• Texas Go Math
  • Big Ideas Math
  • Engageny Math
  • McGraw Hill My Math
  • enVision Math
  • 180 Days of Math
  • Math in Focus Answer Key
  • Math Expressions Answer Key
  • Privacy Policy

CCSS Math Answers

Eureka Math Grade 3 Module 7 Answer Key | Engage NY Math 3rd Grade Module 7 Answer Key

Eureka Math Grade 3 Module 7 Answer Key provided lays a deeper understanding of concepts. Practice using the Engage NY Math 3rd Grade Module 7 Solutions and develop the Knowledge that builds upon itself throughout the learning process. Avail the Problem-Solving Methods used in Eureka Math Grade 3 Answer Key Module 7 and solve related problems in no time. Detailed Solutions provided in the 3rd Grade Engage NY Module 7 Answer Key make it easy for you to retain the concepts for a long time.

Download the Eureka Math 3rd Grade Module 7 Geometry and Measurement for free of cost prepared by subject experts adhering to the latest common core curriculum. Solving the Engage NY Math Third Grade Module 7 Answers helps you to be focused no matter where you are. Look no further and begin your preparation right away taking the help of these online resources.

EngageNY Math Grade 3 Module 7 Answer Key | Eureka Math 3rd Grade Module 7 Answer Key

Engage NY Math Grade 3 module 7 Geometry and Measurement Answer Key provides a flexible, knowledge-building curriculum along with any time learning environment. Third Grade Eureka Math Module 7 Answer Key has questions from Lessons, Extra Practice, Mid Module, End Module Assessments, Review Tests, Assessments, etc. You can access the Topicwise Engage NY Eureka Math 3rd Grade Module 7 Solutions via the direct links available. Just tap on them and learn the underlying concepts within them efficiently and score better grades in exams.

Eureka Math Grade 3 Module 7 Geometry and Measurement Word Problems

Eureka Math Grade 3 Module 7 Topic A Solving Word Problems

  • Eureka Math Grade 3 Module 7 Lesson 1 Answer Key
  • Eureka Math Grade 3 Module 7 Lesson 2 Answer Key
  • Eureka Math Grade 3 Module 7 Lesson 3 Answer Key

Eureka Math 3rd Grade Module 7 Topic B Attributes of Two-Dimensional Figures

  • Eureka Math Grade 3 Module 7 Lesson 4 Answer Key
  • Eureka Math Grade 3 Module 7 Lesson 5 Answer Key
  • Eureka Math Grade 3 Module 7 Lesson 6 Answer Key
  • Eureka Math Grade 3 Module 7 Lesson 7 Answer Key
  • Eureka Math Grade 3 Module 7 Lesson 8 Answer Key
  • Eureka Math Grade 3 Module 7 Lesson 9 Answer Key

Engage NY Math 3rd Grade Module 7 Topic C Problem Solving with Perimeter

  • Eureka Math Grade 3 Module 7 Lesson 10 Answer Key
  • Eureka Math Grade 3 Module 7 Lesson 11 Answer Key
  • Eureka Math Grade 3 Module 7 Lesson 12 Answer Key
  • Eureka Math Grade 3 Module 7 Lesson 13 Answer Key
  • Eureka Math Grade 3 Module 7 Lesson 14 Answer Key
  • Eureka Math Grade 3 Module 7 Lesson 15 Answer Key
  • Eureka Math Grade 3 Module 7 Lesson 16 Answer Key
  • Eureka Math Grade 3 Module 7 Lesson 17 Answer Key

Eureka Math Grade 3 Module 7 Mid Module Assessment Answer Key

EngageNY Math Grade 3 Module 7 Topic D Recording Perimeter and Area Data on Line Plots

  • Eureka Math Grade 3 Module 7 Lesson 18 Answer Key
  • Eureka Math Grade 3 Module 7 Lesson 19 Answer Key
  • Eureka Math Grade 3 Module 7 Lesson 20 Answer Key
  • Eureka Math Grade 3 Module 7 Lesson 21 Answer Key
  • Eureka Math Grade 3 Module 7 Lesson 22 Answer Key

3rd Grade Eureka Math Module 7 Topic E Problem Solving with Perimeter and Area

  • Eureka Math Grade 3 Module 7 Lesson 23 Answer Key
  • Eureka Math Grade 3 Module 7 Lesson 24 Answer Key
  • Eureka Math Grade 3 Module 7 Lesson 25 Answer Key
  • Eureka Math Grade 3 Module 7 Lesson 26 Answer Key
  • Eureka Math Grade 3 Module 7 Lesson 27 Answer Key
  • Eureka Math Grade 3 Module 7 Lesson 28 Answer Key
  • Eureka Math Grade 3 Module 7 Lesson 29 Answer Key
  • Eureka Math Grade 3 Module 7 Lesson 30 Answer Key

Eureka Math Grade 3 Module 7 End of Module Assessment Answer Key

Engage NY Grade 3 Module 7 Topic F Year in Review

  • Eureka Math Grade 3 Module 7 Lesson 31 Answer Key
  • Eureka Math Grade 3 Module 7 Lesson 32 Answer Key
  • Eureka Math Grade 3 Module 7 Lesson 33 Answer Key
  • Eureka Math Grade 3 Module 7 Lesson 34 Answer Key

Wrapping Up

Hope the knowledge shared regarding the Eureka Math Grade 3 Module 7 Answer Key helped you resolve your queries on the related concepts easily. For any further assistance do leave us your suggestions so that we can get back to you at the soonest possibility. Bookmark our site to avail latest updates on Eureka Math Answer Key for all Grades.

Leave a Comment Cancel Reply

You must be logged in to post a comment.

Standards Alignment

Assessments, professional learning, family engagement, case studies.

NEW EUREKA MATH 2 ® PILOT PACKAGE

Are you looking for new ways to advance equity and build knowledge in your math classroom with high-quality instructional materials? EdReports recently reviewed Eureka Math 2 . Scan the QR code or access the final report .

Check out our special pilot package for only $10 per student.

Shop Online

Children reading together in class

SEE THE SCIENCE OF READING IN ACTION

At Great Minds ® , we’re committed to ensuring our curricula are aligned to the latest research on how students best learn to read, write, and build knowledge.

Explore webinars, blogs, research briefs, and more to discover how we incorporate this important body of research.

Students engaging with hand-crank flashlight as teacher observes

FREE CLASSROOM PRINTABLES

At Great Minds®, we’re committed to supporting educators with high-quality curricula and resources.

Explore resources designed to aid students in science and engineering and spark classroom conversation.

Webinar Library

Instructional resources, trending topics, knowledge-building, the science of reading, lesson design, universal design for learning (udl), background knowledge.

Palm Springs, CA

Houston, TX

New Orleans, LA

Eureka Math Student Materials: Grades K–5

Learn, Practice, Succeed

Learn, Practice, and Succeed from   Eureka Math™   offer teachers multiple ways to differentiate instruction, provide extra practice, and assess student learning. These versatile companions to   A Story of Units®   (Grades K–5) guide teachers in response to intervention (RTI), provide extra practice, and inform instruction.

Also available for Grades 6–8 . 

Learn, Practice, Succeed can be purchased all together or bundled in any configuration. Contact your account solutions manager for more information and pricing.  

Request a Quote

The Learn book serves as a student’s in-class companion where they show their thinking, share what they know, and watch their knowledge build every day!

Application Problems:  Problem solving in a real-world context is a daily part of   Eureka Math , building student confidence and perseverance as students apply their knowledge in new and varied ways.

Problem Sets :  A carefully sequenced Problem Set provides an in-class opportunity for independent work, with multiple entry points for differentiation.

Exit Tickets:   These exercises check student understanding, providing the teacher with immediate, valuable evidence of the efficacy of that day’s instruction and informing next steps.

Templates:   Learn   includes templates for the pictures, reusable models, and data sets that students need for   Eureka Math   activities.

Look Inside

With   Practice , students build competence in newly acquired skills and reinforce previously learned skills in preparation for tomorrow’s lesson.   Together,   Learn   and   Practice   provide all the print materials a student uses for their core instruction.

Eureka Math  contains multiple daily opportunities to build fluency in   mathematics . Each is designed with the same notion—growing every student’s ability to use mathematics   with ease . Fluency experiences are generally fast-paced and energetic, celebrating improvement and focusing on recognizing patterns and connections within the material.

Eureka Math   fluency activities provide differentiated practice through a variety of formats—some are conducted orally, some use manipulatives, others use a personal whiteboard, or a handout and paper-and-pencil format.

Sprints:  Sprint fluency activities in  Eureka Math Practice  build speed and accuracy with already acquired skills. Used when students are nearing optimum proficiency, Sprints leverage tempo to build a low-stakes adrenaline boost that increases memory and recall. Their intentional design makes Sprints inherently differentiated – the problems build from simple to complex, with the first quadrant of problems being the simplest, and each subsequent quadrant adding complexity.

Look Inside

Eureka Math Succeed   enables students to work individually toward mastery.  Teachers and tutors can use  Succeed   books from prior grade levels as curriculum-consistent tools for filling gaps in foundational knowledge. Students will thrive and progress more quickly, as familiar models facilitate connections to their current, grade-level content.

Additional Problem Sets:  Ideal for Homework or extra practice, these additional problem sets align lesson-by-lesson with what is happening in the classroom. These problems are sequenced from simple-to-complex to naturally scaffold student practice. They align with   Eureka Math   and use the curriculum’s mathematical models and language, ensuring that students feel the connections and relevance to their daily instruction, whether they are working on foundational skills or getting extra practice on the current topic.

Homework Helpers:   Each problem set is accompanied by a Homework Helper, a set of worked examples that illustrate how similar problems are solved. The examples, viewed side by side with the homework, support students as they reinforce the day’s learning. Homework Helpers are also a great way to keep parents informed about math class.

Look Inside

Bundles and Class Sets Available

Bundle options are available for all of our materials (print, digital, PD, etc.). Prices vary by grade and size of class set. Certain grade-levels do not include all packets due to the nature of the grade-level content. Student workbooks are available in class sets of 20, 25, and 30. Prices vary by size of class set .

Request a Quote for Print Materials

every child is capable of greatness

  • Job Openings
  • Digital Support
  • Print Support
  • Media Inquiries

Let’s Connect

  • Terms of Service
  • Privacy Policy
  • System Status
  • CA Residents: Do Not Sell My Info

Logo for BCcampus Open Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Answer Key 3.7

  • [latex]2x+5=25[/latex]
  • [latex]4x+12=36[/latex]
  • [latex]3x-8=22[/latex]
  • [latex]6x-8=22[/latex]
  • [latex]x-8=\dfrac{x}{2}[/latex]
  • [latex]x-4=\dfrac{x}{2}[/latex]
  • [latex]x+x+1+x+2=21[/latex]
  • [latex]x+x+2-(x+4)=5[/latex]
  • [latex]\phantom{a}[/latex] [latex]\begin{array}[t]{rrrrrr} 5&+&3x&=&17& \\ -5&&&&-5& \\ \hline &&3x&=&12& \\ \\ &&x&=&\dfrac{12}{3}&\text{or } 4 \end{array}[/latex]
  • [latex]\phantom{a}[/latex] [latex]\begin{array}[t]{rrrrrr} 3x&-&5&=&10& \\ &+&5&&+5& \\ \hline &&3x&=&15& \\ \\ &&x&=&\dfrac{15}{3}&\text{or } 5 \end{array}[/latex]
  • [latex]\phantom{a}[/latex] [latex]\begin{array}[t]{rrrrrrr} 60&+&9x&=&10x&-&2 \\ +2&-&9x&&-9x&+&2 \\ \hline &&62&=&x&& \end{array}[/latex]
  • [latex]\phantom{a}[/latex] [latex]\begin{array}[t]{rrrrrrr} 7x&-&11&=&6x&+&5 \\ -6x&+&11&&-6x&+&11 \\ \hline &&x&=&16&& \end{array}[/latex]
  • [latex]\phantom{a}[/latex] [latex]\begin{array}[t]{rrrrrrrrrrl} x&+&x&+&1&+&x&+&2&=&108 \\ &&&&&&3x&+&3&=&108 \\ &&&&&&&-&3&&-3 \\ \hline &&&&&&&&3x&=&105 \\ \\ &&&&&&&&x&=&\dfrac{105}{3}\text{ or }35 \\ \\ &&&&&&&&&\therefore &35, 36, 37 \end{array}[/latex]
  • [latex]\phantom{a}[/latex] [latex]\begin{array}[t]{rrrrrrrrrrl} x&+&x&+&1&+&x&+&2&=&-126 \\ &&&&&&3x&+&3&=&-126 \\ &&&&&&&-&3&&-\phantom{00}3 \\ \hline &&&&&&&&3x&=&-129 \\ \\ &&&&&&&&x&=&\dfrac{-129}{3}\text{ or }-43 \\ \\ &&&&&&&&&\therefore &-43, -42, -41 \end{array}[/latex]
  • [latex]\phantom{a}[/latex] [latex]\begin{array}[t]{rrrrrrrrrrl} x&+&2(x&+&1)&+&3(x&+&2)&=&-76 \\ x&+&2x&+&2&+&3x&+&6&=&-76 \\ &&&&&&6x&+&8&=&-76 \\ &&&&&&&-&8&&-\phantom{0}8 \\ \hline &&&&&&&&6x&=&-84 \\ \\ &&&&&&&&x&=&\dfrac{-84}{6}\text{ or }-14 \\ \\ &&&&&&&&&\therefore &-14, -13, -12 \end{array}[/latex]
  • [latex]\phantom{a}[/latex] [latex]\begin{array}[t]{rrrrrrrrrrl} x&+&2(x&+&2)&+&3(x&+&4)&=&\phantom{0}70 \\ x&+&2x&+&4&+&3x&+&12&=&\phantom{0}70 \\ &&&&&&6x&+&16&=&\phantom{0}70 \\ &&&&&&&-&16&&-16 \\ \hline &&&&&&&&6x&=&54 \\ \\ &&&&&&&&x&=&\dfrac{54}{6}\text{ or }9 \\ \\ &&&&&&&&&\therefore &9,11,13 \end{array}[/latex]

Intermediate Algebra Copyright © 2020 by Terrance Berg is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

lesson 16 homework 3.7 answer key

7.1 Solving Trigonometric Equations with Identities

sin 2 θ − 1 tan θ sin θ − tan θ = ( sin θ + 1 ) ( sin θ − 1 ) tan θ ( sin θ − 1 ) = sin θ + 1 tan θ sin 2 θ − 1 tan θ sin θ − tan θ = ( sin θ + 1 ) ( sin θ − 1 ) tan θ ( sin θ − 1 ) = sin θ + 1 tan θ

This is a difference of squares formula: 25 − 9 sin 2 θ = ( 5 − 3 sin θ ) ( 5 + 3 sin θ ) . 25 − 9 sin 2 θ = ( 5 − 3 sin θ ) ( 5 + 3 sin θ ) .

7.2 Sum and Difference Identities

2 + 6 4 2 + 6 4

2 − 6 4 2 − 6 4

1 − 3 1 + 3 1 − 3 1 + 3

cos ( 5 π 14 ) cos ( 5 π 14 )

7.3 Double-Angle, Half-Angle, and Reduction Formulas

cos ( 2 α ) = 7 32 cos ( 2 α ) = 7 32

cos 4 θ − sin 4 θ = ( cos 2 θ + sin 2 θ ) ( cos 2 θ − sin 2 θ ) = cos ( 2 θ ) cos 4 θ − sin 4 θ = ( cos 2 θ + sin 2 θ ) ( cos 2 θ − sin 2 θ ) = cos ( 2 θ )

cos ( 2 θ ) cos θ = ( cos 2 θ − sin 2 θ ) cos θ = cos 3 θ − cos θ sin 2 θ cos ( 2 θ ) cos θ = ( cos 2 θ − sin 2 θ ) cos θ = cos 3 θ − cos θ sin 2 θ

10 cos 4 x = 10 cos 4 x = 10 ( cos 2 x ) 2              = 10 [ 1 + cos ( 2 x ) 2 ] 2 Substitute reduction formula for cos 2 x .              = 10 4 [ 1 + 2 cos ( 2 x ) + cos 2 ( 2 x ) ]              = 10 4 + 10 2 cos ( 2 x ) + 10 4 ( 1 + cos 2 ( 2 x ) 2 ) Substitute reduction formula for cos 2 x .              = 10 4 + 10 2 cos ( 2 x ) + 10 8 + 10 8 cos ( 4 x )              = 30 8 + 5 cos ( 2 x ) + 10 8 cos ( 4 x )              = 15 4 + 5 cos ( 2 x ) + 5 4 cos ( 4 x ) 10 cos 4 x = 10 cos 4 x = 10 ( cos 2 x ) 2              = 10 [ 1 + cos ( 2 x ) 2 ] 2 Substitute reduction formula for cos 2 x .              = 10 4 [ 1 + 2 cos ( 2 x ) + cos 2 ( 2 x ) ]              = 10 4 + 10 2 cos ( 2 x ) + 10 4 ( 1 + cos 2 ( 2 x ) 2 ) Substitute reduction formula for cos 2 x .              = 10 4 + 10 2 cos ( 2 x ) + 10 8 + 10 8 cos ( 4 x )              = 30 8 + 5 cos ( 2 x ) + 10 8 cos ( 4 x )              = 15 4 + 5 cos ( 2 x ) + 5 4 cos ( 4 x )

− 2 5 − 2 5

7.4 Sum-to-Product and Product-to-Sum Formulas

1 2 ( cos 6 θ + cos 2 θ ) 1 2 ( cos 6 θ + cos 2 θ )

1 2 ( sin 2 x + sin 2 y ) 1 2 ( sin 2 x + sin 2 y )

− 2 − 3 4 − 2 − 3 4

2 sin ( 2 θ ) cos ( θ ) 2 sin ( 2 θ ) cos ( θ )

tan θ cot θ − cos 2 θ = ( sin θ cos θ ) ( cos θ sin θ ) − cos 2 θ = 1 − cos 2 θ = sin 2 θ tan θ cot θ − cos 2 θ = ( sin θ cos θ ) ( cos θ sin θ ) − cos 2 θ = 1 − cos 2 θ = sin 2 θ

7.5 Solving Trigonometric Equations

x = 7 π 6 , 11 π 6 x = 7 π 6 , 11 π 6

π 3 ± π k π 3 ± π k

θ ≈ 1.7722 ± 2 π k θ ≈ 1.7722 ± 2 π k and θ ≈ 4.5110 ± 2 π k θ ≈ 4.5110 ± 2 π k

cos θ = − 1 , θ = π cos θ = − 1 , θ = π

π 2 , 2 π 3 , 4 π 3 , 3 π 2 π 2 , 2 π 3 , 4 π 3 , 3 π 2

7.6 Modeling with Trigonometric Functions

The amplitude is 3 , 3 , and the period is 2 3 . 2 3 .

y = 8 sin ( π 12 t ) + 32 y = 8 sin ( π 12 t ) + 32 The temperature reaches freezing at noon and at midnight.

initial displacement =6, damping constant = -6, frequency = 2 π 2 π

y = 10 e − 0.5 t cos ( π t ) y = 10 e − 0.5 t cos ( π t )

y = 5 cos ( 6 π t ) y = 5 cos ( 6 π t )

7.1 Section Exercises

All three functions, F F , G G , and H , H , are even.

This is because F ( − x ) = sin ( − x ) sin ( − x ) = ( − sin x ) ( − sin x ) = sin 2 x = F ( x ) , G ( − x ) = cos ( − x ) cos ( − x ) = cos x cos x = cos 2 x = G ( x ) F ( − x ) = sin ( − x ) sin ( − x ) = ( − sin x ) ( − sin x ) = sin 2 x = F ( x ) , G ( − x ) = cos ( − x ) cos ( − x ) = cos x cos x = cos 2 x = G ( x ) and H ( − x ) = tan ( − x ) tan ( − x ) = ( − tan x ) ( − tan x ) = tan 2 x = H ( x ) . H ( − x ) = tan ( − x ) tan ( − x ) = ( − tan x ) ( − tan x ) = tan 2 x = H ( x ) .

When cos t = 0 , cos t = 0 , then sec t = 1 0 , sec t = 1 0 , which is undefined.

sin x sin x

sec x sec x

csc t csc t

sec 2 x sec 2 x

sin 2 x + 1 sin 2 x + 1

1 sin x 1 sin x

1 cot x 1 cot x

tan x tan x

− 4 sec x tan x − 4 sec x tan x

± 1 cot 2 x + 1 ± 1 cot 2 x + 1

± 1 − sin 2 x sin x ± 1 − sin 2 x sin x

Answers will vary. Sample proof:

cos x − cos 3 x = cos x ( 1 − cos 2 x ) cos x − cos 3 x = cos x ( 1 − cos 2 x ) = cos x sin 2 x = cos x sin 2 x

Answers will vary. Sample proof: 1 + sin 2 x cos 2 x = 1 cos 2 x + sin 2 x cos 2 x = sec 2 x + tan 2 x = tan 2 x + 1 + tan 2 x = 1 + 2 tan 2 x 1 + sin 2 x cos 2 x = 1 cos 2 x + sin 2 x cos 2 x = sec 2 x + tan 2 x = tan 2 x + 1 + tan 2 x = 1 + 2 tan 2 x

Answers will vary. Sample proof: cos 2 x − tan 2 x = 1 − sin 2 x − ( sec 2 x − 1 ) = 1 − sin 2 x − sec 2 x + 1 = 2 − sin 2 x − sec 2 x cos 2 x − tan 2 x = 1 − sin 2 x − ( sec 2 x − 1 ) = 1 − sin 2 x − sec 2 x + 1 = 2 − sin 2 x − sec 2 x

Proved with negative and Pythagorean Identities

True 3 sin 2 θ + 4 cos 2 θ = 3 sin 2 θ + 3 cos 2 θ + cos 2 θ = 3 ( sin 2 θ + cos 2 θ ) + cos 2 θ = 3 + cos 2 θ 3 sin 2 θ + 4 cos 2 θ = 3 sin 2 θ + 3 cos 2 θ + cos 2 θ = 3 ( sin 2 θ + cos 2 θ ) + cos 2 θ = 3 + cos 2 θ

7.2 Section Exercises

The cofunction identities apply to complementary angles. Viewing the two acute angles of a right triangle, if one of those angles measures x , x , the second angle measures π 2 − x . π 2 − x . Then sin x = cos ( π 2 − x ) . sin x = cos ( π 2 − x ) . The same holds for the other cofunction identities. The key is that the angles are complementary.

sin ( − x ) = − sin x , sin ( − x ) = − sin x , so sin x sin x is odd. cos ( − x ) = cos ( 0 − x ) = cos x , cos ( − x ) = cos ( 0 − x ) = cos x , so cos x cos x is even.

6 − 2 4 6 − 2 4

− 2 − 3 − 2 − 3

− 2 2 sin x − 2 2 cos x − 2 2 sin x − 2 2 cos x

− 1 2 cos x − 3 2 sin x − 1 2 cos x − 3 2 sin x

csc θ csc θ

cot x cot x

tan ( x 10 ) tan ( x 10 )

sin ( a − b ) = ( 4 5 ) ( 1 3 ) − ( 3 5 ) ( 2 2 3 ) = 4 − 6 2 15 sin ( a − b ) = ( 4 5 ) ( 1 3 ) − ( 3 5 ) ( 2 2 3 ) = 4 − 6 2 15 cos ( a + b ) = ( 3 5 ) ( 1 3 ) − ( 4 5 ) ( 2 2 3 ) = 3 − 8 2 15 cos ( a + b ) = ( 3 5 ) ( 1 3 ) − ( 4 5 ) ( 2 2 3 ) = 3 − 8 2 15

cot ( π 6 − x ) cot ( π 6 − x )

cot ( π 4 + x ) cot ( π 4 + x )

sin x 2 + cos x 2 sin x 2 + cos x 2

They are the same.

They are the different, try g ( x ) = sin ( 9 x ) − cos ( 3 x ) sin ( 6 x ) . g ( x ) = sin ( 9 x ) − cos ( 3 x ) sin ( 6 x ) .

They are the different, try g ( θ ) = 2 tan θ 1 − tan 2 θ . g ( θ ) = 2 tan θ 1 − tan 2 θ .

They are different, try g ( x ) = tan x − tan ( 2 x ) 1 + tan x tan ( 2 x ) . g ( x ) = tan x − tan ( 2 x ) 1 + tan x tan ( 2 x ) .

− 3 − 1 2 2 ,  or  − 0.2588 − 3 − 1 2 2 ,  or  − 0.2588

1 + 3 2 2 , 1 + 3 2 2 , or 0.9659

tan ( x + π 4 ) = tan x + tan ( π 4 ) 1 − tan x tan ( π 4 ) = tan x + 1 1 − tan x ( 1 ) = tan x + 1 1 − tan x tan ( x + π 4 ) = tan x + tan ( π 4 ) 1 − tan x tan ( π 4 ) = tan x + 1 1 − tan x ( 1 ) = tan x + 1 1 − tan x

cos ( a + b ) cos a cos b = cos a cos b cos a cos b − sin a sin b cos a cos b = 1 − tan a tan b cos ( a + b ) cos a cos b = cos a cos b cos a cos b − sin a sin b cos a cos b = 1 − tan a tan b

cos ( x + h ) − cos x h = cos x cosh − sin x sinh − cos x h = cos x ( cosh − 1 ) − sin x sinh h = cos x cos h − 1 h − sin x sin h h cos ( x + h ) − cos x h = cos x cosh − sin x sinh − cos x h = cos x ( cosh − 1 ) − sin x sinh h = cos x cos h − 1 h − sin x sin h h

True. Note that sin ( α + β ) = sin ( π − γ ) sin ( α + β ) = sin ( π − γ ) and expand the right hand side.

7.3 Section Exercises

Use the Pythagorean identities and isolate the squared term.

1 − cos x sin x , sin x 1 + cos x , 1 − cos x sin x , sin x 1 + cos x , multiplying the top and bottom by 1 − cos x 1 − cos x and 1 + cos x , 1 + cos x , respectively.

a) 3 7 32 3 7 32 b) 31 32 31 32 c) 3 7 31 3 7 31

a) 3 2 3 2 b) − 1 2 − 1 2 c) − 3 − 3

cos θ = − 2 5 5 , sin θ = 5 5 , tan θ = − 1 2 , csc θ = 5 , sec θ = − 5 2 , cot θ = − 2 cos θ = − 2 5 5 , sin θ = 5 5 , tan θ = − 1 2 , csc θ = 5 , sec θ = − 5 2 , cot θ = − 2

2 sin ( π 2 ) 2 sin ( π 2 )

2 − 2 2 2 − 2 2

2 − 3 2 2 − 3 2

2 + 3 2 + 3

− 1 − 2 − 1 − 2

a) 3 13 13 3 13 13 b) − 2 13 13 − 2 13 13 c) − 3 2 − 3 2

a) 10 4 10 4 b) 6 4 6 4 c) 15 3 15 3

120 169 , – 119 169 , – 120 119 120 169 , – 119 169 , – 120 119

2 13 13 , 3 13 13 , 2 3 2 13 13 , 3 13 13 , 2 3

cos ( 74 ∘ ) cos ( 74 ∘ )

cos ( 18 x ) cos ( 18 x )

3 sin ( 10 x ) 3 sin ( 10 x )

− 2 sin ( − x ) cos ( − x ) = − 2 ( − sin ( x ) cos ( x ) ) = sin ( 2 x ) − 2 sin ( − x ) cos ( − x ) = − 2 ( − sin ( x ) cos ( x ) ) = sin ( 2 x )

sin ( 2 θ ) 1 + cos ( 2 θ ) tan 2 θ = 2 sin ( θ ) cos ( θ ) 1 + cos 2 θ − sin 2 θ tan 2 θ = 2 sin ( θ ) cos ( θ ) 2 cos 2 θ tan 2 θ = sin ( θ ) cos θ tan 2 θ = tan θ tan 2 θ = tan 3 θ sin ( 2 θ ) 1 + cos ( 2 θ ) tan 2 θ = 2 sin ( θ ) cos ( θ ) 1 + cos 2 θ − sin 2 θ tan 2 θ = 2 sin ( θ ) cos ( θ ) 2 cos 2 θ tan 2 θ = sin ( θ ) cos θ tan 2 θ = tan θ tan 2 θ = tan 3 θ

1 + cos ( 12 x ) 2 1 + cos ( 12 x ) 2

3 + cos ( 12 x ) − 4 cos ( 6 x ) 8 3 + cos ( 12 x ) − 4 cos ( 6 x ) 8

2 + cos ( 2 x ) − 2 cos ( 4 x ) − cos ( 6 x ) 32 2 + cos ( 2 x ) − 2 cos ( 4 x ) − cos ( 6 x ) 32

3 + cos ( 4 x ) − 4 cos ( 2 x ) 3 + cos ( 4 x ) + 4 cos ( 2 x ) 3 + cos ( 4 x ) − 4 cos ( 2 x ) 3 + cos ( 4 x ) + 4 cos ( 2 x )

1 − cos ( 4 x ) 8 1 − cos ( 4 x ) 8

3 + cos ( 4 x ) − 4 cos ( 2 x ) 4 ( cos ( 2 x ) + 1 ) 3 + cos ( 4 x ) − 4 cos ( 2 x ) 4 ( cos ( 2 x ) + 1 )

( 1 + cos ( 4 x ) ) sin x 2 ( 1 + cos ( 4 x ) ) sin x 2

4 sin x cos x ( cos 2 x − sin 2 x ) 4 sin x cos x ( cos 2 x − sin 2 x )

2 tan x 1 + tan 2 x = 2 sin x cos x 1 + sin 2 x cos 2 x = 2 sin x cos x cos 2 x + sin 2 x cos 2 x = 2 tan x 1 + tan 2 x = 2 sin x cos x 1 + sin 2 x cos 2 x = 2 sin x cos x cos 2 x + sin 2 x cos 2 x = 2 sin x cos x . cos 2 x 1 = 2 sin x cos x = sin ( 2 x ) 2 sin x cos x . cos 2 x 1 = 2 sin x cos x = sin ( 2 x )

2 sin x cos x 2 cos 2 x − 1 = sin ( 2 x ) cos ( 2 x ) = tan ( 2 x ) 2 sin x cos x 2 cos 2 x − 1 = sin ( 2 x ) cos ( 2 x ) = tan ( 2 x )

sin ( x + 2 x ) = sin x cos ( 2 x ) + sin ( 2 x ) cos x = sin x ( cos 2 x − sin 2 x ) + 2 sin x cos x cos x = sin x cos 2 x − sin 3 x + 2 sin x cos 2 x = 3 sin x cos 2 x − sin 3 x sin ( x + 2 x ) = sin x cos ( 2 x ) + sin ( 2 x ) cos x = sin x ( cos 2 x − sin 2 x ) + 2 sin x cos x cos x = sin x cos 2 x − sin 3 x + 2 sin x cos 2 x = 3 sin x cos 2 x − sin 3 x

1 + cos ( 2 t ) sin ( 2 t ) − cos t = 1 + 2 cos 2 t − 1 2 sin t cos t − cos t = 2 cos 2 t cos t ( 2 sin t − 1 ) = 2 cos t 2 sin t − 1 1 + cos ( 2 t ) sin ( 2 t ) − cos t = 1 + 2 cos 2 t − 1 2 sin t cos t − cos t = 2 cos 2 t cos t ( 2 sin t − 1 ) = 2 cos t 2 sin t − 1

( cos 2 ( 4 x ) − sin 2 ( 4 x ) − sin ( 8 x ) ) ( cos 2 ( 4 x ) − sin 2 ( 4 x ) + sin ( 8 x ) ) = = ( cos ( 8 x ) − sin ( 8 x ) ) ( cos ( 8 x ) + sin ( 8 x ) ) = cos 2 ( 8 x ) − sin 2 ( 8 x ) = cos ( 16 x ) ( cos 2 ( 4 x ) − sin 2 ( 4 x ) − sin ( 8 x ) ) ( cos 2 ( 4 x ) − sin 2 ( 4 x ) + sin ( 8 x ) ) = = ( cos ( 8 x ) − sin ( 8 x ) ) ( cos ( 8 x ) + sin ( 8 x ) ) = cos 2 ( 8 x ) − sin 2 ( 8 x ) = cos ( 16 x )

7.4 Section Exercises

Substitute α α into cosine and β β into sine and evaluate.

Answers will vary. There are some equations that involve a sum of two trig expressions where when converted to a product are easier to solve. For example: sin ( 3 x ) + sin x cos x = 1. sin ( 3 x ) + sin x cos x = 1. When converting the numerator to a product the equation becomes: 2 sin ( 2 x ) cos x cos x = 1 2 sin ( 2 x ) cos x cos x = 1

8 ( cos ( 5 x ) − cos ( 27 x ) ) 8 ( cos ( 5 x ) − cos ( 27 x ) )

sin ( 2 x ) + sin ( 8 x ) sin ( 2 x ) + sin ( 8 x )

1 2 ( cos ( 6 x ) − cos ( 4 x ) ) 1 2 ( cos ( 6 x ) − cos ( 4 x ) )

2 cos ( 5 t ) cos t 2 cos ( 5 t ) cos t

2 cos ( 7 x ) 2 cos ( 7 x )

2 cos ( 6 x ) cos ( 3 x ) 2 cos ( 6 x ) cos ( 3 x )

1 4 ( 1 + 3 ) 1 4 ( 1 + 3 )

1 4 ( 3 − 2 ) 1 4 ( 3 − 2 )

1 4 ( 3 − 1 ) 1 4 ( 3 − 1 )

cos ( 80° ) − cos ( 120° ) cos ( 80° ) − cos ( 120° )

1 2 ( sin ( 221° ) + sin ( 205° ) ) 1 2 ( sin ( 221° ) + sin ( 205° ) )

2 cos ( 31° ) 2 cos ( 31° )

2 cos ( 66.5 ° ) sin ( 34.5 ° ) 2 cos ( 66.5 ° ) sin ( 34.5 ° )

2 sin ( −1.5° ) cos ( 0.5° ) 2 sin ( −1.5° ) cos ( 0.5° )

2 sin ( 7 x ) − 2 sin x = 2 sin ( 4 x + 3 x ) − 2 sin ( 4 x − 3 x ) = 2 ( sin ( 4 x ) cos ( 3 x ) + sin ( 3 x ) cos ( 4 x ) ) − 2 ( sin ( 4 x ) cos ( 3 x ) − sin ( 3 x ) cos ( 4 x ) ) = 2 sin ( 4 x ) cos ( 3 x ) + 2 sin ( 3 x ) cos ( 4 x ) ) − 2 sin ( 4 x ) cos ( 3 x ) + 2 sin ( 3 x ) cos ( 4 x ) ) = 4 sin ( 3 x ) cos ( 4 x ) 2 sin ( 7 x ) − 2 sin x = 2 sin ( 4 x + 3 x ) − 2 sin ( 4 x − 3 x ) = 2 ( sin ( 4 x ) cos ( 3 x ) + sin ( 3 x ) cos ( 4 x ) ) − 2 ( sin ( 4 x ) cos ( 3 x ) − sin ( 3 x ) cos ( 4 x ) ) = 2 sin ( 4 x ) cos ( 3 x ) + 2 sin ( 3 x ) cos ( 4 x ) ) − 2 sin ( 4 x ) cos ( 3 x ) + 2 sin ( 3 x ) cos ( 4 x ) ) = 4 sin ( 3 x ) cos ( 4 x )

sin x + sin ( 3 x ) = 2 sin ( 4 x 2 ) cos ( − 2 x 2 ) = sin x + sin ( 3 x ) = 2 sin ( 4 x 2 ) cos ( − 2 x 2 ) = 2 sin ( 2 x ) cos x = 2 ( 2 sin x cos x ) cos x = 2 sin ( 2 x ) cos x = 2 ( 2 sin x cos x ) cos x = 4 sin x cos 2 x 4 sin x cos 2 x

2 tan x cos ( 3 x ) = 2 sin x cos ( 3 x ) cos x = 2 ( .5 ( sin ( 4 x ) − sin ( 2 x ) ) ) cos x 2 tan x cos ( 3 x ) = 2 sin x cos ( 3 x ) cos x = 2 ( .5 ( sin ( 4 x ) − sin ( 2 x ) ) ) cos x = 1 cos x ( sin ( 4 x ) − sin ( 2 x ) ) = sec x ( sin ( 4 x ) − sin ( 2 x ) ) = 1 cos x ( sin ( 4 x ) − sin ( 2 x ) ) = sec x ( sin ( 4 x ) − sin ( 2 x ) )

2 cos ( 35 ∘ ) cos ( 23 ∘ ) ,  1 .5081 2 cos ( 35 ∘ ) cos ( 23 ∘ ) ,  1 .5081

− 2 sin ( 33 ∘ ) sin ( 11 ∘ ) , − 0.2078 − 2 sin ( 33 ∘ ) sin ( 11 ∘ ) , − 0.2078

1 2 ( cos ( 99 ∘ ) − cos ( 71 ∘ ) ) , − 0.2410 1 2 ( cos ( 99 ∘ ) − cos ( 71 ∘ ) ) , − 0.2410

It is and identity.

It is not an identity, but 2 cos 3 x 2 cos 3 x is.

tan ( 3 t ) tan ( 3 t )

2 cos ( 2 x ) 2 cos ( 2 x )

− sin ( 14 x ) − sin ( 14 x )

Start with cos x + cos y . cos x + cos y . Make a substitution and let x = α + β x = α + β and let y = α − β , y = α − β , so cos x + cos y cos x + cos y becomes cos ( α + β ) + cos ( α − β ) = cos α cos β − sin α sin β + cos α cos β + sin α sin β = 2 cos α cos β cos ( α + β ) + cos ( α − β ) = cos α cos β − sin α sin β + cos α cos β + sin α sin β = 2 cos α cos β

Since x = α + β x = α + β and y = α − β , y = α − β , we can solve for α α and β β in terms of x and y and substitute in for 2 cos α cos β 2 cos α cos β and get 2 cos ( x + y 2 ) cos ( x − y 2 ) . 2 cos ( x + y 2 ) cos ( x − y 2 ) .

cos ( 3 x ) + cos x cos ( 3 x ) − cos x = 2 cos ( 2 x ) cos x − 2 sin ( 2 x ) sin x = − cot ( 2 x ) cot x cos ( 3 x ) + cos x cos ( 3 x ) − cos x = 2 cos ( 2 x ) cos x − 2 sin ( 2 x ) sin x = − cot ( 2 x ) cot x

cos ( 2 y ) − cos ( 4 y ) sin ( 2 y ) + sin ( 4 y ) = − 2 sin ( 3 y ) sin ( − y ) 2 sin ( 3 y ) cos y = 2 sin ( 3 y ) sin ( y ) 2 sin ( 3 y ) cos y = tan y cos ( 2 y ) − cos ( 4 y ) sin ( 2 y ) + sin ( 4 y ) = − 2 sin ( 3 y ) sin ( − y ) 2 sin ( 3 y ) cos y = 2 sin ( 3 y ) sin ( y ) 2 sin ( 3 y ) cos y = tan y

cos x − cos ( 3 x ) = − 2 sin ( 2 x ) sin ( − x ) = 2 ( 2 sin x cos x ) sin x = 4 sin 2 x cos x cos x − cos ( 3 x ) = − 2 sin ( 2 x ) sin ( − x ) = 2 ( 2 sin x cos x ) sin x = 4 sin 2 x cos x

tan ( π 4 − t ) = tan ( π 4 ) − tan t 1 + tan ( π 4 ) tan ( t ) = 1 − tan t 1 + tan t tan ( π 4 − t ) = tan ( π 4 ) − tan t 1 + tan ( π 4 ) tan ( t ) = 1 − tan t 1 + tan t

7.5 Section Exercises

There will not always be solutions to trigonometric function equations. For a basic example, cos ( x ) = −5. cos ( x ) = −5.

If the sine or cosine function has a coefficient of one, isolate the term on one side of the equals sign. If the number it is set equal to has an absolute value less than or equal to one, the equation has solutions, otherwise it does not. If the sine or cosine does not have a coefficient equal to one, still isolate the term but then divide both sides of the equation by the leading coefficient. Then, if the number it is set equal to has an absolute value greater than one, the equation has no solution.

π 3 , 2 π 3 π 3 , 2 π 3

3 π 4 , 5 π 4 3 π 4 , 5 π 4

π 4 , 5 π 4 π 4 , 5 π 4

π 4 , 3 π 4 , 5 π 4 , 7 π 4 π 4 , 3 π 4 , 5 π 4 , 7 π 4

π 4 , 7 π 4 π 4 , 7 π 4

7 π 6 , 11 π 6 7 π 6 , 11 π 6

π 18 π 18 , 5 π 18 5 π 18 , 13 π 18 13 π 18 , 17 π 18 17 π 18 , 25 π 18 25 π 18 , 29 π 18 29 π 18

3 π 12 , 5 π 12 , 11 π 12 , 13 π 12 , 19 π 12 , 21 π 12 3 π 12 , 5 π 12 , 11 π 12 , 13 π 12 , 19 π 12 , 21 π 12

1 6 , 5 6 , 13 6 , 17 6 , 25 6 , 29 6 , 37 6 1 6 , 5 6 , 13 6 , 17 6 , 25 6 , 29 6 , 37 6

0 , π 3 , π , 5 π 3 0 , π 3 , π , 5 π 3

π 3 , π , 5 π 3 π 3 , π , 5 π 3

π 3 , 3 π 2 , 5 π 3 π 3 , 3 π 2 , 5 π 3

0 , π 0 , π

π − sin − 1 ( − 1 4 ) , 7 π 6 , 11 π 6 , 2 π + sin − 1 ( − 1 4 ) π − sin − 1 ( − 1 4 ) , 7 π 6 , 11 π 6 , 2 π + sin − 1 ( − 1 4 )

1 3 ( sin − 1 ( 9 10 ) ) , π 3 − 1 3 ( sin − 1 ( 9 10 ) ) , 2 π 3 + 1 3 ( sin − 1 ( 9 10 ) ) , π − 1 3 ( sin − 1 ( 9 10 ) ) , 4 π 3 + 1 3 ( sin − 1 ( 9 10 ) ) , 5 π 3 − 1 3 ( sin − 1 ( 9 10 ) ) 1 3 ( sin − 1 ( 9 10 ) ) , π 3 − 1 3 ( sin − 1 ( 9 10 ) ) , 2 π 3 + 1 3 ( sin − 1 ( 9 10 ) ) , π − 1 3 ( sin − 1 ( 9 10 ) ) , 4 π 3 + 1 3 ( sin − 1 ( 9 10 ) ) , 5 π 3 − 1 3 ( sin − 1 ( 9 10 ) )

θ = sin - 1 2 3 , π - sin - 1 2 3 , π + sin - 1 2 3 , 2 π - sin - 1 2 3 θ = sin - 1 2 3 , π - sin - 1 2 3 , π + sin - 1 2 3 , 2 π - sin - 1 2 3

3 π 2 , π 6 , 5 π 6 3 π 2 , π 6 , 5 π 6

0 , π 3 , π , 4 π 3 0 , π 3 , π , 4 π 3

There are no solutions.

cos − 1 ( 1 3 ( 1 − 7 ) ) , 2 π − cos − 1 ( 1 3 ( 1 − 7 ) ) cos − 1 ( 1 3 ( 1 − 7 ) ) , 2 π − cos − 1 ( 1 3 ( 1 − 7 ) )

tan − 1 ( 1 2 ( 29 − 5 ) ) , π + tan − 1 ( 1 2 ( − 29 − 5 ) ) , π + tan − 1 ( 1 2 ( 29 − 5 ) ) , 2 π + tan − 1 ( 1 2 ( − 29 − 5 ) ) tan − 1 ( 1 2 ( 29 − 5 ) ) , π + tan − 1 ( 1 2 ( − 29 − 5 ) ) , π + tan − 1 ( 1 2 ( 29 − 5 ) ) , 2 π + tan − 1 ( 1 2 ( − 29 − 5 ) )

0 , 2 π 3 , 4 π 3 0 , 2 π 3 , 4 π 3

sin − 1 ( 3 5 ) , π 2 , π − sin − 1 ( 3 5 ) , 3 π 2 sin − 1 ( 3 5 ) , π 2 , π − sin − 1 ( 3 5 ) , 3 π 2

cos − 1 ( − 1 4 ) cos − 1 ( − 1 4 ) , 2 π − cos − 1 ( − 1 4 ) 2 π − cos − 1 ( − 1 4 )

π 3 , cos − 1 ( − 3 4 ) , 2 π − cos − 1 ( − 3 4 ) , 5 π 3 π 3 , cos − 1 ( − 3 4 ) , 2 π − cos − 1 ( − 3 4 ) , 5 π 3

cos − 1 ( 3 4 ) , cos − 1 ( − 2 3 ) , 2 π − cos − 1 ( − 2 3 ) cos − 1 ( 3 4 ) , cos − 1 ( − 2 3 ) , 2 π − cos − 1 ( − 2 3 ) , 2 π − cos − 1 ( 3 4 ) 2 π − cos − 1 ( 3 4 )

0 , π 2 , π , 3 π 2 0 , π 2 , π , 3 π 2

π 3 , cos −1 ( − 1 4 ) , 2 π − cos −1 ( − 1 4 ) , 5 π 3 π 3 , cos −1 ( − 1 4 ) , 2 π − cos −1 ( − 1 4 ) , 5 π 3

π + tan −1 ( −2 ) π + tan −1 ( −2 ) , π + tan −1 ( − 3 2 ) , 2 π + tan −1 ( −2 ) , 2 π + tan −1 ( − 3 2 ) π + tan −1 ( − 3 2 ) , 2 π + tan −1 ( −2 ) , 2 π + tan −1 ( − 3 2 )

2 π k + 0.2734 , 2 π k + 2.8682 2 π k + 0.2734 , 2 π k + 2.8682

π k − 0.3277 π k − 0.3277

0.6694 , 1.8287 , 3.8110 , 4.9703 0.6694 , 1.8287 , 3.8110 , 4.9703

1.0472 , 3.1416 , 5.2360 1.0472 , 3.1416 , 5.2360

0.5326 , 1.7648 , 3.6742 , 4.9064 0.5326 , 1.7648 , 3.6742 , 4.9064

sin − 1 ( 1 4 ) , π − sin − 1 ( 1 4 ) , 3 π 2 sin − 1 ( 1 4 ) , π − sin − 1 ( 1 4 ) , 3 π 2

π 2 , 3 π 2 π 2 , 3 π 2

7.2 ∘ 7.2 ∘

5.7 ∘ 5.7 ∘

82.4 ∘ 82.4 ∘

31.0 ∘ 31.0 ∘

88.7 ∘ 88.7 ∘

59.0 ∘ 59.0 ∘

36.9 ∘ 36.9 ∘

7.6 Section Exercises

Physical behavior should be periodic, or cyclical.

Since cumulative rainfall is always increasing, a sinusoidal function would not be ideal here.

y = − 3 cos ( π 6 x ) − 1 y = − 3 cos ( π 6 x ) − 1

5 sin ( 2 x ) + 2 5 sin ( 2 x ) + 2

y = 4 - 6 cos ( x π 2 ) y = 4 - 6 cos ( x π 2 )

y = tan ( x π 8 ) y = tan ( x π 8 )

tan ( x π 12 ) tan ( x π 12 )

From June 15 through November 16

From day 31 through day 58

Floods: April 16 to July 15. Drought: October 16 to January 15.

Amplitude: 8, period: 1 3 , 1 3 , frequency: 3 Hz

Amplitude: 4, period: 4 , 4 , frequency: 1 4 1 4 Hz

P ( t ) = − 19 cos ( π 6 t ) + 800 + 160 12 t P ( t ) = − 19 cos ( π 6 t ) + 800 + 40 3 t P ( t ) = − 19 cos ( π 6 t ) + 800 + 160 12 t P ( t ) = − 19 cos ( π 6 t ) + 800 + 40 3 t

P ( t ) = − 33 cos ( π 6 t ) + 900 + ( 1.07 ) t P ( t ) = − 33 cos ( π 6 t ) + 900 + ( 1.07 ) t

D ( t ) = 10 ( 0.85 ) t cos ( 36 π t ) D ( t ) = 10 ( 0.85 ) t cos ( 36 π t )

D ( t ) = 17 ( 0.9145 ) t cos ( 28 π t ) D ( t ) = 17 ( 0.9145 ) t cos ( 28 π t )

15.4 seconds

Spring 2 comes to rest first after 7.3 seconds.

234.3 miles, at 72.2°

y = 6 ( 4 ) x + 5 sin ( π 2 x ) y = 6 ( 4 ) x + 5 sin ( π 2 x )

y = 4 ( – 2 ) x + 8 sin ( π 2 x ) y = 4 ( – 2 ) x + 8 sin ( π 2 x )

y = 3 ( 2 ) x cos ( π 2 x ) + 1 y = 3 ( 2 ) x cos ( π 2 x ) + 1

Review Exercises

sin − 1 ( 3 3 ) , π − sin − 1 ( 3 3 ) , π + sin − 1 ( 3 3 ) , 2 π − sin − 1 ( 3 3 ) sin − 1 ( 3 3 ) , π − sin − 1 ( 3 3 ) , π + sin − 1 ( 3 3 ) , 2 π − sin − 1 ( 3 3 )

sin − 1 ( 1 4 ) , π − sin − 1 ( 1 4 ) sin − 1 ( 1 4 ) , π − sin − 1 ( 1 4 )

cos ( 4 x ) − cos ( 3 x ) cos x = cos ( 2 x + 2 x ) − cos ( x + 2 x ) cos x                                    = cos ( 2 x ) cos ( 2 x ) − sin ( 2 x ) sin ( 2 x ) − cos x cos ( 2 x ) cos x + sin x sin ( 2 x ) cos x                                    = ( cos 2 x − sin 2 x ) 2 − 4 cos 2 x sin 2 x − cos 2 x ( cos 2 x − sin 2 x ) + sin x ( 2 ) sin x cos x cos x                                    = ( cos 2 x − sin 2 x ) 2 − 4 cos 2 x sin 2 x − cos 2 x ( cos 2 x − sin 2 x ) + 2 sin 2 x cos 2 x                                    = cos 4 x − 2 cos 2 x sin 2 x + sin 4 x − 4 cos 2 x sin 2 x − cos 4 x + cos 2 x sin 2 x + 2 sin 2 x cos 2 x                                    = sin 4 x − 4 cos 2 x sin 2 x + cos 2 x sin 2 x                                    = sin 2 x ( sin 2 x + cos 2 x ) − 4 cos 2 x sin 2 x                                    = sin 2 x − 4 cos 2 x sin 2 x cos ( 4 x ) − cos ( 3 x ) cos x = cos ( 2 x + 2 x ) − cos ( x + 2 x ) cos x                                    = cos ( 2 x ) cos ( 2 x ) − sin ( 2 x ) sin ( 2 x ) − cos x cos ( 2 x ) cos x + sin x sin ( 2 x ) cos x                                    = ( cos 2 x − sin 2 x ) 2 − 4 cos 2 x sin 2 x − cos 2 x ( cos 2 x − sin 2 x ) + sin x ( 2 ) sin x cos x cos x                                    = ( cos 2 x − sin 2 x ) 2 − 4 cos 2 x sin 2 x − cos 2 x ( cos 2 x − sin 2 x ) + 2 sin 2 x cos 2 x                                    = cos 4 x − 2 cos 2 x sin 2 x + sin 4 x − 4 cos 2 x sin 2 x − cos 4 x + cos 2 x sin 2 x + 2 sin 2 x cos 2 x                                    = sin 4 x − 4 cos 2 x sin 2 x + cos 2 x sin 2 x                                    = sin 2 x ( sin 2 x + cos 2 x ) − 4 cos 2 x sin 2 x                                    = sin 2 x − 4 cos 2 x sin 2 x

tan ( 5 8 x ) tan ( 5 8 x )

− 24 25 , − 7 25 , 24 7 − 24 25 , − 7 25 , 24 7

2 ( 2 + 2 ) 2 ( 2 + 2 )

2 10 , 7 2 10 , 1 7 , 3 5 , 4 5 , 3 4 2 10 , 7 2 10 , 1 7 , 3 5 , 4 5 , 3 4

cot x cos ( 2 x ) = cot x ( 1 − 2 sin 2 x )                      = cot x − cos x sin x ( 2 ) sin 2 x                      = − 2 sin x cos x + cot x                      = − sin ( 2 x ) + cot x cot x cos ( 2 x ) = cot x ( 1 − 2 sin 2 x )                      = cot x − cos x sin x ( 2 ) sin 2 x                      = − 2 sin x cos x + cot x                      = − sin ( 2 x ) + cot x

10 sin x − 5 sin ( 3 x ) + sin ( 5 x ) 8 ( cos ( 2 x ) + 1 ) 10 sin x − 5 sin ( 3 x ) + sin ( 5 x ) 8 ( cos ( 2 x ) + 1 )

− 2 2 − 2 2

1 2 ( sin ( 6 x ) + sin ( 12 x ) ) 1 2 ( sin ( 6 x ) + sin ( 12 x ) )

2 sin ( 13 2 x ) cos ( 9 2 x ) 2 sin ( 13 2 x ) cos ( 9 2 x )

3 π 4 , 7 π 4 3 π 4 , 7 π 4

0 , π 6 , 5 π 6 , π 0 , π 6 , 5 π 6 , π

3 π 2 3 π 2

No solution

0.2527 , 2.8889 , 4.7124 0.2527 , 2.8889 , 4.7124

1.3694 1.3694 , 1.9106 1.9106 , 4.3726 4.3726 , 4.9137 4.9137

3 sin ( x π 2 ) − 2 3 sin ( x π 2 ) − 2

71.6 ∘ 71.6 ∘

P ( t ) = 950 − 450 sin ( π 6 t ) P ( t ) = 950 − 450 sin ( π 6 t )

Amplitude: 3, period: 2, frequency: 1 2 1 2 Hz

C ( t ) = 20 sin ( 2 π t ) + 100 ( 1.4427 ) t C ( t ) = 20 sin ( 2 π t ) + 100 ( 1.4427 ) t

Practice Test

π 2 , 3π 2 π 2 , 3π 2

2 cos ( 3 x ) cos ( 5 x ) 2 cos ( 3 x ) cos ( 5 x )

x = cos –1 ( 1 5 ) x = cos –1 ( 1 5 )

3 5 , − 4 5 , − 3 4 3 5 , − 4 5 , − 3 4

tan 3 x – tan x sec 2 x = tan x ( tan 2 x – sec 2 x ) = tan x ( tan 2 x – ( 1 + tan 2 x ) ) = tan x ( tan 2 x – 1 – tan 2 x ) = – tan x = tan ( – x ) = tan – x ) tan 3 x – tan x sec 2 x = tan x ( tan 2 x – sec 2 x ) = tan x ( tan 2 x – ( 1 + tan 2 x ) ) = tan x ( tan 2 x – 1 – tan 2 x ) = – tan x = tan ( – x ) = tan – x )

sin ( 2 x ) sin x – cos ( 2 x ) cos x = 2 sin x cos x sin x – 2 cos 2 x – 1 cos x = 2 cos x – 2 cos x + 1 cos x = 1 cos x = sec x = sec x sin ( 2 x ) sin x – cos ( 2 x ) cos x = 2 sin x cos x sin x – 2 cos 2 x – 1 cos x = 2 cos x – 2 cos x + 1 cos x = 1 cos x = sec x = sec x

Amplitude: 1 4 1 4 , period 1 60 1 60 , frequency: 60 Hz

Amplitude: 8 8 , fast period: 1 500 1 500 , fast frequency: 500 Hz, slow period: 1 10 1 10 , slow frequency: 10 Hz

D ( t ) = 20 ( 0.9086 ) t cos ( 4 π t ) D ( t ) = 20 ( 0.9086 ) t cos ( 4 π t ) , 31 seconds

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/precalculus/pages/1-introduction-to-functions
  • Authors: Jay Abramson
  • Publisher/website: OpenStax
  • Book title: Precalculus
  • Publication date: Oct 23, 2014
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/precalculus/pages/1-introduction-to-functions
  • Section URL: https://openstax.org/books/precalculus/pages/chapter-7

© Dec 8, 2021 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

IMAGES

  1. Lesson 7 Homework 4.1 Answer Key

    lesson 16 homework 3.7 answer key

  2. 7 2 1 homework answers and work.pdf

    lesson 16 homework 3.7 answer key

  3. lesson 16 homework module 2 grade 1

    lesson 16 homework 3.7 answer key

  4. Unit 3 Homework 5 Answer Key.pdf

    lesson 16 homework 3.7 answer key

  5. Unit 8 Homework 3 Answer Key.pdf

    lesson 16 homework 3.7 answer key

  6. Lesson 6 Homework 5.5 Answer Key › Athens Mutual Student Corner

    lesson 16 homework 3.7 answer key

VIDEO

  1. Module 6, Lesson 16 Homework Help

  2. Day 16: Homework Example #1

  3. Chapter 16 Homework Questions

  4. Intermediate II Chapter 16 Homework

  5. Class 7 IMO Set-C Solution

  6. Day 16: Homework Example #2

COMMENTS

  1. Eureka Math Grade 3 Module 7 Lesson 16 Answer Key

    Eureka Math Grade 3 Module 7 Lesson 16 Problem Set Answer Key. Question 1. Find the perimeter of 10 circular objects to the nearest quarter inch using string. Record the name and perimeter of each object in the chart below. Object. Perimeter (to the nearest quarter inch) Cap of my jam jar. 13 14 inches. Bangle.

  2. PDF Lesson 16 Homework 3 7

    Lesson 16 Homework 3 7 Lesson 16: Use string to measure the perimeter of various circles to the nearest quarter inch. Name Date 1. a. Find the perimeter of 5 circular objects from home to the nearest quarter inch using string. Record the name and perimeter of each object in the chart below. Object Perimeter

  3. lesson 16 homework module 3 grade 3

    Here is a link to the source for the pages, the "full module" PDF:https://www.engageny.org/resource/grade-3-mathematics-module-3

  4. PDF Teacher Edition Eureka Math Grade 7 Module 3

    Module 3: Expressions and Equations D } µ o K À À ] Á 7•3 Grade 7 {Module 3 Ex pressions and Eq uations Ks Zs/ t In Grade 6, students interpreted expressions and equations as they reasoned about one-variable equations.

  5. Eureka Math Grade 3 Module 7 Answer Key

    Eureka Math Grade 3 Module 7 Answer Key provided lays a deeper understanding of concepts. Practice using the Engage NY Math 3rd Grade Module 7 Solutions and develop the Knowledge that builds upon itself throughout. ... Eureka Math Grade 3 Module 7 Lesson 16 Answer Key; Eureka Math Grade 3 Module 7 Lesson 17 Answer Key;

  6. PDF GRADE 3 • MODULE 7

    NYS COMMON CORE MATHEMATICS CURRICULUM Answer Key 3•Lesson 3 7 Lesson 3 Pattern Sheet 4 8 12 16 ... NYS COMMON CORE MATHEMATICS CURRICULUM 3•Lesson 4 Answer Key 7 Lesson 4 Pattern Sheet 4 8 12 16 20 24 28 32 36 40 20 24 ... NYS COMMON CORE MATHEMATICS CURRICULUM •Lesson 8 Answer Key 7 Homework 1. Line drawn to divide square 2. ...

  7. Printed Materials

    As the creator of Engage NY Math and Eureka Math, Great Minds is the only place where you can get print editions of the PK-12 curriculum.Our printed materials are available in two configurations: Learn, Practice, Succeed, or student workbooks, teacher editions, assessment and fluency materials. The Learn, Practice, Succeed configuration is available for grades K-8 and offers teachers ...

  8. Student Print Materials (K-5)

    Bundle options are available for all of our materials (print, digital, PD, etc.). Prices vary by grade and size of class set. Certain grade-levels do not include all packets due to the nature of the grade-level content. Student workbooks are available in class sets of 20, 25, and 30. Prices vary by size of class set.

  9. PDF Go Math! Practice Book (TE), G5

    Go Math! Practice Book (TE), G5. Name Fraction and Whole Number Multiplication Find the product. Write the product in simplest form. 2. Lesson 7.3 COMMON CORE STANDARD CC5.NF.4a Apply and extend previous understandings of multiplication and division to multiply and divide fractions. — or 33ž 27 or 2— —x 9=10' 10 10 3. 6.

  10. Answer Key 3.7

    Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

  11. PDF Practice and Homework Name Lesson 3.7 Estimate Decimal Sums and Differences

    16.18 !__ 5.9 4 __ 5 1_6 11 Use benchmarks to estimate. 11. WRITE Math Explain why estimation is an important skill to know when adding and subtracting decimals. Estimate Decimal Sums and Differences Lesson 3.7 COMMON CORE STANDARD—5.NBT.B.7 Perform operations with multi-digit whole numbers and with decimals to hundredths. Practice and Homework

  12. Signing Naturally Unit 3 Answers

    Homework 3: 1. Ben lives in Berkely near the college. 2. Darby lives in Fremont near the lake. 3. Joey lives in Oakland in the hills and can see the city of San Francisco from his home. 4. Darby's home is far from the college. Homework 3: Giving Commands - done in class. Homework 3: Read about Douglas Tilden.

  13. College Algebra

    Exercise 91. Exercise 92. Exercise 93a. Exercise 93b. Exercise 93c. Exercise 94. Exercise 95. Exercise 96. Find step-by-step solutions and answers to College Algebra - 9780321729682, as well as thousands of textbooks so you can move forward with confidence.

  14. PDF Grade 4 • Module 6

    Module 6: Decimal Fractions 5 Lesson 3 Answer Key 4• 6 Homework 1. a. 14; 1 one and 4 tenths disks drawn; 1.4; 0.6 b. 25; 2 ones and 5 tenths disks drawn; 2.5; 0.5

  15. Algebra 1 Common Core

    Find step-by-step solutions and answers to Algebra 1 Common Core - 9780133185485, as well as thousands of textbooks so you can move forward with confidence. ... Section 3-7: Absolute Value Equations and Inequalities. Section 3-8: Union and Intersection of Sets. Page 222: ... Exercise 16. Exercise 17. Exercise 18. Exercise 19. Exercise 20 ...

  16. lesson 16 homework module 4 grade 3

    The source for the homework pages is the full module PDF, available for free here:https://www.engageny.org/resource/grade-3-mathematics-module-4

  17. College Algebra

    Chapter Appendix A: Calculations and Significant Figures. Exercise 1. Exercise 2. Exercise 3. Find step-by-step solutions and answers to College Algebra - 9781305115545, as well as thousands of textbooks so you can move forward with confidence.

  18. Intermediate Algebra

    Exercise 11. Exercise 12. Exercise 13. Exercise 14. Find step-by-step solutions and answers to Intermediate Algebra - 9780134197210, as well as thousands of textbooks so you can move forward with confidence.

  19. Answer Key Chapter 7

    7.3 Section Exercises. 1. Use the Pythagorean identities and isolate the squared term. 3. 1 − cos x sin x , sin x 1 + cos x , multiplying the top and bottom by 1 − cos x and 1 + cos x , respectively. 5. a) 3 7 32 b) 31 32 c) 3 7 31. 7. a) 3 2 b) − 1 2 c) − 3.