply dissertation data analysis on your data; to use it in the dissertation. It provides scientific support to the thesis and conclusion of the research.

Data Analysis Tools

There are plenty of indicative tests used to analyze data and infer relevant results for the discussion part. Following are some tests  used to perform analysis of data leading to a scientific conclusion:

11 Most Useful Tips for Dissertation Data Analysis

Doctoral students need to perform dissertation data analysis and then dissertation to receive their degree. Many Ph.D. students find it hard to do dissertation data analysis because they are not trained in it.

1. Dissertation Data Analysis Services

The first tip applies to those students who can afford to look for help with their dissertation data analysis work. It’s a viable option, and it can help with time management and with building the other elements of the dissertation with much detail.

Dissertation Analysis services are professional services that help doctoral students with all the basics of their dissertation work, from planning, research and clarification, methodology, dissertation data analysis and review, literature review, and final powerpoint presentation.

One great reference for dissertation data analysis professional services is Statistics Solutions , they’ve been around for over 22 years helping students succeed in their dissertation work. You can find the link to their website here .

For a proper dissertation data analysis, the student should have a clear understanding and statistical knowledge. Through this knowledge and experience, a student can perform dissertation analysis on their own. 

Following are some helpful tips for writing a splendid dissertation data analysis:

2. Relevance of Collected Data

If the data is irrelevant and not appropriate, you might get distracted from the point of focus. To show the reader that you can critically solve the problem, make sure that you write a theoretical proposition regarding the selection  and analysis of data.

3. Data Analysis

For analysis, it is crucial to use such methods that fit best with the types of data collected and the research objectives. Elaborate on these methods and the ones that justify your data collection methods thoroughly. Make sure to make the reader believe that you did not choose your method randomly. Instead, you arrived at it after critical analysis and prolonged research.

On the other hand,  quantitative analysis  refers to the analysis and interpretation of facts and figures – to build reasoning behind the advent of primary findings. An assessment of the main results and the literature review plays a pivotal role in qualitative and quantitative analysis.

The overall objective of data analysis is to detect patterns and inclinations in data and then present the outcomes implicitly.  It helps in providing a solid foundation for critical conclusions and assisting the researcher to complete the dissertation proposal. 

4. Qualitative Data Analysis

Qualitative data refers to data that does not involve numbers. You are required to carry out an analysis of the data collected through experiments, focus groups, and interviews. This can be a time-taking process because it requires iterative examination and sometimes demanding the application of hermeneutics. Note that using qualitative technique doesn’t only mean generating good outcomes but to unveil more profound knowledge that can be transferrable.

Presenting qualitative data analysis in a dissertation  can also be a challenging task. It contains longer and more detailed responses. Placing such comprehensive data coherently in one chapter of the dissertation can be difficult due to two reasons. Firstly, we cannot figure out clearly which data to include and which one to exclude. Secondly, unlike quantitative data, it becomes problematic to present data in figures and tables. Making information condensed into a visual representation is not possible. As a writer, it is of essence to address both of these challenges.

          Qualitative Data Analysis Methods

Following are the methods used to perform quantitative data analysis. 

  •   Deductive Method

This method involves analyzing qualitative data based on an argument that a researcher already defines. It’s a comparatively easy approach to analyze data. It is suitable for the researcher with a fair idea about the responses they are likely to receive from the questionnaires.

  •  Inductive Method

In this method, the researcher analyzes the data not based on any predefined rules. It is a time-taking process used by students who have very little knowledge of the research phenomenon.

5. Quantitative Data Analysis

Quantitative data contains facts and figures obtained from scientific research and requires extensive statistical analysis. After collection and analysis, you will be able to conclude. Generic outcomes can be accepted beyond the sample by assuming that it is representative – one of the preliminary checkpoints to carry out in your analysis to a larger group. This method is also referred to as the “scientific method”, gaining its roots from natural sciences.

The Presentation of quantitative data  depends on the domain to which it is being presented. It is beneficial to consider your audience while writing your findings. Quantitative data for  hard sciences  might require numeric inputs and statistics. As for  natural sciences , such comprehensive analysis is not required.

                Quantitative Analysis Methods

Following are some of the methods used to perform quantitative data analysis. 

  • Trend analysis:  This corresponds to a statistical analysis approach to look at the trend of quantitative data collected over a considerable period.
  • Cross-tabulation:  This method uses a tabula way to draw readings among data sets in research.  
  • Conjoint analysis :   Quantitative data analysis method that can collect and analyze advanced measures. These measures provide a thorough vision about purchasing decisions and the most importantly, marked parameters.
  • TURF analysis:  This approach assesses the total market reach of a service or product or a mix of both. 
  • Gap analysis:  It utilizes the  side-by-side matrix  to portray quantitative data, which captures the difference between the actual and expected performance. 
  • Text analysis:  In this method, innovative tools enumerate  open-ended data  into easily understandable data. 

6. Data Presentation Tools

Since large volumes of data need to be represented, it becomes a difficult task to present such an amount of data in coherent ways. To resolve this issue, consider all the available choices you have, such as tables, charts, diagrams, and graphs. 

Tables help in presenting both qualitative and quantitative data concisely. While presenting data, always keep your reader in mind. Anything clear to you may not be apparent to your reader. So, constantly rethink whether your data presentation method is understandable to someone less conversant with your research and findings. If the answer is “No”, you may need to rethink your Presentation. 

7. Include Appendix or Addendum

After presenting a large amount of data, your dissertation analysis part might get messy and look disorganized. Also, you would not be cutting down or excluding the data you spent days and months collecting. To avoid this, you should include an appendix part. 

The data you find hard to arrange within the text, include that in the  appendix part of a dissertation . And place questionnaires, copies of focus groups and interviews, and data sheets in the appendix. On the other hand, one must put the statistical analysis and sayings quoted by interviewees within the dissertation. 

8. Thoroughness of Data

It is a common misconception that the data presented is self-explanatory. Most of the students provide the data and quotes and think that it is enough and explaining everything. It is not sufficient. Rather than just quoting everything, you should analyze and identify which data you will use to approve or disapprove your standpoints. 

Thoroughly demonstrate the ideas and critically analyze each perspective taking care of the points where errors can occur. Always make sure to discuss the anomalies and strengths of your data to add credibility to your research.

9. Discussing Data

Discussion of data involves elaborating the dimensions to classify patterns, themes, and trends in presented data. In addition, to balancing, also take theoretical interpretations into account. Discuss the reliability of your data by assessing their effect and significance. Do not hide the anomalies. While using interviews to discuss the data, make sure you use relevant quotes to develop a strong rationale. 

It also involves answering what you are trying to do with the data and how you have structured your findings. Once you have presented the results, the reader will be looking for interpretation. Hence, it is essential to deliver the understanding as soon as you have submitted your data.

10. Findings and Results

Findings refer to the facts derived after the analysis of collected data. These outcomes should be stated; clearly, their statements should tightly support your objective and provide logical reasoning and scientific backing to your point. This part comprises of majority part of the dissertation. 

In the finding part, you should tell the reader what they are looking for. There should be no suspense for the reader as it would divert their attention. State your findings clearly and concisely so that they can get the idea of what is more to come in your dissertation.

11. Connection with Literature Review

At the ending of your data analysis in the dissertation, make sure to compare your data with other published research. In this way, you can identify the points of differences and agreements. Check the consistency of your findings if they meet your expectations—lookup for bottleneck position. Analyze and discuss the reasons behind it. Identify the key themes, gaps, and the relation of your findings with the literature review. In short, you should link your data with your research question, and the questions should form a basis for literature.

The Role of Data Analytics at The Senior Management Level

The Role of Data Analytics at The Senior Management Level

From small and medium-sized businesses to Fortune 500 conglomerates, the success of a modern business is now increasingly tied to how the company implements its data infrastructure and data-based decision-making. According

The Decision-Making Model Explained (In Plain Terms)

The Decision-Making Model Explained (In Plain Terms)

Any form of the systematic decision-making process is better enhanced with data. But making sense of big data or even small data analysis when venturing into a decision-making process might

13 Reasons Why Data Is Important in Decision Making

13 Reasons Why Data Is Important in Decision Making

Wrapping Up

Writing data analysis in the dissertation involves dedication, and its implementations demand sound knowledge and proper planning. Choosing your topic, gathering relevant data, analyzing it, presenting your data and findings correctly, discussing the results, connecting with the literature and conclusions are milestones in it. Among these checkpoints, the Data analysis stage is most important and requires a lot of keenness.

In this article, we thoroughly looked at the tips that prove valuable for writing a data analysis in a dissertation. Make sure to give this article a thorough read before you write data analysis in the dissertation leading to the successful future of your research.

Oxbridge Essays. Top 10 Tips for Writing a Dissertation Data Analysis.

Emidio Amadebai

As an IT Engineer, who is passionate about learning and sharing. I have worked and learned quite a bit from Data Engineers, Data Analysts, Business Analysts, and Key Decision Makers almost for the past 5 years. Interested in learning more about Data Science and How to leverage it for better decision-making in my business and hopefully help you do the same in yours.

Recent Posts

Causal vs Evidential Decision-making (How to Make Businesses More Effective) 

In today’s fast-paced business landscape, it is crucial to make informed decisions to stay in the competition which makes it important to understand the concept of the different characteristics and...

Bootstrapping vs. Boosting

Over the past decade, the field of machine learning has witnessed remarkable advancements in predictive techniques and ensemble learning methods. Ensemble techniques are very popular in machine...

how to present quantitative data in a dissertation

Leeds Beckett University

Skills for Learning : Research Skills

Data analysis is an ongoing process that should occur throughout your research project. Suitable data-analysis methods must be selected when you write your research proposal. The nature of your data (i.e. quantitative or qualitative) will be influenced by your research design and purpose. The data will also influence the analysis methods selected.

We run interactive workshops to help you develop skills related to doing research, such as data analysis, writing literature reviews and preparing for dissertations. Find out more on the Skills for Learning Workshops page.

We have online academic skills modules within MyBeckett for all levels of university study. These modules will help your academic development and support your success at LBU. You can work through the modules at your own pace, revisiting them as required. Find out more from our FAQ What academic skills modules are available?

Quantitative data analysis

Broadly speaking, 'statistics' refers to methods, tools and techniques used to collect, organise and interpret data. The goal of statistics is to gain understanding from data. Therefore, you need to know how to:

  • Produce data – for example, by handing out a questionnaire or doing an experiment.
  • Organise, summarise, present and analyse data.
  • Draw valid conclusions from findings.

There are a number of statistical methods you can use to analyse data. Choosing an appropriate statistical method should follow naturally, however, from your research design. Therefore, you should think about data analysis at the early stages of your study design. You may need to consult a statistician for help with this.

Tips for working with statistical data

  • Plan so that the data you get has a good chance of successfully tackling the research problem. This will involve reading literature on your subject, as well as on what makes a good study.
  • To reach useful conclusions, you need to reduce uncertainties or 'noise'. Thus, you will need a sufficiently large data sample. A large sample will improve precision. However, this must be balanced against the 'costs' (time and money) of collection.
  • Consider the logistics. Will there be problems in obtaining sufficient high-quality data? Think about accuracy, trustworthiness and completeness.
  • Statistics are based on random samples. Consider whether your sample will be suited to this sort of analysis. Might there be biases to think about?
  • How will you deal with missing values (any data that is not recorded for some reason)? These can result from gaps in a record or whole records being missed out.
  • When analysing data, start by looking at each variable separately. Conduct initial/exploratory data analysis using graphical displays. Do this before looking at variables in conjunction or anything more complicated. This process can help locate errors in the data and also gives you a 'feel' for the data.
  • Look out for patterns of 'missingness'. They are likely to alert you if there’s a problem. If the 'missingness' is not random, then it will have an impact on the results.
  • Be vigilant and think through what you are doing at all times. Think critically. Statistics are not just mathematical tricks that a computer sorts out. Rather, analysing statistical data is a process that the human mind must interpret!

Top tips! Try inventing or generating the sort of data you might get and see if you can analyse it. Make sure that your process works before gathering actual data. Think what the output of an analytic procedure will look like before doing it for real.

(Note: it is actually difficult to generate realistic data. There are fraud-detection methods in place to identify data that has been fabricated. So, remember to get rid of your practice data before analysing the real stuff!)

Statistical software packages

Software packages can be used to analyse and present data. The most widely used ones are SPSS and NVivo.

SPSS is a statistical-analysis and data-management package for quantitative data analysis. Click on ‘ How do I install SPSS? ’ to learn how to download SPSS to your personal device. SPSS can perform a wide variety of statistical procedures. Some examples are:

  • Data management (i.e. creating subsets of data or transforming data).
  • Summarising, describing or presenting data (i.e. mean, median and frequency).
  • Looking at the distribution of data (i.e. standard deviation).
  • Comparing groups for significant differences using parametric (i.e. t-test) and non-parametric (i.e. Chi-square) tests.
  • Identifying significant relationships between variables (i.e. correlation).

NVivo can be used for qualitative data analysis. It is suitable for use with a wide range of methodologies. Click on ‘ How do I access NVivo ’ to learn how to download NVivo to your personal device. NVivo supports grounded theory, survey data, case studies, focus groups, phenomenology, field research and action research.

  • Process data such as interview transcripts, literature or media extracts, and historical documents.
  • Code data on screen and explore all coding and documents interactively.
  • Rearrange, restructure, extend and edit text, coding and coding relationships.
  • Search imported text for words, phrases or patterns, and automatically code the results.

Qualitative data analysis

Miles and Huberman (1994) point out that there are diverse approaches to qualitative research and analysis. They suggest, however, that it is possible to identify 'a fairly classic set of analytic moves arranged in sequence'. This involves:

  • Affixing codes to a set of field notes drawn from observation or interviews.
  • Noting reflections or other remarks in the margins.
  • Sorting/sifting through these materials to identify: a) similar phrases, relationships between variables, patterns and themes and b) distinct differences between subgroups and common sequences.
  • Isolating these patterns/processes and commonalties/differences. Then, taking them out to the field in the next wave of data collection.
  • Highlighting generalisations and relating them to your original research themes.
  • Taking the generalisations and analysing them in relation to theoretical perspectives.

        (Miles and Huberman, 1994.)

Patterns and generalisations are usually arrived at through a process of analytic induction (see above points 5 and 6). Qualitative analysis rarely involves statistical analysis of relationships between variables. Qualitative analysis aims to gain in-depth understanding of concepts, opinions or experiences.

Presenting information

There are a number of different ways of presenting and communicating information. The particular format you use is dependent upon the type of data generated from the methods you have employed.

Here are some appropriate ways of presenting information for different types of data:

Bar charts: These   may be useful for comparing relative sizes. However, they tend to use a large amount of ink to display a relatively small amount of information. Consider a simple line chart as an alternative.

Pie charts: These have the benefit of indicating that the data must add up to 100%. However, they make it difficult for viewers to distinguish relative sizes, especially if two slices have a difference of less than 10%.

Other examples of presenting data in graphical form include line charts and  scatter plots .

Qualitative data is more likely to be presented in text form. For example, using quotations from interviews or field diaries.

  • Plan ahead, thinking carefully about how you will analyse and present your data.
  • Think through possible restrictions to resources you may encounter and plan accordingly.
  • Find out about the different IT packages available for analysing your data and select the most appropriate.
  • If necessary, allow time to attend an introductory course on a particular computer package. You can book SPSS and NVivo workshops via MyHub .
  • Code your data appropriately, assigning conceptual or numerical codes as suitable.
  • Organise your data so it can be analysed and presented easily.
  • Choose the most suitable way of presenting your information, according to the type of data collected. This will allow your information to be understood and interpreted better.

Primary, secondary and tertiary sources

Information sources are sometimes categorised as primary, secondary or tertiary sources depending on whether or not they are ‘original’ materials or data. For some research projects, you may need to use primary sources as well as secondary or tertiary sources. However the distinction between primary and secondary sources is not always clear and depends on the context. For example, a newspaper article might usually be categorised as a secondary source. But it could also be regarded as a primary source if it were an article giving a first-hand account of a historical event written close to the time it occurred.

  • Primary sources
  • Secondary sources
  • Tertiary sources
  • Grey literature

Primary sources are original sources of information that provide first-hand accounts of what is being experienced or researched. They enable you to get as close to the actual event or research as possible. They are useful for getting the most contemporary information about a topic.

Examples include diary entries, newspaper articles, census data, journal articles with original reports of research, letters, email or other correspondence, original manuscripts and archives, interviews, research data and reports, statistics, autobiographies, exhibitions, films, and artists' writings.

Some information will be available on an Open Access basis, freely accessible online. However, many academic sources are paywalled, and you may need to login as a Leeds Beckett student to access them. Where Leeds Beckett does not have access to a source, you can use our  Request It! Service .

Secondary sources interpret, evaluate or analyse primary sources. They're useful for providing background information on a topic, or for looking back at an event from a current perspective. The majority of your literature searching will probably be done to find secondary sources on your topic.

Examples include journal articles which review or interpret original findings, popular magazine articles commenting on more serious research, textbooks and biographies.

The term tertiary sources isn't used a great deal. There's overlap between what might be considered a secondary source and a tertiary source. One definition is that a tertiary source brings together secondary sources.

Examples include almanacs, fact books, bibliographies, dictionaries and encyclopaedias, directories, indexes and abstracts. They can be useful for introductory information or an overview of a topic in the early stages of research.

Depending on your subject of study, grey literature may be another source you need to use. Grey literature includes technical or research reports, theses and dissertations, conference papers, government documents, white papers, and so on.

Artificial intelligence tools

Before using any generative artificial intelligence or paraphrasing tools in your assessments, you should check if this is permitted on your course.

If their use is permitted on your course, you must  acknowledge any use of generative artificial intelligence tools  such as ChatGPT or paraphrasing tools (e.g., Grammarly, Quillbot, etc.), even if you have only used them to generate ideas for your assessments or for proofreading.

  • Academic Integrity Module in MyBeckett
  • Assignment Calculator
  • Building on Feedback
  • Disability Advice
  • Essay X-ray tool
  • International Students' Academic Introduction
  • Manchester Academic Phrasebank
  • Quote, Unquote
  • Skills and Subject Suppor t
  • Turnitin Grammar Checker

{{You can add more boxes below for links specific to this page [this note will not appear on user pages] }}

  • Research Methods Checklist
  • Sampling Checklist

Skills for Learning FAQs

Library & Student Services

0113 812 1000

  • University Disclaimer
  • Accessibility

Grad Coach

How To Write The Results/Findings Chapter

For qualitative studies (dissertations & theses).

By: Jenna Crossley (PhD). Expert Reviewed By: Dr. Eunice Rautenbach | August 2021

So, you’ve collected and analysed your qualitative data, and it’s time to write up your results chapter. But where do you start? In this post, we’ll guide you through the qualitative results chapter (also called the findings chapter), step by step. 

Overview: Qualitative Results Chapter

  • What (exactly) the qualitative results chapter is
  • What to include in your results chapter
  • How to write up your results chapter
  • A few tips and tricks to help you along the way
  • Free results chapter template

What exactly is the results chapter?

The results chapter in a dissertation or thesis (or any formal academic research piece) is where you objectively and neutrally present the findings of your qualitative analysis (or analyses if you used multiple qualitative analysis methods ). This chapter can sometimes be combined with the discussion chapter (where you interpret the data and discuss its meaning), depending on your university’s preference.  We’ll treat the two chapters as separate, as that’s the most common approach.

In contrast to a quantitative results chapter that presents numbers and statistics, a qualitative results chapter presents data primarily in the form of words . But this doesn’t mean that a qualitative study can’t have quantitative elements – you could, for example, present the number of times a theme or topic pops up in your data, depending on the analysis method(s) you adopt.

Adding a quantitative element to your study can add some rigour, which strengthens your results by providing more evidence for your claims. This is particularly common when using qualitative content analysis. Keep in mind though that qualitative research aims to achieve depth, richness and identify nuances , so don’t get tunnel vision by focusing on the numbers. They’re just cream on top in a qualitative analysis.

So, to recap, the results chapter is where you objectively present the findings of your analysis, without interpreting them (you’ll save that for the discussion chapter). With that out the way, let’s take a look at what you should include in your results chapter.

Free template for results section of a dissertation or thesis

What should you include in the results chapter?

As we’ve mentioned, your qualitative results chapter should purely present and describe your results , not interpret them in relation to the existing literature or your research questions . Any speculations or discussion about the implications of your findings should be reserved for your discussion chapter.

In your results chapter, you’ll want to talk about your analysis findings and whether or not they support your hypotheses (if you have any). Naturally, the exact contents of your results chapter will depend on which qualitative analysis method (or methods) you use. For example, if you were to use thematic analysis, you’d detail the themes identified in your analysis, using extracts from the transcripts or text to support your claims.

While you do need to present your analysis findings in some detail, you should avoid dumping large amounts of raw data in this chapter. Instead, focus on presenting the key findings and using a handful of select quotes or text extracts to support each finding . The reams of data and analysis can be relegated to your appendices.

While it’s tempting to include every last detail you found in your qualitative analysis, it is important to make sure that you report only that which is relevant to your research aims, objectives and research questions .  Always keep these three components, as well as your hypotheses (if you have any) front of mind when writing the chapter and use them as a filter to decide what’s relevant and what’s not.

Need a helping hand?

how to present quantitative data in a dissertation

How do I write the results chapter?

Now that we’ve covered the basics, it’s time to look at how to structure your chapter. Broadly speaking, the results chapter needs to contain three core components – the introduction, the body and the concluding summary. Let’s take a look at each of these.

Section 1: Introduction

The first step is to craft a brief introduction to the chapter. This intro is vital as it provides some context for your findings. In your introduction, you should begin by reiterating your problem statement and research questions and highlight the purpose of your research . Make sure that you spell this out for the reader so that the rest of your chapter is well contextualised.

The next step is to briefly outline the structure of your results chapter. In other words, explain what’s included in the chapter and what the reader can expect. In the results chapter, you want to tell a story that is coherent, flows logically, and is easy to follow , so make sure that you plan your structure out well and convey that structure (at a high level), so that your reader is well oriented.

The introduction section shouldn’t be lengthy. Two or three short paragraphs should be more than adequate. It is merely an introduction and overview, not a summary of the chapter.

Pro Tip – To help you structure your chapter, it can be useful to set up an initial draft with (sub)section headings so that you’re able to easily (re)arrange parts of your chapter. This will also help your reader to follow your results and give your chapter some coherence.  Be sure to use level-based heading styles (e.g. Heading 1, 2, 3 styles) to help the reader differentiate between levels visually. You can find these options in Word (example below).

Heading styles in the results chapter

Section 2: Body

Before we get started on what to include in the body of your chapter, it’s vital to remember that a results section should be completely objective and descriptive, not interpretive . So, be careful not to use words such as, “suggests” or “implies”, as these usually accompany some form of interpretation – that’s reserved for your discussion chapter.

The structure of your body section is very important , so make sure that you plan it out well. When planning out your qualitative results chapter, create sections and subsections so that you can maintain the flow of the story you’re trying to tell. Be sure to systematically and consistently describe each portion of results. Try to adopt a standardised structure for each portion so that you achieve a high level of consistency throughout the chapter.

For qualitative studies, results chapters tend to be structured according to themes , which makes it easier for readers to follow. However, keep in mind that not all results chapters have to be structured in this manner. For example, if you’re conducting a longitudinal study, you may want to structure your chapter chronologically. Similarly, you might structure this chapter based on your theoretical framework . The exact structure of your chapter will depend on the nature of your study , especially your research questions.

As you work through the body of your chapter, make sure that you use quotes to substantiate every one of your claims . You can present these quotes in italics to differentiate them from your own words. A general rule of thumb is to use at least two pieces of evidence per claim, and these should be linked directly to your data. Also, remember that you need to include all relevant results , not just the ones that support your assumptions or initial leanings.

In addition to including quotes, you can also link your claims to the data by using appendices , which you should reference throughout your text. When you reference, make sure that you include both the name/number of the appendix , as well as the line(s) from which you drew your data.

As referencing styles can vary greatly, be sure to look up the appendix referencing conventions of your university’s prescribed style (e.g. APA , Harvard, etc) and keep this consistent throughout your chapter.

Section 3: Concluding summary

The concluding summary is very important because it summarises your key findings and lays the foundation for the discussion chapter . Keep in mind that some readers may skip directly to this section (from the introduction section), so make sure that it can be read and understood well in isolation.

In this section, you need to remind the reader of the key findings. That is, the results that directly relate to your research questions and that you will build upon in your discussion chapter. Remember, your reader has digested a lot of information in this chapter, so you need to use this section to remind them of the most important takeaways.

Importantly, the concluding summary should not present any new information and should only describe what you’ve already presented in your chapter. Keep it concise – you’re not summarising the whole chapter, just the essentials.

Tips for writing an A-grade results chapter

Now that you’ve got a clear picture of what the qualitative results chapter is all about, here are some quick tips and reminders to help you craft a high-quality chapter:

  • Your results chapter should be written in the past tense . You’ve done the work already, so you want to tell the reader what you found , not what you are currently finding .
  • Make sure that you review your work multiple times and check that every claim is adequately backed up by evidence . Aim for at least two examples per claim, and make use of an appendix to reference these.
  • When writing up your results, make sure that you stick to only what is relevant . Don’t waste time on data that are not relevant to your research objectives and research questions.
  • Use headings and subheadings to create an intuitive, easy to follow piece of writing. Make use of Microsoft Word’s “heading styles” and be sure to use them consistently.
  • When referring to numerical data, tables and figures can provide a useful visual aid. When using these, make sure that they can be read and understood independent of your body text (i.e. that they can stand-alone). To this end, use clear, concise labels for each of your tables or figures and make use of colours to code indicate differences or hierarchy.
  • Similarly, when you’re writing up your chapter, it can be useful to highlight topics and themes in different colours . This can help you to differentiate between your data if you get a bit overwhelmed and will also help you to ensure that your results flow logically and coherently.

If you have any questions, leave a comment below and we’ll do our best to help. If you’d like 1-on-1 help with your results chapter (or any chapter of your dissertation or thesis), check out our private dissertation coaching service here or book a free initial consultation to discuss how we can help you.

how to present quantitative data in a dissertation

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

You Might Also Like:

Quantitative results chapter in a dissertation

20 Comments

David Person

This was extremely helpful. Thanks a lot guys

Aditi

Hi, thanks for the great research support platform created by the gradcoach team!

I wanted to ask- While “suggests” or “implies” are interpretive terms, what terms could we use for the results chapter? Could you share some examples of descriptive terms?

TcherEva

I think that instead of saying, ‘The data suggested, or The data implied,’ you can say, ‘The Data showed or revealed, or illustrated or outlined’…If interview data, you may say Jane Doe illuminated or elaborated, or Jane Doe described… or Jane Doe expressed or stated.

Llala Phoshoko

I found this article very useful. Thank you very much for the outstanding work you are doing.

Oliwia

What if i have 3 different interviewees answering the same interview questions? Should i then present the results in form of the table with the division on the 3 perspectives or rather give a results in form of the text and highlight who said what?

Rea

I think this tabular representation of results is a great idea. I am doing it too along with the text. Thanks

Nomonde Mteto

That was helpful was struggling to separate the discussion from the findings

Esther Peter.

this was very useful, Thank you.

tendayi

Very helpful, I am confident to write my results chapter now.

Sha

It is so helpful! It is a good job. Thank you very much!

Nabil

Very useful, well explained. Many thanks.

Agnes Ngatuni

Hello, I appreciate the way you provided a supportive comments about qualitative results presenting tips

Carol Ch

I loved this! It explains everything needed, and it has helped me better organize my thoughts. What words should I not use while writing my results section, other than subjective ones.

Hend

Thanks a lot, it is really helpful

Anna milanga

Thank you so much dear, i really appropriate your nice explanations about this.

Wid

Thank you so much for this! I was wondering if anyone could help with how to prproperly integrate quotations (Excerpts) from interviews in the finding chapter in a qualitative research. Please GradCoach, address this issue and provide examples.

nk

what if I’m not doing any interviews myself and all the information is coming from case studies that have already done the research.

FAITH NHARARA

Very helpful thank you.

Philip

This was very helpful as I was wondering how to structure this part of my dissertation, to include the quotes… Thanks for this explanation

Aleks

This is very helpful, thanks! I am required to write up my results chapters with the discussion in each of them – any tips and tricks for this strategy?

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly
  • Cookies & Privacy
  • GETTING STARTED
  • Introduction
  • FUNDAMENTALS

Qualitative, quantitative and mixed methods dissertations

What are they and which one should i choose.

In the sections that follow, we briefly describe the main characteristics of qualitative, quantitative and mixed methods dissertations. Rather than being exhaustive, the main goal is to highlight what these types of research are and what they involve. Whilst you read through each section, try and think about your own dissertation, and whether you think that one of these types of dissertation might be right for you. After reading about these three types of dissertation, we highlight some of the academic, personal and practical reasons why you may choose to take on one type over another.

  • Types of dissertation: Qualitative, quantitative and mixed methods dissertations
  • Choosing between types: Academic, personal and practical justifications

Types of dissertation

Whilst we describe the main characteristics of qualitative, quantitative and mixed methods dissertations, the Lærd Dissertation site currently focuses on helping guide you through quantitative dissertations , whether you are a student of the social sciences, psychology, education or business, or are studying medical or biological sciences, sports science, or another science-based degree. Nonetheless, you may still find our introductions to qualitative dissertations and mixed methods dissertations useful, if only to decide whether these types of dissertation are for you. We discuss quantitative dissertations , qualitative dissertations and mixed methods dissertations in turn:

Quantitative dissertations

When we use the word quantitative to describe quantitative dissertations , we do not simply mean that the dissertation will draw on quantitative research methods or statistical analysis techniques . Quantitative research takes a particular approach to theory , answering research questions and/or hypotheses , setting up a research strategy , making conclusions from results , and so forth. Classic routes that you can follow include replication-based studies , theory-driven research and data-driven dissertations . However, irrespective of the particular route that you adopt when taking on a quantitative dissertation, there are a number of core characteristics to quantitative dissertations:

They typically attempt to build on and/or test theories , whether adopting an original approach or an approach based on some kind of replication or extension .

They answer quantitative research questions and/or research (or null ) hypotheses .

They are mainly underpinned by positivist or post-positivist research paradigms .

They draw on one of four broad quantitative research designs (i.e., descriptive , experimental , quasi-experimental or relationship-based research designs).

They try to use probability sampling techniques , with the goal of making generalisations from the sample being studied to a wider population , although often end up applying non-probability sampling techniques .

They use research methods that generate quantitative data (e.g., data sets , laboratory-based methods , questionnaires/surveys , structured interviews , structured observation , etc.).

They draw heavily on statistical analysis techniques to examine the data collected, whether descriptive or inferential in nature.

They assess the quality of their findings in terms of their reliability , internal and external validity , and construct validity .

They report their findings using statements , data , tables and graphs that address each research question and/or hypothesis.

They make conclusions in line with the findings , research questions and/or hypotheses , and theories discussed in order to test and/or expand on existing theories, or providing insight for future theories.

If you choose to take on a quantitative dissertation , go to the Quantitative Dissertations part of Lærd Dissertation now. You will learn more about the characteristics of quantitative dissertations, as well as being able to choose between the three classic routes that are pursued in quantitative research: replication-based studies , theory-driven research and data-driven dissertations . Upon choosing your route, the Quantitative Dissertations part of Lærd Dissertation will help guide you through these routes, from topic idea to completed dissertation, as well as showing you how to write up quantitative dissertations.

Qualitative dissertations

Qualitative dissertations , like qualitative research in general, are often associated with qualitative research methods such as unstructured interviews, focus groups and participant observation. Whilst they do use a set of research methods that are not used in quantitative dissertations, qualitative research is much more than a choice between research methods. Qualitative research takes a particular approach towards the research process , the setting of research questions , the development and use of theory , the choice of research strategy , the way that findings are presented and discussed, and so forth. Overall, qualitative dissertations will be very different in approach, depending on the particular route that you adopt (e.g., case study research compared to ethnographies). Classic routes that you can follow include autoethnographies , case study research , ethnographies , grounded theory , narrative research and phenomenological research . However, irrespective of the route that you choose to follow, there are a number of broad characteristics to qualitative dissertations:

They follow an emergent design , meaning that the research process , and sometimes even the qualitative research questions that you tackle, often evolve during the dissertation process.

They use theory in a variety of ways - sometimes drawing on theory to help the research process; on other occasions, using theory to develop new theoretical insights ; sometimes both - but the goal is infrequently to test a particular theory from the outset.

They can be underpinned by one of a number of research paradigms (e.g., interpretivism , constructivism , critical theory , amongst many other research paradigms).

They follow research designs that heavily influence the choices you make throughout the research process, as well as the analysis and discussion of 'findings' (i.e., such research designs differ considerably depending on the route that is being followed, whether an autoethnography , case study research , ethnography , grounded theory , narrative research , phenomenological research , etc.).

They try to use theoretical sampling - a group of non-probability sampling techniques - with the goal of studying cases (i.e., people or organisations) that are most appropriate to answering their research questions.

They study people in-the-field (i.e., in natural settings ), often using multiple research methods , each of which generate qualitative data (e.g., unstructured interviews , focus groups , participant observation , etc.).

They interpret the qualitative data through the eyes and biases of the researcher , going back-and-forth through the data (i.e., an inductive process ) to identify themes or abstractions that build a holistic/gestalt picture of what is being studied.

They assess the quality of their findings in terms of their dependability , confirmability , conformability and transferability .

They present (and discuss ) their findings through personal accounts , case studies , narratives , and other means that identify themes or abstracts , processes , observations and contradictions , which help to address their research questions.

They discuss the theoretical insights arising from the findings in light of the research questions, from which tentative conclusions are made.

If you choose to take on a qualitative dissertation , you will be able to learn a little about appropriate research methods and sampling techniques in the Fundamentals section of Lærd Dissertation. However, we have not yet launched a dedicated section to qualitative dissertations within Lærd Dissertation. If this is something that you would like us to do sooner than later, please leave feedback .

Mixed methods dissertations

Mixed methods dissertations combine qualitative and quantitative approaches to research. Whilst they are increasingly used and have gained greater legitimacy, much less has been written about their components parts. There are a number of reasons why mixed methods dissertations are used, including the feeling that a research question can be better addressed by:

Collecting qualitative and quantitative data , and then analysing or interpreting that data, whether separately or by mixing it.

Conducting more than one research phase ; perhaps conducting qualitative research to explore an issue and uncover major themes, before using quantitative research to measure the relationships between the themes.

One of the problems (or challenges) of mixed methods dissertations is that qualitative and quantitative research, as you will have seen from the two previous sections, are very different in approach. In many respects, they are opposing approaches to research. Therefore, when taking on a mixed methods dissertation, you need to think particularly carefully about the goals of your research, and whether the qualitative or quantitative components (a) are more important in philosophical, theoretical and practical terms, and (b) should be combined or kept separate.

Again, as with qualitative dissertations, we have yet to launch a dedicated section of Lærd Dissertation to mixed methods dissertations . However, you will be able to learn about many of the quantitative aspects of doing a mixed methods dissertation in the Quantitative Dissertations part of Lærd Dissertation. You may even be able to follow this part of our site entirely if the only qualitative aspect of your mixed methods dissertation is the use of qualitative methods to help you explore an issue or uncover major themes, before performing quantitative research to examine such themes further. Nonetheless, if you would like to see a dedicated section to mixed methods dissertations sooner than later, please leave feedback .

IMAGES

  1. Quantitative Data

    how to present quantitative data in a dissertation

  2. Data analysis section of dissertation. How to Use Quantitative Data

    how to present quantitative data in a dissertation

  3. Tables in Research Paper

    how to present quantitative data in a dissertation

  4. Presentation of Quantitative Data

    how to present quantitative data in a dissertation

  5. Analyse Quantitative Data Dissertation

    how to present quantitative data in a dissertation

  6. Quantitative Data Analysis 101 Tutorial: Statistics Explained Simply

    how to present quantitative data in a dissertation

VIDEO

  1. Quantitative Dissertation

  2. Quantitative Dissertation

  3. Data analysis strategies, presentation and interpretation

  4. Quantitative Analysis Webinar: Conducting, Interpreting, & Writing

  5. Confidently Present Your Quantitative Results Chapter

  6. Confidently Present Your Quantitative Results Chapter

COMMENTS

  1. Dissertation Results/Findings Chapter (Quantitative)

    The results chapter (also referred to as the findings or analysis chapter) is one of the most important chapters of your dissertation or thesis because it shows the reader what you've found in terms of the quantitative data you've collected. It presents the data using a clear text narrative, supported by tables, graphs and charts.

  2. How to Write a Results Section

    Here are a few best practices: Your results should always be written in the past tense. While the length of this section depends on how much data you collected and analyzed, it should be written as concisely as possible. Only include results that are directly relevant to answering your research questions.

  3. Presenting Results (Quantitative)

    In a quantitative dissertation or capstone you will be presenting your results. You may present your results with or without a discussion explaining what those results mean. You will want to consult your chair to make sure you are following the approach. preferred by your chair. Thus, your chapter 4 may include the following: Introduction. Results.

  4. A Really Simple Guide to Quantitative Data Analysis

    nominal. It is important to know w hat kind of data you are planning to collect or analyse as this w ill. affect your analysis method. A 12 step approach to quantitative data analysis. Step 1 ...

  5. Reporting Research Results in APA Style

    Presenting numbers effectively. To effectively present numbers, use a mix of text, tables, and figures where appropriate: To present three or fewer numbers, try a sentence,; To present between 4 and 20 numbers, try a table,; To present more than 20 numbers, try a figure.; Since these are general guidelines, use your own judgment and feedback from others for effective presentation of numbers.

  6. Dissertation Results Chapter 101: Quantitative Methodology Studies

    Learn how to craft a rock-solid results chapter/section for your quantitative dissertation, thesis or research project. We explain each section of the typica...

  7. A Practical Guide to Writing Quantitative and Qualitative Research

    Hypothesis-testing (Quantitative hypothesis-testing research) - Quantitative research uses deductive reasoning. - This involves the formation of a hypothesis, collection of data in the investigation of the problem, analysis and use of the data from the investigation, and drawing of conclusions to validate or nullify the hypotheses.

  8. A Guide to Quantitative and Qualitative Dissertation Research (Second

    Chapter 3 of the dissertation provides the reader with a detailed description of the components of the method that will be used in the research. This chapter helps the reader to judge if the method used in the research provided an adequate opportunity to examine the research questions and hypotheses.

  9. Quantitative Data Analysis Methods & Techniques 101

    Factor 1 - Data type. The first thing you need to consider is the type of data you've collected (or the type of data you will collect). By data types, I'm referring to the four levels of measurement - namely, nominal, ordinal, interval and ratio. If you're not familiar with this lingo, check out the video below.

  10. Quantitative Dissertations

    Types of quantitative dissertation Replication, Data or Theory. When taking on a quantitative dissertation, there are many different routes that you can follow. We focus on three major routes that cover a good proportion of the types of quantitative dissertation that are carried out. We call them Route #1: Replication-based dissertations, Route #2: Data-driven dissertations and Route #3 ...

  11. How to structure quantitative research questions

    STEP ONE: Choose the type of quantitative research question (i.e., descriptive, comparative or relationship) you are trying to create. STEP TWO: Identify the different types of variable you are trying to measure, manipulate and/or control, as well as any groups you may be interested in. STEP THREE: Select the appropriate structure for the ...

  12. The Results and Discussion

    Guide contents. As part of the Writing the Dissertation series, this guide covers the most common conventions of the results and discussion chapters, giving you the necessary knowledge, tips and guidance needed to impress your markers! The sections are organised as follows: The Difference - Breaks down the distinctions between the results and discussion chapters.

  13. Step 7: Data analysis techniques for your dissertation

    An understanding of the data analysis that you will carry out on your data can also be an expected component of the Research Strategy chapter of your dissertation write-up (i.e., usually Chapter Three: Research Strategy). Therefore, it is a good time to think about the data analysis process if you plan to start writing up this chapter at this ...

  14. How to Use Quantitative Data Analysis in a Thesis

    It refers to the statistical analysis of numerical data. Thus, it contrasts with qualitative data analysis, which refers to the analysis of non-numerical data. Note that it's possible to conduct a quantitative analysis of qualitative data; however, you must first convert such qualitative data into numerical form without losing their meaning.

  15. 11 Tips For Writing a Dissertation Data Analysis

    And place questionnaires, copies of focus groups and interviews, and data sheets in the appendix. On the other hand, one must put the statistical analysis and sayings quoted by interviewees within the dissertation. 8. Thoroughness of Data. It is a common misconception that the data presented is self-explanatory.

  16. What Is Quantitative Research?

    Revised on June 22, 2023. Quantitative research is the process of collecting and analyzing numerical data. It can be used to find patterns and averages, make predictions, test causal relationships, and generalize results to wider populations. Quantitative research is the opposite of qualitative research, which involves collecting and analyzing ...

  17. The Library: Research Skills: Analysing and Presenting Data

    Overview. Data analysis is an ongoing process that should occur throughout your research project. Suitable data-analysis methods must be selected when you write your research proposal. The nature of your data (i.e. quantitative or qualitative) will be influenced by your research design and purpose. The data will also influence the analysis ...

  18. A practical guide to data analysis in general literature reviews

    This article is a practical guide to conducting data analysis in general literature reviews. The general literature review is a synthesis and analysis of published research on a relevant clinical issue, and is a common format for academic theses at the bachelor's and master's levels in nursing, physiotherapy, occupational therapy, public health and other related fields.

  19. Writing up the results section of your dissertation

    PICTURE 2. Results of ANOVA for regression: Now you need to report the value of R 2 (see PICTURE 3), which tells you the degree to which your model predicted self-esteem scores. You need to multiply this value by 100 to get a percentage. Thus, if your R 2 value is .335, the percentage becomes 33.5%.

  20. (PDF) Presenting Quantitative Research Results

    quantitative analysts. Results of such analyses inform decisions of government and nonpro fi t. agencies every day, included in documents such as research papers, grant proposals, policy briefs ...

  21. The Beginner's Guide to Statistical Analysis

    Table of contents. Step 1: Write your hypotheses and plan your research design. Step 2: Collect data from a sample. Step 3: Summarize your data with descriptive statistics. Step 4: Test hypotheses or make estimates with inferential statistics.

  22. Dissertation Structure & Layout 101 (+ Examples)

    Abstract or executive summary. The dissertation abstract (or executive summary for some degrees) serves to provide the first-time reader (and marker or moderator) with a big-picture view of your research project. It should give them an understanding of the key insights and findings from the research, without them needing to read the rest of the report - in other words, it should be able to ...

  23. Dissertation Results & Findings Chapter (Qualitative)

    The results chapter in a dissertation or thesis (or any formal academic research piece) is where you objectively and neutrally present the findings of your qualitative analysis (or analyses if you used multiple qualitative analysis methods ). This chapter can sometimes be combined with the discussion chapter (where you interpret the data and ...

  24. Qualitative, quantitative and mixed methods dissertations

    There are a number of reasons why mixed methods dissertations are used, including the feeling that a research question can be better addressed by: Collecting qualitative and quantitative data, and then analysing or interpreting that data, whether separately or by mixing it. Conducting more than one research phase; perhaps conducting qualitative ...